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Developmental exposure to selective serotonin reuptake inhibitor (SSRI) increases the
risk of Autism Spectrum Disorder (ASD), however, the underlying neurobiology of this
effect is not fully understood. Here we used the socially monogamous prairie vole as a
translational model of developmental SSRI exposure. Paired female prairie voles (n = 20)
were treated with 5 mg/kg subcutaneous fluoxetine (FLX) or saline (SAL) daily from birth
of the second litter until the day of birth of the 4th litter. This design created three cohorts
of FLX exposure: postnatal exposure in litter 2, both prenatal and postnatal exposure in
litter 3, and prenatal exposure in litter 4. Post-weaning, subjects underwent behavioral
testing to detect changes in sociality, repetitive behavior, pair-bond formation, and
anxiety-like behavior. Quantitative receptor autoradiography was performed for oxytocin,
vasopressin 1a, and serotonin 1a receptor density in a subset of brains. We observed
increased anxiety-like behavior and reduced sociality in developmentally FLX exposed
adults. FLX exposure decreased oxytocin receptor binding in the nucleus accumbens
core and central amygdala, and vasopressin 1a receptor binding in the medial amygdala.
FLX exposure did not affect serotonin 1A receptor binding in any areas examined.
Changes to oxytocin and vasopressin receptors may underlie the behavioral changes
observed and have translational implications for the mechanism of the increased risk of
ASD subsequent to prenatal SSRI exposure.

Keywords: oxytocin receptor, vasopressin receptor, serotonin receptor, 5-HT, autism, antidepressant, SSRI,
autoradiography

INTRODUCTION

In humans, antidepressant medication, most frequently a selective serotonin reuptake inhibitor
(SSRI), is commonly prescribed to pregnant and lactating women with major depression (Boukhris
et al., 2016). Use of SSRIs during pregnancy has increased dramatically over the last several
decades, with estimates ranging from 6 to 13% of pregnancies in the United States (Cooper et al.,
2007; Andrade et al., 2008; Alwan et al., 2011). Pharmacological treatment of maternal depression
is typically recommended during the prenatal period, primarily because of the well-established
negative effects of maternal depression (Davalos et al., 2012; Jarde et al., 2016). However, there
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may be side effects of SSRIs leading to preterm labor, altered
gestational length and early delivery (Hayes et al., 2012),
congenital heart malformations (Knudsen et al., 2014; Gentile,
2015a), persistent pulmonary hypertension (Grigoriadis et al.,
2014), and adverse neurodevelopmental outcomes (El Marroun
et al., 2014; Glover and Clinton, 2016). There is reason for
concern about the effects of early exposure to SSRIs on
the developing brain. SSRIs can cross the placental barrier
(Hendrick et al., 2003; Rampono et al., 2009) and enter into
breast milk (Kristensen et al., 1999; Rampono et al., 2000).
Exposed infants show altered brain activity measured via EEG
(Videman et al., 2017).

A growing body of research indicates increased rates of
Autism Spectrum Disorder (ASD) in prenatally SSRI-exposed
children (Croen et al., 2011; El Marroun et al., 2014; Gidaya
et al., 2014; Gentile, 2015b; Boukhris et al., 2016; Andalib
et al., 2017). While others have found no relationship when
controlling for maternal factors (Hviid et al., 2013; Kobayashi
et al., 2016) recent meta-analyses indicate that SSRI-exposure
does increase autism diagnosis when pooling across studies (Man
et al., 2015; Kaplan et al., 2017). Disentangling the effects of the
underlying psychiatric condition of the mother from the effects
of SSRIs on fetal development is difficult, and causality remains
to be established.

Decades of research have indicated a link between ASD and
serotonin, starting with the finding of hyperserotonemia in a
subset of individuals shortly after the disorder was first described
(Schain and Freedman, 1961). Hyperserotonemia has remained
a consistent finding in a large subgroup of individuals diagnosed
with ASD, with roughly one third of individuals presenting with
high whole blood serotonin levels (Schain and Freedman, 1961;
Anderson et al., 1987; Hranilovic et al., 2007; Gabriele et al., 2014;
Muller et al., 2016). This finding has led researchers to suggest
that hyperserotonemia underlies differences in the brain which
are responsible for the appearance of autistic behavior (Whitaker-
Azmitia, 2005; Yang et al., 2014). Animal models corroborate
that hyperserotonemia leads to behavioral and neuroendocrine
changes consistent with those seen in autism (Whitaker-Azmitia,
2005; McNamara et al., 2008; Veenstra-VanderWeele et al., 2012;
Madden and Zup, 2014; Tanaka et al., 2018). Developmental
hyperserotonemia decreases the number of oxytocinergic cells
in the paraventricular nucleus of the hypothalamus in both rats
(McNamara et al., 2008) and prairie voles (Martin et al., 2012),
while decreasing affiliative behavior and increasing anxiety.

The effects of hyperserotonemia on the brain are rooted in
serotonin’s critical role during early development as a trophic
factor, long before it begins to function as a neurotransmitter. As
a growth factor, it regulates development of its own and related
systems and guides cell division, differentiation, migration,
myelination, synaptogenesis, and dendritic pruning (Lauder,
1993; Azmitia, 2001; Wirth et al., 2017). Because serotonin
exposure at this time also functions to autoregulate its own
innervation throughout the brain via a negative feedback
mechanism, developmental hyperserotonemia can cause
organizational change which may enduringly alter serotonergic
neurotransmission (Whitaker-Azmitia, 2001). Despite the
relative paucity of serotonin neurons, they innervate almost all

parts of the brain, making this system a powerful mediator of
brain activity in many regions. Thus, alterations in serotonin
during development may be particularly influential.

Significant overlap exists in psychiatric conditions associated
with serotonin dysfunction and ASD. For instance, heightened
rates of anxiety and depression may be seen in ASD populations
(Lugnegård et al., 2011) and serotonin-based treatments,
including SSRIs, show efficacy in treating some symptoms of
ASD (Kolevzon et al., 2006; Hollander et al., 2012). Furthermore,
depletion of tryptophan, the serotonin precursor, worsens
repetitive behavior symptoms in ASD (McDougle et al., 1993,
1996). In addition, gastrointestinal problems are prevalent in
ASD (Adams et al., 2011; Chaidez et al., 2014; McElhanon et al.,
2014), and serotonin is highly involved in gut motility (Sikander
et al., 2009). These comorbidities suggest that disrupted serotonin
signaling may underlie the neurobiology of autism.

The serotonin system has important interactions with other
systems in the brain. One such example is the interaction
seen in the serotonin and oxytocin (OT) systems, both during
development and in adulthood. Animal models indicate these
systems are anatomically interconnected. Fibers from the dorsal
and median raphe project to the paraventricular (PVN) and
supraoptic (SON) nuclei of the hypothalamus, where oxytocin
receptors (OTR) are distributed around them (Emiliano et al.,
2007). Serotonin acts on OT neurons via serotonin receptors
located in the PVN and SON, where OT is produced (Osei-
Owusu et al., 2005). Likewise, OT acts via OTR on serotonin
neurons in the raphe nuclei, where serotonin is produced,
which may mediate the release of serotonin and have a role
in the anxiolytic effects of OT (Yoshida et al., 2009). While
evidence suggests that these two neurochemical systems may be
working in tandem, it is not yet clear how early SSRI use may
affect neural OT.

Vasopressin (AVP) is structurally and genetically similar to
OT, and both play a central role in modulating the development
of normal social behavior (Carter, 2014). Direct approaches to
target the oxytocinergic and vasopressinergic systems are aimed
at treating social dysfunction in disorders such as ASD. Although
clinical results remain contradictory regarding whether effects
are prosocial or antisocial (De Dreu et al., 2010; Guastella
et al., 2010), recent advances in our understanding of the
complex neurobiology of OT and AVP signaling, release, and
degradation present promising avenues for understanding social
function in ASD.

Animal models are useful in establishing causal links to long-
term effects of perinatal SSRI exposure on social behavior in
offspring (Zucker, 2017). Results are complicated by age, sex, and
context-specific effects. Pre- and postnatal FLX exposure resulted
in loss of a preference for a social partner vs. an empty cage, and
a deficit in social recognition, in mice (Bond et al., 2020). When
rats were tested as pre-adolescents, prior exposure to perinatal
FLX prevented effects of maternal stress on play behavior in
both sexes, but also resulted in an increase in aggressive play in
males only (Gemmel et al., 2017). When tested as adults, perinatal
exposure resulted in sex-specific increases in social behaviors
(Gemmel et al., 2019). Another study of perinatal exposure found
decreases in social interaction in male rats when tested as adults
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(Silva et al., 2018). In addition, some types of social behavior (i.e.,
pair bonding) are not present in rats and mice, necessitating a
different animal model.

In the present study, we used the prairie vole as a translational
model of developmental SSRI exposure. Prairie voles are
socially monogamous microtine rodents that form lasting adult
heterosexual pair bonds characterized by the formation of
a partner preference, intrasexual aggression, and bi-parental
care. Prairie voles are highly social and have a well described
neurohypophyseal nonapeptide system (for review see Young
et al., 2011) and can be tested in standardized assays of social
behavior and anxiety-like behavior (e.g., partner preference,
elevated plus maze). Here we use the prairie vole to examine
how developmental exposure to a SSRI affects adult behavior and
neural OTR, vasopressin 1a (V1aR), and serotonin 1A (5-HT1a)
receptors and to determine if these changes replicate aspects of
the symptomology of ASD.

MATERIALS AND METHODS

Subjects
Subjects were laboratory-housed prairie voles (Microtus
ochrogaster) from the breeding colony at the University of
California, Davis. This colony was derived from a lineage of
stock which was wild-caught near Champaign, IL. Animals
were housed on a 14:10 light dark cycle with lights on at 0600.
Food (Purina high-fiber rabbit chow) and water were available
ad libitum in the home cage. Breeding pairs and offspring
prior to weaning were housed in large polycarbonate cages
(44 cm × 22 cm × 16 cm) and were given compressed
cotton nestlets for bedding. Offspring were weaned on
postnatal (PND) 20 and housed in small polycarbonate
cages (27 cm × 16 cm × 16 cm) throughout testing with a
same-sex sibling when available and a similarly aged non-sibling
when not. All procedures were reviewed and approved by the
Institutional Animal Care and Use Committee of the University
of California, Davis.

Drugs
Fluoxetine hydrochloride (Sigma-Aldrich, St. Louis, MO,
United States) was dissolved in isotonic saline in a concentration
of 1 mg/ml. It was then filtered into sterile solution and injected
subcutaneously at the nape of the neck in a dose of 5 mg/kg.
This dose was chosen based on the literature and the results of
our own prior dose finding study. Both 5 and 10 mg/kg doses
of FLX are commonly used in other rodent studies for perinatal
administration (Gemmel et al., 2017, 2019; Grieb and Ragan,
2019). In the prairie vole dose-finding study, we examined the
effect of 5 mg/kg FLX, 10 mg/kg FLX, or saline (SAL) vehicle
on forced swim behavior and sucrose preference in socially
isolated adult female prairie voles. At 5 mg/kg, females struggled
significantly less (when compared to SAL, t36 =−2.92, p = 0.005),
and spent approximately 40% less time immobile (although this
was not statistically significant). In contrast, at 10 mg/kg struggle
behavior did not differ from SAL, and time spent immobile
trended toward an increase (when compared to saline, t37 = 1.64,

p = 0.106). We therefore determined that 5 mg/kg was a more
appropriate dose for the current study (data are available in
Supplementary Figure S1).

Design and Procedures
Virgin prairie voles (20 male, 20 female) were paired and allowed
to raise a litter of pups together undisturbed. On the day of birth
of the second litter, females were hand caught and pups were
briefly removed. Litters were culled to two male and two female
pups when possible. Females were given a subcutaneous injection
of 5 mg/kg FLX or SAL at the nape of the neck and returned
to the home cage along with her pups. On subsequent days, the
female was hand caught and FLX or SAL was injected without
removing the pups from the nipples. Females were dosed daily
in this way with either FLX or SAL until the day of birth of the
fourth litter. This design created three cohorts of FLX exposure:
postnatal exposure in litter 2 (POST), both prenatal and postnatal
exposure in litter 3 (PRE + POST), and prenatal exposure in
litter 4 (PRE) (Figure 1). The average interbirth interval for litter
2–3 was 22.7 ±0.34 days (range 21–26), and for litter 3–4 was
22.9±0.19 days (range 21–24).

Parental Care of Prenatally Exposed
Offspring
Parental care is minimally altered following treatment with FLX
(Villalba et al., 1997), however the effects of withdrawal prior to
weaning has not been examined in prairie voles. Parental care
of prenatally FLX-exposed subjects (litter 4) was quantified in
the home cage to determine whether FLX withdrawal would
significantly alter parental behavior. Undisturbed parental care
was observed in the home cage for 20 min once during the
morning and once in the afternoon on 2 days between PND 1-
3. Behaviors were quantified in real-time using Behavior Tracker
1.5 (behaviortracker.com) using methods previously validated
to measure the type and amount of parental care (Perkeybile
et al., 2013). Both maternal and paternal behavior was measured,
including huddling, non-huddling contact, licking/grooming,
pup retrieval, nest building, and maternal nursing postures.

Behavioral Tests
After weaning, subjects underwent behavioral testing. Half of
each litter, one male and one female when possible, underwent
behavioral testing during periadolescence, between PND21 and
PND39. Periadolescent subjects underwent alloparental care,
elevated plus maze, and open field testing in that order. The
other half of each litter, one male and one female when
possible, underwent behavioral testing as adults, between PND45
and PND120. Adult subjects were tested for alloparental care,
elevated plus maze, and open field; in addition, they also
underwent intrasexual adult affiliation and partner preference
testing. All behaviors were quantified using Behavior Tracker
1.5 (behaviortracker.com). Behavioral tests occurred from 1
to 5 days apart.
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FIGURE 1 | Timeline of maternal daily dosing and subject exposure. GD, gestational day; PND, postnatal day.

Alloparental Care
A minimum of 24 h after weaning, subjects were tested with a
novel pup to measure alloparental care behavior as previously
described (Bales et al., 2004a). Subjects were placed into an arena
consisting of two polycarbonate cages (27 cm × 16 cm × 16 cm)
connected by a short clear tube for a 45-minute acclimation
period. This period was followed by a 10 min test in which a
novel pup (PND 0-4) was placed into the arena. The subject
was free to move about the arena and interact with the pup.
Tests were video-recorded and later scored by a trained observer
blind to condition. Behaviors quantified included frequency and
latency of approach, sniffing, licking and grooming the pup,
autogrooming, physical contact with the pup, huddling, pup
retrievals, non-injurious biting, attacks, digging, and location
in the arena relative to the pup. Digging and autogrooming
were considered potential stereotypical behaviors. When attacks
occurred, the test was immediately stopped and the subject
removed from the arena. If possible, injuries were treated and
the pup returned to the home cage. If necessary, the pup was
euthanized. Each pup was used for no more than two test sessions.
Following testing, animals were returned to their home cage.

Sex differences in prairie voles in this test are well-established,
with males responding with higher levels of alloparental care
than females. This sex difference, although already present in
peri-adolescents, becomes more marked as animals become adult
(Roberts et al., 1998).

Elevated Plus Maze
The elevated plus-maze was used as a measure of anxiety and
exploration (Insel et al., 1995) based on the rodent predisposition
to prefer dark enclosed spaces (Campos et al., 2013). The maze
consisted of two open and two enclosed opaque arms, each 67 cm
long and 5.5 cm wide. The arms were elevated 1 m above the
floor. Each vole was placed into the center of the maze and its
behavior was scored for 5 min. Any animals that jumped off
the open arms of the maze were captured and placed back into
the center of the maze. If a subject jumped off the maze three
times, the test was stopped. Throughout the course of the study,
only four animals jumped off the maze, and data from only two
animals had to be removed due to jumping. Trained observers
blind to conditions scored behavior live for duration of time
in the open and closed arms, freezing, and autogrooming with
an inter-rater reliability greater than 90%. Autogrooming was

considered a potential stereotypical behavior. Following testing
animals were returned to their home cage.

It is worth noting that at baseline, prairie voles spend a
higher amount of time in the open arms of the elevated plus-
maze than mice typically do (Komada et al., 2008). While
across 90 genetically engineered strains, mice spent an average
of 9.19 ± 0.36% time in the open arms of the maze, prairie
voles often spend 35–75% of their time in the open arms
(Bales et al., 2004b; Greenberg et al., 2012). Male prairie voles
tend to spend more time in the open arms, or exhibit higher
frequencies of open arm entries, than females (Bales et al., 2004b;
Greenberg et al., 2012).

Open Field
The open field test was used as a second measure of anxiety
and exploration (Ramos and Mormède, 1997). The open field
consisted of a 40 cm × 40 cm × 40 cm plexiglass arena with a
grid marked on the floor. The subject was placed in the center of
the arena and behavior was digitally recorded for 10 min. Time
spent in the center and the periphery was measured, as well as
the frequency of rearing. Tests were video recorded and later
scored using Behavior Tracker by trained observers with an inter-
rater reliability greater than 90%. Following testing animals were
returned to their home cage. Sex differences for prairie voles are
not well established and are absent in some studies (Greenberg
et al., 2012); we did not therefore predict any sex differences at
baseline for this test.

Intrasexual Adult Affiliation
Subjects were placed into a novel arena (27 cm× 16 cm× 16 cm)
with a stimulus animal of the same sex and body size for
5 min as a low-threat, low-aggression social interaction task
(Perkeybile and Bales, 2015). Behavior was video recorded and
later scored by an observer blind to the treatment condition. The
ethogram used to score behavior included affiliative behaviors
(sniffing, physical contact, allogrooming, and play), anxiety
related behaviors (rearing, digging, abrupt withdrawal), and
aggressive behaviors (lunging, wrestling, chasing). Digging and
autogrooming were considered potential stereotypical behaviors.
Prior to testing, stimulus animals were screened for aggressive
behavior with a novel animal, and were not used if they displayed
high levels of aggression. Stimulus animals were collared prior
to the start of testing to allow for identification during later
behavioral scoring. Stimulus animals were used for a maximum
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of 2 tests, and were not reused if they experienced an aggressive
interaction. Tests were continuously monitored for high levels of
aggression and were stopped if necessary. Intense aggression was
rarely seen. Following testing, animals were returned to the home
cage. At baseline, we expected males to be more aggressive and
less affiliative than females (Bales and Carter, 2003b).

Partner Preference
This test is commonly used as an operational index of the
formation of a pair-bond in the prairie vole (Williams et al.,
1992; Bales and Carter, 2003a; Bales et al., 2013). Male subjects
were housed with a female “partner” for 24 h prior to testing
and female subjects were housed with a male partner for 6 h
prior to testing. These durations have been previously shown to
be sufficient time for the formation of a partner preference and
account for the sex difference in time to pair bond formation
(Williams et al., 1992; DeVries and Carter, 1999). Following this
cohabitation, the opposite-sex mate of the subject (partner) and
a non-related opposite-sex animal matched on age and weight to
the mate (stranger) were tethered in opposing ends of a three-
chamber testing apparatus. The subject was placed untethered in
the empty middle chamber and was free to move about all three
chambers and interact with either the partner or stranger for 3 h.
The test was digitally recorded, and the duration of time in each
of the three locations was quantified, as was the duration of side
by side contact with the stranger and partner.

Brain Extraction and Tissue Sectioning
Brains were taken from behaviorally tested animals of both ages
(juvenile and adult), but only brains from the PRE + POST
exposure cohort were analyzed for receptor binding (see below).
Twenty-four hours after completion of all behavioral testing,
subjects were euthanized via cervical dislocation and rapid
decapitation under deep anesthesia. Brains were removed quickly
and placed in powdered dry ice and then stored at −80◦C
until sectioning. Brain tissue was sectioned coronally in 20 µm
slices at 20◦C on a cryostat (Leica) and thaw mounted on
Fisher Superfrost Plus slides. Slides were stored at −80◦C until
the time of assay.

OTR and V1aR Autoradiography
Because they showed the largest effects on behavior, quantitative
receptor autoradiography for OTR, V1aR, and 5-HT1aR was
performed for the PRE + POST exposure cohort. Analyses
were carried out on the right side of the brain only, as tissue
punches were taken from the left side for additional analyses.
Tissue was allowed to thaw in slide boxes containing desiccant
packets. OTR and V1aR autoradiography was performed as
previously reported (Perkeybile and Bales, 2015) with minor
adjustments. For OTR binding, the ligand 125I-OVTA [125I-
ornithine vasotocin [d(CH2)5[Tyr(Me)2

, Thr4
, Orn8, (125I)Tyr9-

NH2] analog], 2200Ci/mmol (Perkin Elmer, Waltham, MA,
United States) was used. For V1aR binding, the ligand 125I-
LVA [125I-lin-vasopressin [125I-phenylacetyl-D-Tyr(ME)-Phe-
Gln-Asn-Arg-Pro-Arg-Tyr-NH2] analog], 2200Ci/mmol (Perkin
Elmer, Waltham, MA, United States) was used. After assay
completion, slides along with 125I-autoradiographic standards

(American Radiolabeled Chemicals, St. Louis, MO, United States)
were exposed to Biomax MR film (Kodak, Rochester, NY,
United States) for 72 h and then developed. We have previously
reported a sex difference in the nucleus accumbens shell, with
males displaying higher OTR binding than females at baseline
(Guoynes et al., 2018).

5-HT1A Autoradiography
For 5-HT1A binding, 3.0 nM [3H]WAY-100635, 74Ci/mmol
(Perkin Elmer, Waltham, MA, United States) was used. Tissue
was rinsed in 50 mM Tris–HCl buffer (pH 7.5) followed by a
120 min incubation in the tracer buffer at room temperature.
10 nM of L-485,870, a dopamine antagonist, was included to
prevent binding of WAY-100635 to Dopamine D4 receptors.
Following the incubation period, tissue was rinsed twice in
50 mM Tris buffer at 4◦C and then dipped in dH2O and air dried.
Tissue was exposed to Carestream BioMax MR Film (Kodak,
Rochester, NY, United States) for 6 weeks with 3H microscale
standards (American Radiolabeled Chemicals, St. Louis, MO,
United States). We had no a priori predictions as far as 5-HT1A
binding sex differences at baseline for this species.

Quantification
Experimenters were blind to conditions during autoradiogram
quantification. ImageJ software (National Institutes of Health,
Bethesda, MD, United States) was used to quantify OTR optical
binding density (OBD) in previously reported (Insel and Shapiro,
1992) regions of interest (ROI) including the nucleus accumbens
core and shell, anterior central amygdala, and the lateral septum,
and for V1aR in the medial amygdala, lateral septum, and
ventral pallidum. 5-HT1aR OBD were quantified in the anterior
and posterior lateral septum, dorsal hippocampus, dorsal raphe,
and frontal cortex using MCID Core Digital Densitometry
system (Cambridge, United Kingdom). The ten standard OBD
values were used to generate a standard curve. Three separate
measurements for ROIs and background OBD were averaged to
yield normalized values and account for individual variation in
background across samples.

Data Analysis
Statistical analyses were conducted using SAS 9.4 (SAS Institute,
Cary, NC, United States). All analyses were carried out using
generalized linear mixed models (GLMM) utilizing backward
selection to eliminate non-significant variables from the model.
Significance level was set at p < 0.05 for all analyses and all
tests were two-tailed. Data were checked for normality, and if
not normally distributed, square root, quad root, or reciprocal
transformation was used. If data was not transformable to
normality, a GLMM was still used as recommended by Feir-
Walsh and Toothaker (1974). Post hoc analyses utilized least
squares means when the omnibus test was significant. The
random factor used in all analyses was a pair ID (for the subject’s
parents) to account for differences due to parenting or genetic
background for subjects within the same litter or across litters.
Drug condition was nested within this term, as each female
maintained a consistent drug condition throughout the study and
thus all offspring of a given pair had the same drug condition.
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When a three-way interaction was statistically significant, all two-
way interactions which included the variables in the three-way
interaction were left in the model even if not significant.

Parental Care
A multivariate mixed model was used for analysis of parental
care behavior. All three types of nursing were included in one
model, as were behaviors that were examined concomitantly in
both mothers and fathers that were not independent, such as
huddling. Factors included in the model were pair ID and drug
condition of the mother prior to cessation of treatment, as well as
age of pups at observation and time of day as covariates.

Alloparental Care Test
For the alloparental care analyses, variables were summed for
duration of time in the same location (with the pup) or different
location (without the pup) in the testing arena. A ratio was
created to examine relative proportion of time spent in the
same location as the pup relative to duration in a different
location than the pup using the equation: ratio = with the
pup/(with the pup + without the pup). Factors included in
the model were pair ID, drug condition, sex, exposure cohort,
age group, and interactions of these factors. Also analyzed were
time spent in contact to the pup, time spent retrieving the
pup, time spent in proximity to the pup, latency to approach,
duration of social investigation, duration of licking, and duration
of huddling over the pup.

Elevated Plus Maze
For the elevated plus maze analysis, a ratio was created to
examine the proportion of time spent on the open arms relative
to total time on the maze using the equation: ratio = time
on open arms/(time on open arms + time on closed arms).
Factors included in the model were pair ID, drug condition, sex,
exposure cohort, age group, and interactions of these factors.
Autogrooming, entries onto the arms of the maze, and duration
of freezing, were also analyzed.

Open Field Test
For the open field test analyses, a ratio was created to examine
proportion of time spent in the center of the arena relative to
total time using the equation: ratio = time in center/(time in
center + time in periphery). Factors included in the model were
pair ID, drug condition, sex, exposure cohort, age group, and
interactions of these factors. Rearing was also analyzed.

Intrasexual Adult Affiliation
For the intrasexual adult affiliation analyses, the frequency of
aggressive behavior was calculated by summing the frequencies
of lunging and wrestling. Factors included in the model for
each behavior (including affiliative, anxiety-like, and aggressive
behaviors, as described above) were pair ID, drug condition, sex,
exposure cohort, and interactions of these factors.

Partner Preference Test
For between-group partner preference test analyses, a difference
score was created to examine duration of time spent in the same

FIGURE 2 | Parental care of prenatal exposure subjects. (A) Mean (±SEM)
total, neutral, lateral, and active nursing duration comparing mothers
previously exposed to saline to mothers previously exposed to fluoxetine.
(B) Mean (±SEM) duration of nest building in mothers previously exposed to
saline and their male pair-mates (fathers) compared to mothers previously
exposed to fluoxetine and their pair-mates. *p < 0.05.

cage as the partner relative to time spent with the stranger using
the equation: difference = time with partner - time with stranger.
The same procedure was used to examine physical contact
with the partner relative to contact with the stranger using the
equation: difference = time in contact with the partner - time in
contact with the stranger. Duration of time spent in the empty
chamber was analyzed separately, and square root transformed
for analyses to make the residuals for this model normally
distributed. Factors included in the model were pair ID, drug
condition, sex, exposure cohort, and interactions of these factors.

Within-group partner preference analyses for the SAL and
FLX groups were performed using matched t-tests for time
spent in contact with the partner vs. time spent in contact
with the stranger.

Oxytocin, Vasopressin 1a, and Serotonin
1a Receptor Binding
For all binding analyses, density of binding in three sequential
areas of each ROI were averaged for each individual. The model
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included pair ID, drug condition, sex, age group, and interactions
of these factors.

Pearson correlations were calculated for the 4 ROIs quantified
for OTR and the 3 ROIs quantified for V1aR with difference
in time in physical contact and duration of time in the
empty chamber in the partner preference test. Correlation
of OTRs in the central amygdala and proportion of time
on the open arms of the elevated plus maze was also
examined. When multiple comparisons were made within a
single behavioral or neuroanatomical test, a Benjamini-Hochberg
false discovery rate adjustment for multiple comparisons was
used (Benjamini and Hochberg, 1995).

RESULTS

Parental Care
Parental care of the PRE cohort was minimally altered by the drug
condition of the mother, either FLX withdrawal or no withdrawal
from SAL at the time of parenting. Drug condition did not alter
total duration of nursing, nor did it alter duration of neutral
nursing postures or lateral nursing postures. However, duration
of active nursing was altered by drug condition (F1,51 = 5.11,
p < 0.05), with FLX-withdrawing dams spending more time
in active nursing than those who had been treated with SAL
(Figure 2A). Nest building duration was also greater in FLX-
withdrawing mothers (F1,51 = 4.06, p < 0.05) as well as their
untreated male pair-mates (F1,51 = 4.79, p < 0.05) compared
to pairs in which mothers were previously treated with SAL
(Figure 2B). Because of the high amount of variability in this
behavior, we also analyzed nest-building with a non-parametric
Kruskal-Wallis test. The duration of nest-building in FLX-
withdrawing mothers, compared to SAL mothers, remained
significant (χ2

1 = 4.62, p < 0.05), however, the effect was non-
significant in their male mates (χ2

1 = 1.14, p > 0.05). All
other behaviors observed were not affected by drug condition
including maternal huddling, paternal huddling, maternal non-
huddling contact, paternal non-huddling contact, maternal
licking and grooming, paternal licking and grooming, maternal
pup retrieval, paternal pup retrieval, maternal autogrooming, or
paternal autogrooming.

Behavior of Developmentally Exposed
Offspring
Alloparental Care Test
Duration of overall pup physical contact was greater in males
than in females (F1,167 = 8.28, p < 0.01). A three-way interaction
of condition, sex, and age group (F1,167 = 3.77, p < 0.05) indicated
that among FLX subjects, adult females were in contact with the
pup less than periadolescent females (t41 = 2.88, p < 0.05) and
that among SAL subjects, periadolescent females were in contact
with the pup less than periadolescent males (t49 = 2.06, p < 0.05).
Adult females spent less time in contact with the pup compared
to adult males exposed to either SAL (t52 = 1.97, p < 0.05) or
FLX (t44 = 2.83, p < 0.01) (Figure 3A). Put another way, females
were in contact with the pup less than males under matching
conditions, with the exception of FLX periadolescent females,

FIGURE 3 | Alloparental care behavior. (A) Mean (± SEM) duration of physical
contact with the pup comparing saline and fluoxetine exposure by age and
sex. (B) Mean (±SEM) duration of pup retrieval comparing saline and
fluoxetine exposure by exposure cohort. (C) Mean (± SEM) latency to
approach the pup, sniffing, and huddling comparing saline and fluoxetine
exposure. *p < 0.05, **p < 0.01.

which spent more time in contact with the pup than did FLX
periadolescent males.

Duration of time spent retrieving the pup tended to be
greater in males than in females (F1,163 = 3.69, p = 0.057).
A drug condition by cohort interaction (F2,163 = 3.44, p < 0.05)
(Figure 3B) indicated that in the PRE + POST cohort, FLX
subjects spent more time retrieving the pup than SAL subjects
(t63 = 2.34, p < 0.05), and that in FLX subjects, PRE + POST
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FIGURE 4 | Elevated plus maze. Mean (±SEM) proportion of time spent in the
open arms relative to total time comparing saline and fluoxetine exposure by
age. *p < 0.05.

subjects spent more time retrieving than PRE (t60 = 2.40,
p < 0.05) and POST (t58 = 2.47, p < 0.05) subjects.

Fluoxetine exposure had no effect on proximity to the pup,
licking the pup, latency of approach, social investigation, or
huddling (Figure 3C). Ratio of time spent in the same chamber
of the testing arena as the pup relative to total time was not
altered by drug condition, nor was latency to approach the pup,
duration of sniffing, huddling, licking, or grooming of the pup.
There was no indication of heightened repetitive behavior with
FLX exposure, and duration of autogrooming and digging were
not altered by drug condition.

Elevated Plus Maze
Proportion of time spent in the open arms relative to total
time on the maze showed an interaction of drug condition
and age group (F1,141 = 4.02, p < 0.05) such that FLX-
exposed adults spent a lower proportion of time in the open
arms compared to SAL-exposed adults (t64 = 2.21, p < 0.05),
while there was no such difference in periadolescent subjects
(Figure 4). Drug condition did not alter the number of entries
onto the arms of the maze, duration of freezing, or duration
of autogrooming.

Open Field Test
Proportion of time spent in the center of the open field relative
to total time showed a three-way interaction of drug condition,
sex, and age group (F4,119 = 4.66, p < 0.01) (Figure 5). In
SAL-exposed females, periadolescents spent more time in the
center than adults (t39 = 2.48, p = 0.01), while this was not true
for FLX-exposed subjects (t30 = 1.29, p = 0.20). Among SAL
exposed subjects, time in the center was greater in adult males
than adult females (t31 = 3.42, p < 0.001), in periadolescent
females than periadolescent males (t44 = 1.94, p = 0.05), and in
adult males than periadolescent males (t36 = 3.00, p < 0.01).
There was also a trend level difference between SAL males and
SAL females (t76 = 1.91, p = 0.06). There were no sex or age
group differences within the FLX-exposed subjects. Duration
of autogrooming and frequency of rearing were not affected
by drug condition.

FIGURE 5 | Open field test. Mean (±SEM) proportion of time spent in the
center relative to total time comparing saline and fluoxetine exposure by age
and sex. Different letters indicate a significant difference at p < 0.05.

Intrasexual Adult Affiliation Test
Duration of sniffing of the stimulus animal, the primary
form of social investigation, did not differ by drug condition.
Duration of allogrooming of the stimulus animal showed a
trend level interaction of drug condition and sex (F1,91 = 3.73,
p = 0.057). FLX exposed males spent more time allogrooming
than SAL exposed males (t49 = 1.77, p = 0.07), and SAL females
spent more time allogrooming than SAL males (t48 = 1.91,
p = 0.059). Duration of time in physical contact with the stimulus
animal, autogrooming, or frequency of rearing were not altered
by drug condition.

Frequency of aggressive behavior was not altered by drug
condition. In contrast, duration of digging showed an interaction
of treatment and sex (F1,73 = 4.62, p < 0.05) (Figure 6A). SAL
males dug more than SAL females (t48 = 2.53, p < 0.05), but there
was no sex difference in FLX exposed subjects.

Duration of play with the stimulus animal showed an
interaction of drug condition and sex (F1,91 = 5.75, p < 0.05)
(Figure 6B). FLX males played more than FLX females (t45 = 2.23,
p < 0.05) and SAL males (t49 = 2.36, p < 0.05).

Partner Preference Test
Difference in duration of time in the partner and stranger
chambers was greater in females compared to males
(F1,74 = 12.95, p < 0.001) but did not differ by cohort or
drug condition (Figure 7A). Difference in duration of time in
side-by-side contact with the partner and the stranger was not
altered by cohort but did show an interaction of sex and drug
condition (F1,73 = 4.01, p < 0.05) (Figure 7B). SAL females spent
more time in physical contact with the partner than SAL males
(t40 = 2.62, p < 0.01), but there was no sex difference in the FLX
condition. Within the SAL group, females formed a significant
preference for the partner (t24 = 3.44, p = 0.002), while males
did not (t16 = −0.14, p = 0.891). Within the FLX group, neither
females (t18 = 1.672, p = 0.121) nor males (t16 = 1.816, p = 0.07)
formed a significant preference.

Duration of time spent in the empty chamber in the partner
preference test showed an interaction of drug condition and
exposure cohort (F2,70 = 4.17, p < 0.05) (Figure 7C). Subjects
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FIGURE 6 | Intrasexual adult affiliation. (A) Mean (± SEM) duration of digging
comparing saline and fluoxetine exposure by sex. (B) Mean (±SEM) duration
of play comparing saline and fluoxetine exposure by sex. *p < 0.05.

in the PRE cohort that were exposed to FLX spent more time
in the empty chamber than those exposed to SAL (t26 = 2.06,
p < 0.05). Time in the empty chamber was not altered by sex,
nor were there differences by drug condition in the PRE+ POST
or POST conditions.

Quantitative Receptor Autoradiography
Oxytocin Receptors
Oxytocin receptors binding in the nucleus accumbens core was
lower in FLX subjects compared to SAL subjects (F1,43 = 3.96,
p = 0.05) and was greater in adult compared to periadolescent
subjects (F1,43 = 7.18, p < 0.01). A drug condition by sex
interaction (F1,43 = 4.89, p < 0.05) (Figures 8A, 9A) indicated
that FLX females had less OTR binding than SAL females
(t31 = 2.84, p < 0.01) and FLX males (t30 = 2.20, p < 0.05).
A drug condition by age group interaction (F1,43 = 5.02,
p < 0.05) (Figure 8B) indicated that FLX adults had less OTR
binding than SAL adults (t28 = 2.73, p < 0.01). Adults also
had greater OTR binding compared to periadolescents with SAL
exposure (t34 = 3.50, p = 0.001), but this was not the case
with FLX exposure (t30 = 0.31, p = 0.76). OTR binding in the
nucleus accumbens shell did not differ by drug condition or
sex. Adult subjects had greater OTR binding in the nucleus
accumbens shell than periadolescents (F1,45 = 3.92, p = 0.05;
Figure 8C).

Oxytocin receptors binding in the anterior central amygdala
was decreased with FLX exposure compared to SAL exposure
(F1,46 = 8.42, p < 0.01). There was no effect of sex on
OTR binding in the central amygdala. A condition by age
group interaction (F1,46 = 3.98, p = 0.05) (Figures 8D,
9B) indicated that FLX adults had lower OTR binding
compared to SAL adults (t66 = 3.26, p < 0.01), and that
SAL adults had higher OTR binding than SAL periadolescents
(t34 = 2.01, p = 0.05), but this age difference was not
found with FLX exposure. OTR binding in the lateral
septum was not altered by drug condition (Figure 8E),
sex, or age group.

Oxytocin receptors binding did not correlate with difference
in contact between the partner and stranger or duration in the
empty chamber in the partner preference test. There was also no
correlation between OTR binding in the central amygdala and
proportion of time on the open arms of the elevated plus maze.

Vasopressin 1a Receptors
Vasopressin 1a binding in the medial amygdala was reduced
by FLX exposure compared to SAL exposure (F1,47 = 4.20,
p < 0.05) (Figures 10A, 9C). V1aR binding in the medial
amygdala was not altered by sex or age group. V1aR binding
in the lateral septum was not altered by drug condition,
sex, or age group (Figure 10B). V1aR binding in the ventral
pallidum was not altered by drug condition, sex, or age
group (Figure 10C).

Vasopressin 1a binding density in the three ROIs quantified
did not correlate with difference in contact between the
partner and stranger or duration in the empty chamber in
the partner preference test once adjusted to account for
multiple comparisons.

Serotonin 5-HT1a Receptors
Unexpectedly, there was no effect of FLX exposure on 5-HT1A
receptor binding density in any ROI examined (anterior and
posterior lateral septum, dorsal hippocampus, dorsal raphe,
frontal cortex) nor were there any significant interactions of age
group, sex, and ROI (Figures 11A–E).

DISCUSSION

Understanding the etiology of the increased risk of ASD
associated with developmental SSRI exposure is an area of
research which can greatly benefit from animal models. Here, we
used the prairie vole as a translational model in which to examine
how exposure to an SSRI, FLX, affects behavior, neuropeptide
receptors, and serotonin receptors in the brain.

We examined three primary behavioral domains which are
associated with ASD: social behavior, repetitive behavior,
and anxiety-like behavior. The first two represent the
two primary diagnostic criteria for ASD, impaired social
communication and stereotyped or repetitive behavior;
the third represents the heightened anxiety frequently
comorbid in ASD (White et al., 2009; van Steensel et al.,
2011). Modeling the social communication domain of
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FIGURE 7 | Partner preference test. (A) Mean (±SEM) difference in duration between time spent in the partner chamber and the stranger chamber comparing saline
and fluoxetine exposure by sex. (B) Mean (±SEM) difference in duration between time spent in side-by-side contact with the pair-mate and the stranger comparing
saline and fluoxetine exposure by sex. (C) Mean (±SEM) duration of time in the empty chamber comparing saline and fluoxetine exposure by exposure cohort.
*p < 0.05, **p < 0.01, ***p < 0.001.

ASD is particularly difficult in animal models. Verbal
language is uniquely human, and thus the precise deficits
found in individuals with ASD cannot be modeled in
any animal species.

We examined sociality by measuring species-typical behaviors
involved in social interaction and looking for deficits in FLX

exposed subjects. Social investigation (sniffing) was not altered
by FLX with a novel social partner, be it a pup or an adult
conspecific. Affiliative behavior, which is ubiquitous in prairie
voles, was altered by FLX exposure (Table 1). We observed
changes in alloparental care (Figures 3A,B), in play behavior with
a same-sex adult (Figure 6B), and in time spent in the empty
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FIGURE 8 | Oxytocin receptor binding. (A) Mean (± SEM) optical binding density in the nucleus accumbens core comparing saline and fluoxetine exposure by sex.
(B) Mean (±SEM) optical binding density in the nucleus accumbens core comparing saline and fluoxetine exposure by age. (C) Mean (±SEM) optical binding density
in the nucleus accumbens shell comparing saline and fluoxetine exposure by age. (D) Mean (±SEM) optical binding density in the central amygdala comparing saline
and fluoxetine exposure by age. (E) Mean (±SEM) optical binding density in the lateral septum comparing saline and fluoxetine exposure. *p < 0.05, **p < 0.01,
***p < 0.001.

chamber of the partner preference test (Figure 7C). The changes
in alloparental care were primarily in retrieval behavior, with
males that had been treated with both prenatal and postnatal FLX
spending significantly more time retrieving (Figure 3B). These
males were picking up the pup in their mouths and running
excitedly around the test arena, in an apparently less organized
manner of providing care for the pup.

During the partner preference test, prenatal FLX exposure
also led subjects of both sexes to opt out of social interaction in
favor of time alone in the empty cage (Figure 7C), indicating

that FLX led to a rejection of social interaction very atypical
of prairie voles. However, FLX males also spent more time
in play behavior with stimulus males during the intrasexual
affiliation test. Much as the research in humans suggests, prenatal
SSRI exposure may increase the likelihood of asociality, or the
alteration or disorganization of sociality; but it does so in subtle,
non-deterministic ways.

The neurohypophyseal nonapeptides, oxytocin and
vasopressin, are likely candidates to be involved in such shifts in
sociality due to their developmental interaction with serotonin
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FIGURE 9 | Representative autoradiograms of oxytocin and vasopressin 1a receptor binding. Please note that tissue punches were taken from the left side of each
brain to assess additional outcome measures not reported here. (A) Oxytocin receptor binding in the nucleus accumbens core shows a sex by drug condition
interaction (see also Figure 8A). (B) Oxytocin receptor binding in the central amygdala shows an age by drug condition interaction (see also Figure 8C).
(C) Vasopressin 1a receptor binding in the medial amygdala shows a drug condition effect (see also Figure 9A).
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FIGURE 10 | Vasopressin 1a receptor binding. (A) Mean (±SEM) optical binding density in the medial amygdala comparing saline and fluoxetine exposure. (B) Mean
(±SEM) optical binding density in the lateral septum comparing saline and fluoxetine exposure. (C) Mean (±SEM) optical binding density in the ventral pallidum
comparing saline and fluoxetine exposure. *p < 0.05.

as well as their important roles in social behavior across species
(Carter and Perkeybile, 2018). We found that FLX exposure
reduced the binding density of oxytocin receptors in the nucleus
accumbens core and the central amygdala (Figures 8A,B,D),
and the binding density of vasopressin 1a receptors in the
medial amygdala (Figure 9A). While the nucleus accumbens
shell has been strongly implicated in studies of prairie vole pair
bonding, oxytocin receptors in the core are under-studied in the
neurobiology of social behavior in voles, and may represent a
new avenue of investigation.

It is likely that changes in OTR and AVPR1a underlie the
differences found not only in social behavior, as described above,
but also in anxiety-like behavior. Anxiety-like behavior was
altered in the elevated plus maze (Figure 4), where adults spent
less time on the open arms if developmentally exposed to FLX,
regardless of the timing of exposure. This result is in line with
previous research which has reported an increase in anxiety-like
behavior in adults exposed to an SSRI developmentally (Ansorge
et al., 2004; Boulle et al., 2016). We also found that FLX
exposed subjects had lower OTR in the central amygdala during
adulthood but not during periadolescence (Figure 8D). The
amygdala is an area of the brain that is highly involved in
anxiety and emotion regulation (Babaev et al., 2018). OTRs in
the central amygdala are known to be involved in anxiety, as
well as regulation of the hypothalamic-pituitary-adrenal axis,
and can play a role in mediating the stress response (Neumann
et al., 2000). Likewise, V1aR in the amygdala mediate stress and
anxiety, with binding at V1aRs linked to heightened anxiety,
reducing time spent in the open arms of the elevated plus
maze (Hernández et al., 2016). Taken together, one potential
mechanism by which developmental exposure to FLX increases
anxiety in adulthood may be the reduction of OTRs and V1aRs
in the amygdala.

While developmental FLX altered social and anxiety related
behaviors, there was no indication of increased repetitive
behaviors in FLX exposed subjects. We found no increase
in stereotypies in any of the behavioral tests examined.
Autogrooming and digging were not increased by FLX exposure
in any of the behavioral tests in which they were measured.

Changes in offspring behavior may have been mediated by
changes in the behavior of the mothers treated with FLX,
although these were relatively subtle. In particular, mothers
that were withdrawing from FLX spent extra time in active
nursing (Figure 2A) and in nest-building (Figure 2B). The
male pair mates of the FLX-withdrawing mothers also spent
higher amounts of time in nest-building (although this effect was
eliminated when the data were examined non-parametrically).
Unfortunately, we missed the opportunity to assess the quality
of the nests being produced (Figure 2B). Nest quality is an often-
used measure of parental behavior in rodents and other species
(Mann, 1993; Deacon, 2012). In three-spined sticklebacks, FLX
reduced measures of male nest quality (Sebire et al., 2015); while
in mice, females prenatally treated with FLX displayed lower nest
quality during early days postpartum (Svirsky et al., 2016). The
quality of the nest could affect various measures for the offspring
including survival (Hamilton et al., 1997), thermoregulation
(Gaskill et al., 2013), and even sleep (Harding et al., 2019). It is
possible that the FLX-withdrawing parents put in extra time nest-
building, while still producing low quality nests. A disorganized
approach to nest-building would be consistent with the active
nursing behavior of the mothers, which is when they locomote
around the cage with the pups still attached to the nipples (prairie
vole pups have milk teeth). Given that the pups are being bounced
against substrate as they are dragged around, we have generally
regarded this as a lower quality form of maternal behavior.
Active nursing is also higher in prairie vole mothers that are
broadly characterized as “low contact” mothers (Perkeybile et al.,
2013). Future research on this topic should include nest quality
as a variable in aiding understanding of the effects of FLX on
parental behavior.

A major limitation of this study is that we did not find
a partner preference in the SAL-treated males (Figure 7B).
A possible explanation for this is that the daily injections
inadvertently created a prenatal stress paradigm to which all
subjects were exposed. Daily saline injections in pregnant rats
have been shown to be sufficient to change several aspects of
stress reactivity and the serotonin system in offspring (Peters,
1982). Prenatal stress has been shown to alter the social behavior
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FIGURE 11 | Serotonin receptor 1a binding. (A) Mean (±SEM) optical binding density in the dorsal hippocampus comparing saline and fluoxetine exposure.
(B) Mean (±SEM) optical binding density in the dorsal raphe comparing saline and fluoxetine exposure. (C) Mean (±SEM) optical binding density in the frontal cortex
comparing saline and fluoxetine exposure. (D) Mean (±SEM) optical binding density in the anterior lateral septum comparing saline and fluoxetine exposure.
(E) Mean (±SEM) optical binding density in the posterior lateral septum comparing saline and fluoxetine exposure.

of offspring (Weinstock, 2001; Schulz et al., 2011; Wilson and
Terry, 2013) and likely prevented any of our animals from
forming a preference. However, the finding that prenatally FLX
exposed subjects spent more of their time alone compared
to SAL treated animals suggests a change in social interest

above and beyond that involved in the formation of a partner
preference. Furthermore, maternal stress adds ecological validity
given that in human prenatal SSRI use there is an underlying
psychiatric condition for which pharmacological treatment with
SSRIs has been prescribed. Chronic stress is frequently used in
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TABLE 1 | Summary of behavioral effects of fluoxetine exposure.

Behavioral test Measure Effect of fluoxetine Interacts with Results

Alloparental Care Physical contact Y Sex, age group FLX adult female < FLX peri female
SAL peri female < SAL peri male

Pup retrieval Y Exposure cohort FLX PRE + POST > SAL
PRE + POST FLX
PRE + POST > FLX PRE, FLX
POST

Same chamber as pup N – –

Latency to approach N – –

Sniff N – –

Huddle N – –

Lick and groom N – –

Autogroom N – –

Dig N – –

Elevated plus maze Ratio of time on open arms Y Age FLX adult < SAL adults

Arm entries N – –

Freeze N – –

Autogroom N – –

Open field test Ratio of time in center Y Sex, age group Eliminated sex and age differences
seen in SAL

Autogroom N – –

Rear N – –

Intrasexual adult affiliation Sniff N – –

Allogroom Y Sex FLX male > SAL male (trend)
Eliminated sex difference seen in
SAL

Physical contact N – –

Autogroom N – –

Rear N – –

Aggression N – –

Dig Y Sex Eliminated sex difference seen in
SAL

Play Y Sex FLX male > FLX female FLX
male > SAL male

Partner preference test Difference in partner and
stranger chamber time

N – –

Difference in side-by-side
contact

Y Sex Eliminated sex difference seen in
SAL

Empty chamber time Y Exposure cohort FLX PRE > PRE SAL

Y, significant effect; N, no effect; peri, periadolescent.

the laboratory to induce a learned helplessness phenotype of
depressive-like behavior to model depression (Pollak et al., 2010).

An interesting and unexpected finding was that FLX exposure
eliminated sex differences across multiple behavioral tests. One
example is the change in physical contact with the pup seen
in the alloparental care test (Figure 3A). Male prairie voles
are typically more alloparental than females, and here we saw
that with FLX exposure, male periadolescents were not more
alloparental than females, as was the case with SAL exposure.
Male alloparental care is directly impacted by estrogen receptor
expression, and sex-dependent changes in alloparental care
with increasing age are based on changes in estrogen receptor
expression (Perry et al., 2015). FLX exposure also eliminated
the sex difference in partner and stranger contact in the partner
preference test (Figure 7B). Both alloparental care and partner

preference are examples of behaviors that show well-established
sex differences in prairie voles. Estrogen receptor α expression
has been implicated in reducing heterosexual adult contact in
the partner preference test as well as male alloparental care
behavior (Lei et al., 2010). FLX has estrogenic effects both in vivo
and in vitro (Jacobsen et al., 2015; Pop et al., 2015; Muller
et al., 2016), as does its bioactive metabolite norfluoxetine (Lupu
et al., 2015). There is evidence in the literature for sex-specific
effects of FLX on estrogen receptor expression (Adzic et al.,
2017). FLX may have altered estrogen receptor expression, which
in turn reduced affiliative behavior specifically in males, thus
abolishing the sex differences seen in the SAL exposure groups.
Future work should more thoroughly characterize the effects of
developmental FLX on steroid receptors to further understand its
behavioral effects.
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Developmental timing is likely to be important in SSRI
exposure. While some work has suggested that in humans, any
chronic exposure in the year prior to birth results in heightened
risk (Croen et al., 2011), others have found that either the first
or third trimester are the periods of greatest risk (Oberlander
et al., 2008; Croen et al., 2011; Harrington et al., 2014). In order
to address the effects of exposure timing, we evaluated behavior
in three different gross exposure cohorts spanning prenatal
and postnatal development. We found few effects of FLX that
were specific to an exposure cohort with the notable exception
of increased duration in the empty chamber of the partner
preference test in the PRE cohort. It is likely that creating shorter
dosing periods which translate to specific trimesters in human
pregnancy would be beneficial to more accurately determining
how to best limit risk to offspring based on timing of exposure.

It is also worth pointing out that due to study design,
offspring with different exposure timing were born to mothers of
different parity and were potentially subject to different maternal
hormone exposures. For example, pups that were part of the
PRE + POST cohort were being nursed by mothers which
were becoming pregnant again. To the extent that variation in
maternal hormones due to parity or pregnancy may have affected
hormones during the postpartum estrus or lactation (Bridges and
Byrnes, 2006; Bridges, 2016), altering pup hormonal exposure in
utero or through milk, these exposures may have varied in this
study. In addition, all subjects in that cohort were litter 3 for their
parents, whereas subjects in the POST cohort were all litter 2, and
subjects in the PRE cohort were all litter 4; which could have also
had effects on hormone exposure.

We have shown here that developmental SSRI exposure
alters OTR and AVPR1a, but not 5-HT1A, binding. Because
FLX’s mechanism works to increase serotonin neurotransmission
by blocking reuptake of serotonin, it was surprising to find
that 5-HT1A receptor binding was unchanged by FLX in all
regions examined. Studies in mice have shown that perinatal
FLX can regularize 5-HT1A levels that have been altered by
other developmental factors (Nagano et al., 2012; Stagni et al.,
2015). For the current study, it appears that the behavioral
effects were mediated by OTR and V1aR without concomitant
changes in the 5HT system. However, while there was no
change in serotonin receptor density, actions on OTR and V1aR
subsequent to FLX exposure may have been precipitated by
changes in the peptides themselves, the function or location of
the receptor, or other downstream cellular mechanistic pathways.
Serotonin developmentally autoregulates its own innervation
throughout the brain (Herlenius and Lagercrantz, 2004) and is
plastic throughout development. Fetal exposure to FLX is poorly
understood, yet it is clear that it leads to changes that last well into
adulthood (Kiryanova et al., 2013). While SSRIs are presumed to
increase extracellular serotonin in the long term, short term SSRI
exposure can reduce raphe cell firing by acting on autoreceptors
leading to a reduction in extracellular serotonin (Tao et al., 2000).
Such activity may have neurodevelopmental consequences for
offspring that have yet to be elucidated fully, but which warrant
further investigation.

The serotonin system is also an extensive system with 15
different types of receptors (Carr and Lucki, 2011). We chose to

examine the 1A receptor because of its autoreceptor function, but
it may be the case that other exclusively post-synaptic serotonin
receptors were altered while 1A was not. Further work examining
other serotonin receptor populations will be important to clarify
how serotonergic neurotransmission is altered by SSRI use
prenatally. It is also possible that species differences between
mice and voles may have altered the effects of FLX on 5-HT1A
receptor binding.

Another area that should be considered is how exposure
interacts with the maternal and early postnatal environment, as
environmental moderation of SSRI effects may underlie their
effects (Alboni et al., 2017). Since the prevalent and incident use
of SSRI-exposed pregnancies has increased in the last two decades
(Alwan et al., 2011), it is of the utmost importance that we more
clearly understand the causes and consequences that prenatal
SSRI exposure may have on the developing brain.
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