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Abstract: Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmen-
tal/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved
in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal
microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of
duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in
individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant
in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity
hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize
the recent genome-wide association studies (GWASs) that have identified candidate genes positively
correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We
discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with
neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We
further present variations reported in the phenotypic severity, genomic penetrance and inheritance.

Keywords: copy number variation; microdeletion; microduplication; schizophrenia; autism spectrum
disorder; microcephaly; macrocephaly; neurodegeneration; synaptic plasticity

1. Introduction

Rare CNVs, such as chromosomal deletions and duplications, have raised much
scientific interest in etiological studies of NDs. It has been suggested that genetics play a
major role in NDs, with ~52.4% and ~80% of inheritability in ASD and SCZ, respectively.
A genetic study has shown that rare and large CNVs are likely to be causative, as they
can lead to numerous gene imbalances [1]. Case–control studies have demonstrated that
rare CNVs occur at higher frequency in cases than in controls, suggesting that patients
bear a high CNV burden [2,3]. Moreover, 17.1% of those who presented abnormal clinical
presentations carried pathogenic CNVs [4]. Approximately 40% of carriers had de novo
mutations, and the majority of the de novo mutations (91%) were pathogenic [4]. These
patterns show up in most ND studies, including ASD, SCZ, intellectual disability (ID) and
attention deficit hyperactivity disorder (ADHD) [5–7]. These findings shed light on the
contribution of CNVs to the risks of different NDs.

In general, CNVs are pleiotropic and have variable expressivity, in that different
patients carrying CNVs at the same chromosomal regions can show the symptoms of
different psychiatric disorders; for example, many ASD-associated CNVs are also found
in SCZ patients [3,4,8,9]. Despite having the same CNV carriers, phenotypes and severity
range diversely, and show incomplete penetrance [10]. This suggests that there must
be other factors involved, such as other genetic components (the two-hit model) [11] or
environmental factors [12]. Hence the complexity of CNVs has been underscored in the
etiology of ND.

A recent GWAS has identified risk loci prevalent in NDs, which are rare CNVs seen
in cases but not in controls [2]. At least eight distinct CNVs,1q21.1, 2p16.3, 3q29, 7q11.23,
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15q13.2, 16p11.2, 22q11.2 and NRXN1, have been consistently reported as risk factors for
many NDs [6–8,13–15]. Deletions are less frequent but more pathogenic than duplications.
Therefore, an increased odds ratio (OR) was found for deletions (i.e., ORs of 1q21.1 = 11.82
(del) and = 6 (dup)) [15]. The abnormal clinical presentations are postulated to be a result
of carrying those pathogenic CNVs. Many genetic studies have attempted to identify the
relationships between genetic rearrangements in the regions and clinical phenotypes. As
little is known about their effect size, penetrance and genetic predisposition towards a
certain phenotype, it is too early to use those rare CNVs for diagnoses of any NDs.

Among the aforementioned associated CNVs, this paper aimed to focus on the 1q21.1
CNV that is found with high incidence in ASD, SCZ, ADHD, ID and epilepsy [16]. Due to
its structural complexity and inconsistent clinical phenotypes, this genetic locus has been
understudied. A significant and popular finding in 1q21.1 is its mirror effect on neurode-
velopment: microdeletions are widely found in the cases of SCZ, and microduplications are
widely found in the cases of ASD [17]. This review will discuss the genetic structure of the
chromosome 1q21.1 at the molecular and cellular levels and summarize clinical phenotypes
associated with the genetic rearrangement.

2. Chromosomal Mapping and Genetic Pathway of 1q21.1
2.1. Chromosomal Structure

The 1q21.1 CNV is found within a 144 to 148 Mb region [18] (Figure 1a). In contrast
to small CNVs, which are less detrimental, larger CNVs (>500 kb in size) can alter the
expression levels of multiple genes [19]. It is a complex locus to study in that it not only
spans 20–40 putative genes, but the region is also susceptible to genomic rearrangements
due to the numbers of low copy repeats (LCRs). The more LCRs in the region, the more
prone it is to frequent non-allelic homologous recombination (NAHR) during meiosis [20].
Clustered with LCRs, breakpoints (BPs) divide the locus into four possible segmental
blocks and complicate the mapping and prediction of phenotypic expressivity [18]. Many
of the LCRs and BPs are located adjacent to the crossing over points, making it difficult to
estimate the phenotypes or genomic sequences in any given persons [21]. Through this
mechanism, the CNVs, emerging in chromosomal duplications or deletions, can alter some
of the dosage-sensitive genes and create a broad range of phenotypic variability [22]. Array
comparative genomic hybridization and fluorescent in-situ hybridization analyses mapped
out the overall structure of the 1q21.1 in great detail. The 1q21.1 region is associated with
mental retardation, autism [23], schizophrenia [24] and microcephaly [21]. Duplication of
1q21.1 is strongly associated with autism [21].

Duplications and deletions are classified into two classes: Class I and Class II. Class I
duplication/deletion involves only the distal 1q21.1 region between BP3 and BP4 (1.35 Mb
in size), whereas Class II duplication/deletion extends from the distal 1q21.1 to the proximal
1q21.1 commonly detected between BP2 and BP4 (~3 Mb) [21] (Figure 1c). Combined
data show enrichment in Class I deletions and duplications with a parental origin, but
the components of genes and BPs can be varied after generations [25]. Both analyses
discovered two distinct regions: proximal and distal 1q21.1, where a genomic gain or loss
occurs (Figure 1b) [21,26]. Microdeletions at proximal 1q21.1 are mainly associated with
thrombocytopenia-absent radius (TAR) syndrome and this region is often referred to as the
TAR region. In particular, a core exon junction complex gene, RBM8A, is located in the TAR
region and compound mutations in the RBM8A gene cause the TAR syndrome [27] that
is comorbid with ID [28]. Other brain dysfunctions, including psychosis, agenesis of the
corpus callosum and hypoplasia of the cerebellar vermis, are present in TAR patients [28–30].
Consistent with human patient studies, knockdown and knockout of Rbm8a in a mouse
model revealed the critical role of RBM8A in neural progenitor cell (NPC) proliferation,
neuronal migration and interneuron development, and loss of function in RBM8A in NPCs
causes microcephaly [31–33]. Moreover, RBM8A plays a key role in adult neurogenesis and
in regulating anxiety-related behavior [34], further supporting the important role of RBM8A
in psychiatric diseases.
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[25,35,36] (Figure 2; Table 1). However, the genetic study of the risk genes is far from clear 
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and deletion are not consistent, and no single gene has been confirmed to cause a patho-
logic effect in human studies [36]. 

This complex expressivity can be explained by a cis-epistasis genetic model. In con-
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Figure 1. (a) Chromosomal structure of 1q21.1, mapped with four BPs (gray) and two distinct regions (red). (b) An enlarge-
ment of the region between 144 Mb and 146 Mb. Known genes commonly found in microduplication and microdeletion
carriers are marked with blue bars. The reference locations on the chromosome are based on the March 2006 human
reference sequence (NCBI build 36.1). The two distinct regions—TAR and Distal—are indicated by red blocks. (c) The two
classes of duplications and deletions are shown with green bars. The size of the bars represents the minimally affected
region in each class.

2.2. Genetic Architecture

The recent advanced genomic assay has deciphered the genes encoded in the region
and the position on the locus. The core genes commonly affected in the 1q21.1 CNV carriers
are PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, GJA8, GPR89B and PDZK1 [25,35,36]
(Figure 2; Table 1). However, the genetic study of the risk genes is far from clear as to
the phenotypic consequences. Reported clinical phenotypes of the 1q21.1 duplication and
deletion are not consistent, and no single gene has been confirmed to cause a pathologic
effect in human studies [36].

This complex expressivity can be explained by a cis-epistasis genetic model. In
contrast to a single gene CNV model, the gene expression is regulated by one or more
CNV drivers and multiple modifiers [37]. Gain or loss of a single gene contributes only a
small effect to trigger explicit clinical phenotypes [38]. This was confirmed in a number of
genotype–phenotype association studies. A correlation analysis between gene expression
and the copy number of 1q21.1 indicated that the candidate genes drew a positively
correlated trend, in which a duplication CNV model was likely to have increased gene
expression and vice versa [25], but the clinic severity may not have been correlated with
the level of gene expression [39]. Harvard et al. conducted a family-based study of 1q21.1
microdeletion and microduplication and showed that individuals with the same CNV
exhibited different levels of severity despite the identical gene components and almost
identical BPs. Entangled chromatids are increased in lymphoblast cells derived from
patients carrying both duplication and deletion of 1q21. To narrow down the causal gene,
they identified two candidate genes, CHD1L and PRKAB2. Knockdown of CHD1L led to
increased micronuclei in response to a topoisomerase II inhibitor, ICRF-193. However, both
deletion and duplication carriers show the same cellular phenotype, suggesting that the
gene dosage difference may not correlate with severity of symptoms. These findings once
again emphasize the characteristic of the variable expressivity and the cis-epistasis model
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of the 1q21.1 CNVs [40,41]. Nevertheless, understanding of a linkage between genetic
imbalance and apparent phenotypes is still incomplete.
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Figure 2. A genetic map of the associated genes observed in 1q21.1 microduplications and microdeletions. Blue circles are
the 10 affected genes; black circles are the 20 related genes. None of the 10 core risk genes interacts directly with another.
A total of 49 genetic linkages are drawn with different widths of green lines and were generated by the GeneMANIA
program [42]. Gene expression of the candidate genes is positively correlated with the copy number of 1q21.1 but not with
phenotypic severity. Even within the same genetic components, clinical presentations are shown to a different extent in
cases, which denies the one gene–one phenotype module. The blue circles are the major genes discussed in the paper. Eight
top-ranked genes in the correlation study are not directly linked to each other but are indirectly connected via subtype genes.
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Table 1. Genetic function and known phenotypes of dosage-sensitive genes associated with 1q21.1.

Function 1 Molecular/Cellular Phenotypes References

CHD1 Chromatin remodeling and DNA
damage response

Impaired decatenation checkpoint
activation [25]

PRKAB2 AMPK regulatory subunit;
maintaining energy homeostasis

Neurodegeneration; learning and memory
impairment [42]

GJA8 Gap junction protein; Connexin50 Cataracts; cardiac myopathy; increased
risk of SCZ [43,44]

GJA5 Gap junction protein; Connexin40 Cataracts; cardiac abnormalities [18,45,46]

PDZK1 Ion transporter protein; regulates
second messenger cascades Increased risk of ASD and psychosis [36]

GPR89B Voltage dependent anion channel Unknown

BCL9 Wnt signaling pathway Increased risk of SCZ [47]

FMO5 Modulator of metabolic aging [48,49]

ACP6 Histidine acid phosphatase protein Unknown
1 The Genecards Human Gene Database.

2.3. Pathogenesis of Proximal 1q21.1

These clinical manifestations are associated with the genomic segmental regions on
1q21.1. The frequency of the chromosomal abnormalities was highly skewed to distal
regions compared with proximal regions. Minimal deletions in BP2-BP3, known as the TAR
syndrome region, however, raised a question of whether this region is benign or pathogenic.
The overall chromosomal abnormalities in the proximal region were less frequent than in
the distal region. However, the relative enrichment of proximal 1q21.1 in microduplication,
especially with a low ratio of de novo inheritance compared with the microdeletions,
suggests that the proximal BP2–BP3 region is responsible for clinical microduplication
aberrations and is mild enough to maintain fecundity [50,51]. Bearing in mind that develop-
mental delay (DD) is a common history in microdeletions and microduplications, the genes
within the proximal BP2–BP3 region account for cerebral development in addition to TAR
syndrome [51]. On the other hand, even though the head size was a notable phenotype
by dosage, head sizes between the proximal microdeletions and microduplications were
not found to be discrete, suggesting that the genes in the proximal region are not sufficient
or not responsible for microcephaly/macrocephaly [51]. These findings confirmed the
pathogenicity of the proximal 1q21.1 region; this should be re-evaluated on a large scale to
be supportive.

3. Dosage Effect on Molecular and Clinical Phenotypes
3.1. Clinical Manifestation of 1q21.1

Carriers of the 1q21.1 duplication or deletion share some similar spectra of symptoms.
Clinic presentations appearing to be mirrored could be due to the converging downstream
pathways of chromosomal deletion and duplication [37]. Two major disorders in the spec-
trum are ASD and SCZ, which are associated with duplication and deletion of the 1q21.1
region, respectively. The complex symptoms of SCZ typically start in late adolescence
or early adulthood and lead to a lifetime of treatment for SCZ patients. According to
Diagnostic and Statistical Manual of Mental Disorders (DSM–5), they are generally divided
into three categories: positive, negative and cognitive. The positive symptoms include
hallucinations, delusions and disorganized thoughts. The negative symptoms include
a reduction in, or lack of, motivation, affective response, verbal speech, attention and
enjoyment. SCZ patients also suffer from cognitive impairment, which includes deficits in
attention, language, memory and executive function. Cognitive impairment has been seen
in people with SCZ before the onset of positive symptoms, and there is a moderate and
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appreciable decline throughout their lifetime [52]. Additionally, SCZ patients suffer from
other comorbidities, including substance abuse [53–58]. The clinical presentations of ASDs
show that the impaired social–communication functions and restricted, repetitive patterns
of behavior can be detected in children with ASD at the age of 2–3 years. The clinical
presentations are highly variable. Patients with ASD often have an increased risk of other
neuropsychiatric symptoms, including anxiety [59], memory deficit [60], hyperactivity,
aggression and epilepsy. ASD patients are often comorbid with ID.

The 1q21.1 CNVs have been widely reported in ND studies. Consistent with
pleiotropic traits, this CNV is associated with other psychiatric disorders [22,61].
Published data on 1q21.1 CNVs carriers have shown psychiatric symptoms, including
ADHD; ID; internalizing disorders such as depression, anxiety and bipolar disorder;
and microcephaly/macrocephaly [18,25,35,62]. Non-neurologic syndromes such as
congenital anomalies, cataracts and short stature are prevalent in probands with
1q21.1 CNV [50]. These features were not significantly distinct between deletions and
duplications, but were distinct from controls [35]. Many comparison studies have
attempted to validate these frequent diagnoses with the 1q21.1 CNVs.

Case series studies have evidenced a phenotypic association with deletions and du-
plications. Microduplications show various and indefinite phenotypes, while deletions
show a relatively consistent pattern [3]. Among neuropsychiatric disorders, cumulative
literature ascertained that SCZ, microcephaly or relative microcephaly diagnoses were
substantially higher in probands carrying microdeletions, and ASD, ADHD and macro-
cephaly or relative macrocephaly diagnoses were substantially higher in cases with mi-
croduplications [5,18,25,35,36,40,51,63,64]. Other recognizable syndromes also showed a
distinguishing dosage effect, even though it was not constant, such as facial dysmorphism,
heart and renal anomalies and behavioral problems (Figure 3, Table 2) [35,36,45,65].
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Table 2. Case reports of neurodevelopmental diseases with 1q21.1 duplications and deletions.

References
Duplication (2nd CNV Cases) Deletion (2nd CNV Cases) Total

CasesASD SCZ ID ADHD TAR Other DD ASD SCZ ID ADHD TAR Other DD

[35] 7 5 5 4 2 2 1 3 29
[21] 3 1 13 1 2 16 36
[18] 4 5 (1) 2 2 16 (2) 32
[51] 3 5 11 4 1 3 4 25 (5) 61
[50] 3 3 3 2 5 1 1 4 22
[66] 3 (1) 1 5
[13] 8 10 (2) 20
[8] 1 4 5
[9] 10 10

All reported cases are single CNV carriers except for the 2nd CNV carriers, which are stated within parentheses. All cases include de novo
and inherited CNVs. A blank cell indicates that the data are not available.

3.2. Cognitive Impairment

The 1q21.1 CNVs show a strong association with developmental disabilities, including
ASD [67], SCZ [8] and ADHD [64]. A large dataset indicates that individuals with develop-
mental disabilities commonly accompany a history of cognitive deficits (Table 2). Most SCZ
and ASD patients show cognitive impairment [6,7]. Larger CNVs, not limited to 1q21.1, led
to a reduction of median IQ in a group of carriers [5], and SCZ-associated CNVs commonly
confer a high risk of other mental disorders including ASD and ADHD, depending on
the gene dosage [5,65]. Thus, the cognitive ability in patients is influenced by the risk
CNVs (e.g., 1q21.1) during neurodevelopment, and cognitive deficit may contribute to
pathophysiological outcomes in ASD, SCZ or ADHD.

3.3. Head Size and Neural Abnormalities

Head size variation is another substantial phenotype mediated by genetic imbalance.
It has been clearly replicated in many studies after the first clinical report of 1q21.1 exam-
ined the mean head circumference among carriers and found statistical significance (mean
Z score for microdeletions: −2.55; microdeletion: +1.15; unpaired t-test, p < 0.0001) [21]. Re-
cent studies focused on brain morphology with respect to gene dosage, since aberrant head
shape during neurodevelopment may have disrupted the subsequent neuronal function,
resulting in decreased axonal density. It has been hypothesized that head size abnormalities
are driven by one of the candidate genes for neurological presentations such as neuronal
differentiation and migration seen in 1q21.1 [36]. The copy number of the DUF1220 domain,
encoded in the neuroblastoma breakpoint family (NBPF) gene family in 1q21.1, shows a
strong correlation with brain size and neocortex volume [68]. This was supported by a case
study of brain malformation [69]. The NBPF transcript level was significantly correlated
with neuroblastoma susceptibility and it is highly expressed in the fetal brain, suggesting
that the gene plays an important role in the developing brain [70]. Interestingly, a recent
study collected brain images of SCZ patients carrying different CNVs, including 1q21.1,
15q11.2, 16p11.2, 17q12 and 22q11.2, and found no changes in whole brain volume but
significant alterations in several midline white-matter structures [71]. Chromosome 1q21.1
itself is associated with brain size, as significantly decreased brain size was obtained with
deletions (p < 0.001) [72]. Particularly, the microcephalic effect was predominant in the
temporo-parietal, hippocampal, olfactory and subcortical regions, as well as the posterior
midbrain regions [72]. This feature had the interhemispheric effect that the altered brain
size was restricted strongly in the right hemisphere [73].

4. Molecular and Cellular Mechanisms Associated with 1q21.1 CNVs
4.1. Effect Range of 1q21.1 CNVs

Studies of CNV pathogenesis have shown that deletions have deleterious effects, while
duplications exhibit mild phenotypes [4]. Consistent with its pathogenicity, individuals
with deletions have low fecundity and therefore undergo negative selection pressure [74,75].
These features of pathogenic CNVs appear in populations with low frequency and high
mutation rates [8,74]. In light of this fact, it has become mainstream in genetic studies to
distinguish distinct effect sizes in each ND. In line with the comparable burden of each
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structural variant, duplications exhibit a smaller burden than deletions in the synaptic
pathway; functional clusters of duplications are enriched in NMDA receptor signaling,
while functional clusters of deletions are enriched in the nervous system or behavioral
phenotypes [15].

Examination of the cellular phenotype is a crucial step in the study of pathogenesis.
Because many implicated risk genes in 1q21.1 CNVs are responsible for different cellular
processes, including cell signaling, sensing and repair, impairment of these gene functions is
expected to disrupt the cellular functions specifically involved with brain development and,
in turn, to cause diseases [25]. However, a systematic pathological analysis of postmortem
brains carrying 1q21.1 CNVs is still lacking. Due to the clinical manifestation reported
among patients, animal models that mimic the genetic deficiency of 1q21.1 CNV could be
good tools to provide some mechanistic insights and cellular and molecular targets for
further therapeutic development [8,72,76].

4.2. Synaptic Signaling Pathway

Genes for cell signaling are enriched in 1q21.1 [67]. Cell signaling in the brain is
impeded by abnormal synaptic plasticity. The dopamine hypothesis has been proposed
in many ND studies, including ASD [77] and SCZ [78,79]. A 1q21.1 deletion mouse
model recapitulated the function of 1q21.1 CNV in cellular phenotypes [76]. The 1q21.1
CNV accounts for the increased sensitivity to psychostimulants (e.g., amphetamine) and
increased dopamine cell firing, and hypersensitivity is not mediated by a different number
of D1/D2 receptors [76]. Thus, the findings are consistent with previous studies showing
that 1q21.1 deletion shows a higher prevalence in SCZ patients than in ASD [78].

Alteration of the potassium channel function can impair in the whole neural network.
Disruption of potassium ion homeostasis often becomes an initiator of the cells’ pathological
cascade. In light of the crucial function of the potassium channel in neurodevelopment,
GWAS has revealed a genetic overlap between rare risk CNVs (e.g., 1q21.1) and genes (e.g.,
KCNN3) encoding the potassium pump, transporter and channel [80–82]. The longer CAG
repeats within the KCNN3 gene seem to be associated with SCZ patients [81,82]. However,
other studies did not confirm this association [83]. Interestingly, a mutant KCNN3 channel
found in a SCZ patient was localized in the nucleus and inhibited the current mediated by
another potassium channel, KCNN2 [84]. Therefore, the SCZ KCNN3 variant can function
as a dominant-negative mutant to suppress endogenous small-conductance K currents
and interfere with neuronal firing. Consistent with this notion, dysfunction in astrocyte
differentiation derived from SCZ patient-derived induced pluripotent cells (iPSCs) was a
result of excessive downregulation of potassium transporters in SCZ glia [80].

4.3. Mitochondrial Functions

Mitochondrial diseases are often associated with ASD children [85]; as a result, creatine
kinase, ammonia and aspartate aminotransferase have been used biomarkers for mitochon-
drial dysfunction in ASD [86]; however, the scale of these studies is still small. In animal
studies, AMP-activated protein kinase (AMPK) function is modulated by one of the highest
correlated genes, PRKAB2 [25] in a Drosophila model of 1q21.1 [42]. A study confirmed
that decreased AMPK activity impaired synaptic plasticity, which is critical for working
memory and learning, and leads to sleep dysregulation and shortened lifespan [42]. Loss
of AMPK activity also has been associated with the neurodegeneration phenotypes in a fly
model of mitochondrial dysfunction [87]. Intriguingly, transcriptomic analyses of the three
CNV mouse models—hemizygous deletions in corresponding regions of 1q21, 15q13 and
22q11—have identified that neuronal mitochondrial genes are consistently downregulated
across three mutant genotypes and are shared with the transcriptomic changes observed
in both SCZ and ASD postmortem brains [88]. This study suggests a previously under-
studied mitochondrial hypothesis underlying neuropsychiatric diseases associated with
CNVs [89,90].
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4.4. The WNT Signaling Pathway and BCL9

Epidemiological studies have revealed that the prenatal period is vulnerable to
ASD [91–96] and SCZ [97–105]. Among the key signaling pathways regulating fetal
brain development, Wnt proteins play indispensable roles in angiogenesis [106–110],
neurogenesis [111–118], cell survival [119–122], synaptogenesis [123–125] and neurite
outgrowth [126,127]. The canonical pathway is well known to play a major role in neural
development [128]. WNT signaling is regulated by several key components of the canon-
ical Wnt pathway, including β-catenin, whose level determines the activity of canonical
Wnt signaling. Recently, mutations in β-catenin have been identified as a frequent cause
of ID (OMIM #615075), known as CTNNB1 syndrome [129–134], with some individuals
also being diagnosed with ASD [135–139]. CTNNB1 syndrome patients are characterized
by low IQ, microcephaly and facial dysmorphism that cannot be attributed to a known
clinical syndrome [129–134]. A β-catenin conditional KO mouse specifically in PV interneu-
rons showed that β-cat cKO mice have increased anxiety, impaired social interactions
and elevated repetitive behaviors, which mimic some core symptoms of patients with
ASD [140]. In addition, several mouse models with KO of Wnt regulators have shown con-
sistent ASD-like behavioral deficits, including APC [141], DVL1 [142] and PTEN [143–146].
These data provide compelling evidence that an abnormal Wnt pathway is involved in the
development of mental illness.

The BCL9 gene is located within the 1q21 region and encodes a nuclear retention factor
for β-catenin, a critical part of the WNT signaling pathway [147–149]. BCL9 is essential
for activation of the Wnt signaling in adult myogenic progenitors and regulates muscle
regeneration [150]. To determine whether common variants in 1q21 can function as a
candidate risk of SCZ, a large-scale GWAS comprising 5772 control and 4187 SCZ patients
and 1135 patients with bipolar disorder was conducted in the Chinese Han population [47].
Interestingly, multiple SNPs within the BCL9 gene are significantly associated with SCZ.
Consistently, other GWAS and integrative analyses suggest that BCL9 is associated with
negative symptoms in SCZ [151,152] and is one of top risk genes in CNV [153]. As dis-
ruption of the BCL9–β-catenin interaction inhibits Wnt activation [154], which has been
proposed as a therapeutic target for cancer [155,156], it remains to be tested if increas-
ing BCL9 levels or fine-tuning WNT signaling could reverse the deficits caused by 1q21
CNV. In addition, several components of the Wnt signaling show an association with
SCZ [157–161] and other psychiatric disorders [135,162,163]. Among the genetic factors
associated with schizophrenia, the DISC1 [164] gene is a genetic risk factor for major men-
tal illness [165–169]. DISC1 is a key regulator of NPC proliferation and mouse behavior
through modulating the canonical Wnt signaling pathway [170]. DISC1 regulates cortical
NPC proliferation and neuronal differentiation via inhibition of GSK3β. Treatment with
pharmacological inhibitors of GSK3β can completely ameliorate the DISC1 loss-of-function-
induced progenitor proliferation defects and behavioral abnormalities, which illustrates
the exciting opportunity to develop small-molecule modulators of the Wnt pathway as
prototypical drug treatments for psychiatric diseases.

5. Discussion

Genetics analysis has become a powerful tool to investigate the etiology of psychiatric
disorders because many NDs show high inheritance and share a strong genetic corre-
lation [61]. The CNV burden is pronounced in affected individuals [16,171]. However,
the rare (<1% frequency) and large (>500 kbp) CNVs in the 1q21.1 region are also found
in unaffected individuals, which raises the question of whether microdeletions and mi-
croduplications of 1q21.1 are benign. Accumulative data showed that these variants were
enriched in affected cases compared with unaffected ones, supporting that these variants
contribute to the risk of disease [18]. However, the pathogenic CNVs were found with
inconsistent patterns of inheritance and clinical phenotypes in family studies, which com-
plicates predictions of genotype–phenotype correlations [10]. Nonetheless, active analyses
of the genotype–phenotype association have revealed some possible linkages; for example,
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GJA5 and cardiac phenotypes [18], neurexins/neuroligins and synaptic differentiation [66],
or ROBO1 and dyslexia [172].

As 1q21.1 CNV is strongly associated with developmental disabilities, the symptoms
are severe in childhood, and the affecting range of 1q21.1 is different between adults
and children [35,63]. However, a gap remains to compare severity in childhood (<18-
year-olds) and adulthood (>18-year-olds) within the same populations. Along with the
general tendency of mild duplication phenotypes, there might be ascertainment bias in
the clinical reports, in which mild duplications might have been overlooked or not been
apparent in carriers at the moment of collecting data. Moreover, a possibility that mild
psychiatric symptoms may have a late onset is another confounding factor. For a precise
assessment, psychiatric evaluations in populations should be taken for the long term. The
comparison studies reported that phonological processing and fine motor performance
were significantly lower in microdeletion and microduplication probands considering
only children and compared with adults [35,173]. This combined finding was confirmed
in a 1q21.1 microduplication child with severe language and motor ability delay [172].
Besides the developmental stage, sex bias should be eliminated in sample collections for
ND studies, especially ASD [174].

Profound and solid evidence with large controls and samples is required to refine the
current findings. However, owing to the rarity of pathogenic CNVs in populations, current
studies suffer from the limitation of acquiring a sufficient number of patients for each CNV
type. This review discusses the specific CNV 1q21.1 as an important contributor in many
psychiatric diseases.

6. Conclusions

There exist several limitations that hamper the validation of the GWAS findings. In
order to investigate the etiology of a genetic disease, (i) a large sample size and (ii) examina-
tion of the molecular mechanism are required. The collective data, which include detailed
clinical manifestations and genetic variations of individuals, like the type and number
of CNVs as well as medical history, can consolidate observations of unique phenotypic
patterns related to a certain genotype. However, there has been a difficulty obtain extensive
pedigrees of probands of the disease due to its scarcity. It is unfortunate that a lot of re-
search has been based on a limited sample size, usually less than 1000 patients. Along with
clinical observations, verifying the molecular mechanism underlying the disease is critical.
Animal models have come to be a useful tool, as they facilitate molecular observations
that are impossible to assess directly from the human brain. However, the animal models
do not fully satisfy the full extent of diagnostic symptoms in humans such as cognitive
and internalizing symptoms. By the same token, there have not been sufficient animal
models tested, owing to the difficulty of generating the replicated genetic rearrangements,
especially 1q21.1 microduplications and neuropsychiatric symptoms in animals [175,176].
This can be complemented by using iPSCs [177]. Moreover, as most psychiatric disorders
are polygenic, it is difficulty to declare that 1q21.1 CNVs are the single contributor of
such phenotypes. In addition to the genetic factors, another pronounced contributor is
the environment. Several studies have postulated that stress in early development and
methylation can alter gene expression, producing an increased risk of develop the dis-
ease [178]. Moreover, even geographic exposure was found to be a factor among global
populations [14].

Recently, ND research has moved to investigating the interaction between genetic
variants and environmental factors and to find genetic convergence across the NDs [12]. A
new direction is the association of neuroinflammation with NDs. A significant upregulation
of microglial expression is observed in ASD and SCZ [179], and an imbalance of microglial
activation is present with psychotic symptoms [180], suggesting another possible underly-
ing mechanism [181]. As an emerging field in NDs [182], how neuroinflammation affects
the penetrance and risk of rare CNVs in the diseases should be assessed in future studies.
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