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Despite significant immunosuppressive activity, allogeneic mesenchymal stromal cells

(MSCs) carry an inherent risk of immune rejection when transferred into a recipient. In

naïve recipients, this immune response is initially driven by the innate immune system, an

immediate reaction to the foreign cells, and later, the adaptive immune system, a delayed

response that causes cell death due to recognition of specific alloantigens by host cells

and antibodies. This review describes the actions of MSCs to both suppress and activate

the different arms of the immune system. We then review the survival and effectiveness

of the currently used allogeneic MSC treatments.
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INTRODUCTION

Bone marrow-derived mesenchymal stromal cells (MSCs) possess immense potential for the
treatment of many diseases (1, 2), and there has been rapid acceleration in the clinical use
of MSCs (2). Bone marrow-derived MSCs have become the “gold standard” MSC for use in
musculoskeletal therapies (3, 4), though adipose-derived and umbilical cord-derivedMSC products
are also commonly available (3). The use of allogeneic MSCs for treatment is less costly as it can
be prepared for multiple animals and is immediately available for treatment (5, 6). An additional
benefit is for older patients whose MSCs are known to have lower proliferation rates as compared
to MSCs from younger donors (7). Allogeneic MSCs as an off the shelf product will likely be the
main mode of MSC treatment in the future.

When treating an individual, be it human or equine, with allogeneic stem cell therapy,
prevention of allorecognition of the recipient to the transplanted foreign antigens is an important
component of achieving a persistent and potent effect. Medium- or long-term survival of the MSCs
to exert their desired anabolic effects is likely to promote their effectiveness as a treatment as
compared responses associated with short-term survival. Certainly, short-lived therapy with MSCs
can be the catalyst for improvement of disease processes, as several studies have reported that the
number of implanted MSCs detected in target tissue was too low to explain the improvement in
disease state (1). However, without survival of the MSCs, there would be no source of ongoing
therapeutic effect nor involvement of theMSC in the structural integrity of repair. Another concern
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regarding allorecognition is the described side effects of intra-
articular allogeneic MSC injection in people (5) and horses (8).
These include pain, swelling of the joint, and urticarial (5, 8). For
these reasons, a complete understanding of the interaction of the
MSCs with the immune system is necessary to foresee the risks
and predict the effectiveness of allogeneic MSCs as a treatment.

Many studies have found that bone-marrow-derived MSCs
are capable of substantial anti-inflammatory effects (9–13).
The immunomodulation caused by MSCs is dependent on
inhibitory molecule secretion, direct cell contact, and induction
of regulatory leukocyte populations (14–17). Over 350 human
studies are currently underway that investigate the ability of
MSCs to limit immune reactions related to auto-immunity and
tissue transplantation (18). Previous studies have shown that
allogeneic MSCs suppress immune reactions in graft-vs.-host
disease and organ transplantation even when steroids are unable
to provide suppression (19).

From understanding the published literature, we know
that allogeneic MSCs have both immunostimulatory and also
immunosuppressive actions. What we must determine is the
overall effect. Are allogeneic MSCs used in the equine patient
able to provide anti-inflammatory and anabolic effects or does
immune recognition negate these therapeutic benefits?

THE INTERACTION OF THE INNATE
IMMUNE SYSTEM WITH ALLOGENEIC
MSCs

The cascade of events that occurs when MSCs encounter
the immune system can be broken down into phases of the
immune system response. These include the acute reaction
by the innate immune system, and then the slightly delayed
specific adaptive immunity of both cell-mediated and humoral
(antibody) responses that result in long-term memory cells (20).
It is important to understand how the MSCs are affected through
each of these steps in order to determine the potential for efficacy
and the side effects of allogeneic treatment.

The innate immune system responds quickly and non-
specifically to foreign antigens. This involves the release of
anti-microbial enzymes and peptides, complement activation,
recruitment of inflammatory cells, phagocytosis and destruction
of foreign pathogens, and cells (20). Endothelial cells are one of
the first cells to detect foreign pathogens, resulting in release of
chemokines which allow the blood vessels to dilate leading to the
extravasation and migration of phagocytes such as neutrophils
and macrophages (20).

Complement
The complement system is an important part of innate immunity.
Complement is released from the liver into the blood in its
inactive form and is cleaved to create its activated form by
proteases derived from inflammation. Complement components
can bind directly to alloantigens or utilize antibodies to mark the
antigen for removal (21). The foreign cell is then removed by
forming a membrane attack complex or by facilitating leukocyte
phagocytosis (21, 22).

When the effects of complement are considered alone without
accounting for the actions of other immune cells, this non-
cellular agent has been shown to cause a decrease in viability
of human allogeneic MSCs (22–24). Two studies found >40%
of human adipose-derived MSCs were damaged upon culture
with naïve human serum containing activated complement
(23, 24). Another study found minimal damage to MSCs
when complement alone was added, but complement-mediated
phagocytosis caused MSC death when monocytes were added in
vitro (22). Means of resolving complement-mediated cytotoxicity
have been created, but thus far each requires manipulation of
the MSCs by means of application of complement-inhibiting
materials (Factor H or N-glycolylneuraminic acid) to the cells’
surface which is likely impractical from a licensing perspective
at this point in time (24, 25). CD59, a molecule found
on some MSCs can prevent complement opsonization (22).
Sourcing MSCs with high surface expression of CD59 may also
be a potential means to mitigate complement-mediated MSC
death (22).

The effects of the complement system on equine MSCs have
not yet been reported in the horse.

Neutrophils
Neutrophils are the most numerous cell of the innate response
and often the first leukocyte to infiltrate an allogeneic tissue
(20, 26). Neutrophils are recruited to areas of inflammation by
vascular endothelium and likely recruited toMSCs by chemokine
proteins such as CXCL8 (IL-8) (26, 27). Once extravasated
into allogeneic tissue, neutrophil infiltration leads to increased
antigenicity and reduced allograft function (28). This may not
occur when MSCs are administered as MSCs cause minimal
activation of neutrophils in vivo by allogeneic MSCs (29).
Allogeneic MSCs appear to be immunomodulatory in that
they can suppress neutrophil activation by causing a significant
reduction in ROS when neutrophils were activated prior to the
addition of MSCs (28–31).

Although neutrophils in isolation are not activated by MSCs,
one of the most concerning effects of the innate immune system
in the horse is the rapid influx of neutrophils following intra-
articular (both autologous and allogeneic) MSC injection (8, 32).
Numerous studies investigating the effect of MSC injection into
equine joints show an increase in neutrophil count in synovial
fluid lasting 48–72 h after administration of autologous and
allogeneic stem cells (8, 32–34). An increase in effusion (as
measured by joint circumference) with or without a mild increase
in lameness also occurs at similar time points (8, 32–34). There
are several confounding factors for this neutrophil invasion.
Joswig et al. (32) showed this increase in cell infiltration and
swelling occurs to the same degree when MSC freeze media
(autologous serum and 5% DMSO) is injected alone without
MSCs, as when freeze media is injected with autologous or
allogeneic MSCs. The authors determined that in these cases,
MSCs may not be the primary cause of neutrophil infiltration
(32). Another contributor to neutrophil activation found in
earlier studies is the use of FBS in MSC media (32). There is
a significant increase in nucleated cell counts in the synovial
fluid of joints injected with FBS-cultured autologous MSCs as
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compared to autologous or allogeneic MSCs cultured in equine
serum during the final 48 h of incubation (32). Because of
this finding, where possible, studies are performed without this
confounding factor.

Another possible cause of neutrophil influx may be due
to a small proportion of MSCs in a cryopreserved or fresh
MSC sample that become non-viable prior to administration
(35). Activated neutrophils participate in the clearance of
apoptotic cells; therefore, neutrophils enter the joint following
an injection of dead cells. Interestingly, because apoptotic cells
inhibit the proinflammatory functions of neutrophils, uptake of
apoptotic cells by neutrophils can contribute to the resolution
of inflammation in areas where dead cells are present (36). The
degree to which dead MSCs cause neutrophil influx as compared
to live MSCs is unknown.

In a different type of study, MSCs had immunosuppressive
effects on neutrophils in an inflamed equine joint (37). In this
study lipopolysaccharide (LPS) was injected into one joint to
stimulate an inflammatory response, and LPS and umbilical cord-
derived MSCs were injected into the contralateral joint. This
study saw a significant decrease in neutrophil influx into the
joint after injection of both MSCs and LPS compared to the
injection of LPS alone (37). The interpretation of these findings
is that the presence of MSCs suppresses the activation of innate
immune system.

Overall, there is concern when a horse is treated with either
autologous or allogeneic MSCs and the joint then becomes
acutely swollen and/or lame. In layman’s terms this reaction is
called a “flare”; a short-lived inflammatory response that resolves
without treatment or with anti-inflammatory medication. Flares
in clinical cases have been reported to occur in between 1.8
and 9% of equine cases receiving autologous or allogeneic MSCs
(38, 39). No long-term negative effects were seen in either of these
studies. Human studies using allogenic MSCs and hyaluronic
acid had a 25–53% rate of significant effusion after intra-articular
treatment of the knee (40, 41), while administration of autologous
MSCs and hyaluronic acid had a 45% rate of effusion (42). When,
hyaluronic acid was used alone, 60% of human patients suffer
from significant effusion (40).

Although these brief incidents of soreness and swelling can be
worrying to the client, there is no evidence of long-term negative
effects nor lack of response to treatment (39, 40). Additionally,
as laboratories replace FBS during the final 48 h of culture, these
“flares” should be less common. Therefore, neutrophil influx after
allogeneic MSC treatment in the horse does not appear to be an
impediment to the use of allogeneic MSCs.

Macrophages
Macrophages are the most efficient type of phagocyte and are
able to eliminate a large variety of pathogens, including foreign
cells (43). When human allogeneic MSCs are cultured with
macrophages, the macrophages become immunosuppressive,
inhibiting natural killer (NK) cells and pushing T lymphocytes
down a regulatory pathway (44). At this time there are only two
equine studies that have reported the reciprocal effects of MSCs
and macrophages. Cassano et al. (45) found minimal effect of
MSCs on activated macrophages in vitro showing that MSCs

may not have a strong immunoregulatory ability to deactivate
macrophages. Those MSC exposed to activated macrophages,
though, then became immunosuppressive in an activated T
lymphocyte proliferation assay (46). Although data in this area
are extremely limited, allogeneic MSCs may be less capable of
immunomodulation of activated macrophages (45).

Natural Killer Cells
Natural killer cells are a part of the innate immune system that
can cause cell death through the targeted release of cytotoxins
(47). NK cells can attack cells lacking major histocompatibility
complex (MHC) I on the surface of cells (47). As bone marrow-
derived equine MSCs express MHC I (48, 49), NK cells may be
less likely to pose a threat for these MSCs. Any hypothesizing on
this issue is debatable at this point as appropriate antibodies for
recognition of NK cells in the horse are lacking. MSCs have been
found capable of suppressing NK cytotoxic activity in a murine
hepatotoxicity model and using human cells in vitro (50, 51).

Dendritic Cells
Dendritic cells capture and process alloantigens and serve
to activate the adaptive immune system by presenting the
alloantigens to B and T lymphocytes (52). Dendritic cells cultured
withmurine allogeneicMSCs cause the dendritic cells to decrease
their surface expression of stimulatory molecules including
CD80, CD83, CD86, and MHC II (53). In response to pathogens,
these molecules are normally up-regulated to aid in activation
of cell-mediated immunity. After interaction of the dendritic
cells with murine allogeneic MSCs, the dendritic cells then cause
a decrease in lymphocyte proliferation in mixed lymphocyte
reactions (53). Here we see evidence of the inhibition of adaptive
immune system through MSC effects on the innate responses.

THE INTERACTION OF THE ADAPTIVE
IMMUNE SYSTEM WITH ALLOGENEIC
MSCs

As previously mentioned, the adaptive immune response
consists of two primary pathways; one is cell-mediated and
the other is antibody-mediated (i.e., humoral immunity). T
lymphocytes are needed for both pathways. In the humoral
response of the adaptive immune system, B cells or antigen
presenting cells bound with alloantigens in association with
major histocompatibility type II (MHC II) receptor interact
with helper T cells (i.e., CD4T lymphocytes) (54, 55). Upon
interaction with CD4 lymphocytes, B cells then are activated to
differentiate into plasma cells which secrete antibodies to the
alloantigen (55). The earliest antibodies are seen in circulation
after invasion of the organism is just less than 1 week (48, 56), and
these antibodies can circulate for a long duration (56, 57). This
may be important in clinical scenarios where repeat treatments
with allogeneic equine MSCs are warranted.

The cell-mediated component of the adaptive immune
response requires cytotoxic T cells (i.e., CD8T lymphocytes).
Cytotoxic T cells take part in both direct and indirect
alloimmunity with cells bearing MHC I receptors that are bound
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with an alloantigen. In this way, cytotoxic T cells attack those
cells that are foreign to the organism or cells that have taken up a
foreign antigen. After a pathogen is recognized, a subset of CD8
cytotoxic T cells mature to form memory T cells (58). Memory
T cells rapidly respond upon subsequent antigen recognition,
triggering the removal of the foreign antigens even many years
later (58). Both CD4+ and CD8+ lymphocytes are important
when considering the use of allogeneic MSCs as these immune
cells may recognize allogeneic MSCs due to their expression of
MHC I and II.

MHC I and II Expression on MSCs
After some debate about the presence of major histocompatibility
markers on equine MSCs, it is now known that the cell surface
expression of MHC I and II on MSCs is variable from one
donor to another and even one MSC sample to another (48,
49, 59). MHC I is expressed on all equine bone marrow-
derived MSCs though the degree of expression varies (48).
Conversely, some MSCs do not express MHC II antigens,
while others have a strong positive expression (49, 59). Most
problematically, MHC I and II expression is increased in the face
of culture with foreign lymphocytes, when MSCs are cultured
with inflammatory cytokines, or as the MSCs differentiate (46,
60–62). The expression of MHC I and II motifs on MSCs are
important in that they are the key cell markers utilized for
alloimmunity by the host’s immune system, and expression of
these markers identifies the MSCs as targets for destruction.
Not only is the expression of these molecules important, but
the degree to which these molecules are similar between the
donor and recipient is also critical. The structure of each MHC
molecule is defined by the human leukocyte antigen (HLA)
or equine leukocyte antigen (ELA) haplotype (63). Horses are
haplotyped using microsatellites to the ELA gene (63). The
ELA haplotype and degree of mis-matching determines the
recognizability of donor cell to the recipient’s immune system.
Therefore, an MSC that expresses MHC I or II would be
minimally immunogenic if the ELA haplotype is “matched” to
the recipient (61, 64).

T Lymphocyte Responses to MSCs
What is the overlying result when allogeneic MSCs are exposed
to lymphocytes? Are the lymphocytes activated or suppressed?
When suppression of activated lymphocytes is considered,
studies have overwhelmingly shown that allogeneic equine
MSCs are capable of preventing lymphocyte proliferation in
response to an activating agent (phytohaemaglutinin, foreign
leukocytes, etc), thereby quelling an immune response (10,
11, 13, 65). This immunosuppression occurs subsequent to
the MSC-mediated increase in regulatory T lymphocytes
(Tregs) which serve to dampen the adaptive immune response
and can prevent rejection of foreign cells by the host
(66). MSCs secrete immunomodulatory cytokines, including
transforming growth factor beta (TGF-β), indoleamine 2,3-
deoxygenase 1, IL-2, IL-10, IL-1beta receptor antagonist,
hepatocyte growth factor and PGE2 (11, 67–70). These
cytokines serve to push the T lymphocytes down the path

to create more T regulatory cells and to suppress leukocyte
activation (11, 70).

Many in vitro studies have been performed looking into
lymphocyte behavior after interaction with MSCs. Two studies
using equine MSCs, showed that both autologous and allogeneic
MSCs have an equal immunosuppressive capacity when MSCs
are cultured with activated lymphocytes (11, 13). This may
indicate that immunosuppression is the predominant response
when compared with immunoactivation by allogeneic MSCs.
Another study examined activated lymphocytes and how they
interacted with different types of allogeneic equine MSCs
(59). Suppression of the lymphocytes occurred when MSCs
expressing low levels of MHC II were co-cultured, but increased
activation occurred when MSCs expressing high levels of
MHC II were co-cultured (59). A study using 11 different
human allogeneic MSC products found that every product
tested was capable of immunosuppression when cultured with
activated lymphocytes (65). These studies indicate allogeneic
MSCs are repeatedly shown to be capable of suppressing
activated T lymphocytes. It must be acknowledged that each
of these studies were performed in vitro, and previous
studies in the horse have shown a lack of correlation in
immunomodulatory properties between in vitro and in vivo
results (59, 71).

Do allogeneic MSCs cause activation of unactivated
lymphocytes? Colbath et al. (11) has shown that allogeneic
and autologous equine MSCs cause mild lymphocyte
proliferation in vitro, the extent of which was similar for
both groups. Similarly, in humans, lymphocyte proliferation
occurs when lymphocytes are co-cultured with allogeneic
MSCs (72). Interestingly, several human studies found an
immunosuppressive form of the MHC I antigen, called HLA-G,
which is expressed on some human MSCs (9, 72, 73). Nasef
et al. (73) found that by adding an antibody against HLA-G,
effectively inhibiting it from performing its function, activated
lymphocytes proliferate when mixed with allogeneic MSCs.
Without the neutralizing antibody, human allogeneic MSCs
prevent lymphocyte activation. Other work has shown HLA-G
causes lymphocyte suppression and increases the number
of immunosuppressive Tregs (9). This HLA-G form of the
MHC I molecule, which provides an innate ability to prevent
the recognition of foreign cells, has likely evolved from the
need to prevent fetal attack during gestation (9, 73). This
immunosuppressive isoform of MHC I is likely to exist in the
ELA system, though no evidence has yet been published for
the horse.

Does repeat exposure of the T lymphocytes to an allogeneic
MSC cause lymphocyte activation? Piggot et al. (74) co-
cultured allogeneic MSCs with lymphocytes from horses that had
previous exposure to the allogeneic MSCs and found no CD4+
lymphocyte proliferation signifying a lack of CD4+ memory
cells. Koi et al. (75) found that the systemic CD8+ population of
lymphocytes, not the CD 4+ lymphocytes, increased when horses
were treated for a second time with intravenous allogeneic MSCs.
This suggests that CD8+ memory T cells are generated upon
original exposure leading to cytotoxic lymphocyte proliferation
upon re-injection with MSCs (75).
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B Cells and Alloantibody Responses to
MSCs
Antibody production has been shown to be a limitation for
allogeneicMSC survival. There is significant antibody production
to allogeneic MSCs across species (71, 76, 77). Barrachina et al.
(62) found that all equine patients receiving intra-articular
allogeneic mis-matched MSCs formed antibodies after injection.
Pezzanite et al. (71) used MSCs of a mis-matched ELA haplotype
and injected these cells intradermally in horses. After 21 days,
all horses had synthesized antibodies against the ELA type of
the MSC that had been administered (71). These antibodies are
capable of targeting the MSCs for destruction (64). Of the six
horses tested, one also created an antibody response to another
ELA type (71). This cross reactivity has been reported previously
in the human literature (78, 79).

The synthesis of antibodies capable of destruction of theMSCs
after allogeneic treatment may limit the survival of the MSCs and
therefore decrease the potency of therapeutic effect. Overcoming
the undesirable consequences of the adaptive immune response is
important when repeat MSC treatment is required as antibodies
to the MSC may be present on administration (59). There are
several methods to mitigate alloantibody production. One way
forward is to ELA type donors and recipients to find a “matched”
pair. This is challenging as there are at least 50 variations in
ELA haplotypes (63). Another strategy is to ELA type the donor
horses of the MSCs and give subsequent treatments with MSCs
of a different haplotype. Using this technique, only the horses
that have cross-reactive antibodies would carry antibodies against
the MSCs at the time of treatment. A third possible technique
relies upon the manipulation the MSCs to prevent expression of
MHC I and II. The reduction of MHC I and II expression has
been successfully performed in human and murine MSCs using
molecular biologic techniques (6, 80). The addition of TGF β2 has
also been shown to reduce MHC I and II expression (48).

Even without these techniques to decrease the effects of
the major histocompatibility molecules, the MSCs that are
currently being utilized provide beneficial treatment effects
despite alloimmunity being present (38, 81–86).

ALLOGENEIC MSC SURVIVAL IN VIVO

There is some controversy as to whether there is a considerable
beneficial effect of longer-term MSC survival in damaged tissue
as compared to a short-lived effect. One study found that dead
MSCs used to treat cardiac ischemia-reperfusion injury in mice
had the same beneficial effect as viable MSCs (87). This study
determined that the effect of MSCs on macrophages caused the
improvement in cardiac output. Another study with the same
method of cardiac insult found a significant effect between MSC
survival and improved cardiac function (88). The MSCs in this
second study were tracked over 30 days and were found to be
present in the myocardium throughout the study period. These
studies seem to conflict with one another, but perhaps this is due
to the method of improvement in function seen in the different
studies. An immune-mediated effect may not necessitate long

term MSC survival as some reports suggest (1, 88, 89), while a
structural effect may require long-term MSC incorporation.

Few equine studies focusing on the duration of survival of
allogeneic MSCs have yet been published. Furthermore, it is
largely unknown what percent of the original dose of MSCs that
is given to a patient survives long term, but generally this is
believed to be a very small proportion for both autologous and
allogeneic MSCs (90, 91). Guest et al. (90, 91) found that ∼2%
of the originally injected equine bone marrow-derived allogeneic
MSCs survived to 30 days in the lesion and 1% survived to
60 days in the lesion (Table 1). Ovine bone marrow-derived
allogeneic MSCs survive at least 6 weeks after intra-tendinous
injection though the percent survival was not measured (Table 1)
(92). Human MSCs injected into mice survive longer than 5
months when injected intramuscularly, 1–4 weeks when injected
subcutaneously or intraperitoneally, but only a few days when
injected intravenously (Table 1) (93). When allogenic adipose-
derived MSCs were used intra-articularly after disease induction
in the femorotibial joint, MSCs survived 10 weeks in the rat and
14 weeks in sheep (Table 1) (94, 95). By extrapolating the data in
these studies, it appears that allogeneic MSCs survive for a longer
period in areas of lower vascularity.

RESULTS OF ALLOGENEIC MSC THERAPY
FOR MUSCULOSKELETAL DISEASE

Above and beyond the possible mechanisms for deleterious
effects on MSCs by the immune system, the results of in vivo
clinical trials and experimental studies must be considered. The
use of bone marrow-derived allogeneic MSCs for joint disease
has gained popularity, likely due to largely positive results (2,
96). A large equine clinical trial of 165 horses treated with
allogeneic MSCs and platelet rich plasma has been described
(38). In this report 45% of cases at 6 weeks post-treatment, and
78% of cases by 18 weeks returned to athleticism, though this
study lacked a control population (Table 2) (38). A study using
a chemically induced- model of arthritis in the horse showed
significant upregulation of type 2 collagen and significantly
decreased expression of inflammatory mediators in cartilage at
6 months post-treatment when allogeneic MSC-treated joints
were compared to untreated joints, though no significant gross
nor histologic improvement was seen (Table 2) (33). In a
similar study, allogeneic MSCs did not cause significant clinical
improvement in IL-1beta- induced arthritis, however, this was
a very acute and severe inflammatory model (Table 2) (97).
Additional allogeneic MSC studies focusing on joint disease in
the horse have shown beneficial clinical and histologic results
using blood-derived (81), neonatal-derived (82), or adipose-
derived MSCs (Table 2) (83). In people with severe knee
osteoarthritis, Vega et al. (40) showed improved function and
cartilage grade on MRI as compared to hyaluronic acid when
MSCs were used intra-articularly. Experimentally created knee
arthritis in rabbits was improved when treated intra-articularly,
but only when the animals were treated on three occasions as one
injection was insufficient to improve outcomes (98). The use of
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TABLE 1 | Relevant allogeneic MSC survival studies.

Study Recipient specie, Tissue

treated, number of cases

MSC origin Survival measurement

method

Survival duration (days)

Guest et al. (90, 91) Equine, experimental tendon

lesion, n = 8

Equine bone marrow Green fluorescent protein

(GFP)

<5% of MSCs survive past 10

days, present in lesion >60

days, no difference between

allogeneic and autologous

Lactignola et al. (92) Ovine, Achilles tendon, n = 9 Ovine bone marrow Red florescent protein >6 weeks (all allogeneic)

Braid et al. (93) Murine, n = 3–5/ location Human bone

marrow or umbilical

cord

Luciferase lentivirus >110 days intramuscular, 7 days

subcutaneous, 21 days

intraperitoneal, 3 days

intravenous

Li et al. (94) Murine, intra-articular, n = 3 at

each time point

Human adipose DiD fluorescent dye 2/3 rats at 14 days and 1/3 rats

at 70 days

Feng et al. (95) Ovine, n = 24 Human adipose Iron visualization via MRI All sheep at 98 days

TABLE 2 | Relevant equine studies evaluating the use of allogeneic MSCs in clinical and experimental musculoskeletal disease.

Study Type of MSC used Disease treated,

number of cases

Negative effects? Positive effects?

Broecx et al. (38) MSC from peripheral blood or

chondrogenic induced MSC

Clinical osteoarthritis, n

= 165

Flare in 1.8% of 165

horses

78% return to athleticism for native

MSCs and 86% for chondrogenic

induced MSCs

Broecx et al. (81) Chondrogenic induced MSC Clinical

metacarpophalangeal

osteoarthritis, n = 75

No Significant improvement in

lameness, flexion, joint effusion score

by 18 weeks post-injection

Barrachina et al. (33) Bone marrow-derived MSCs Chemically induced

arthritis, n = 14

No negative reactions in

repeatedly treated cases

Decreased effusion, improved

synovial score, improved

histochemistry, no change in

radiograph or MRI score as

compared to control

Colbath et al. (97) Bone marrow-derived MSCs Chemically induced

arthritis, n = 8

No difference in nucleated

cell count between

autologous and allogeneic

MSCs

No improvement in clinical nor

cytologic parameters

Magri et al. (82) Umbilical cord-derived MSCs Metacarpo- or

metatarsophalangeal

joint arthritis, n = 28

12% reported mild,

transient heat or effusion

Significantly improved lameness and

clinical score, 68% of horses back to

athleticism

Delco et al. (83) Adipose derived MSCs

(a10high)

Tarsocrural impact

model, n = 8

No Significantly improved radiographic,

gross, and histological score

Van Loon et al. (84) Umbilical cord-derived MSCs Clinical tendon and

ligament injuries, n = 40

No 77% returned to equal or higher

athleticism

Lange-Consiglio et al. (85) Placenta-derived (n = 51) and

bone marrow-derived MSCs (n

= 44)

Clinical tendon and

ligament injuries

No 4.00% of placenta derived and

23.08% of bone marrow-derived

re-injured post treatment

Beerts et al. (90) Peripheral blood-derived

MSCs (tenogenic induced)

Clinical tendon and

ligament injuries, n =

104

No 18% re-injury rate after 2 year

follow-up

allogeneic MSCs in joint disease appears to be beneficial though
in some studies, this benefit was not clinically relevant.

The use of bone marrow-derived allogeneic MSCs for soft
tissue lesions show promise when the treatment is administered
directly into the injured tissue. A clinical study of 40 horses
treated with adipose-derived MSCs for tendon lesions concluded
that 77% of those horses returned to full athletic function of equal
or higher levels than prior to the injury (Table 2) (84). Another
study using 44 clinical cases of tendon or ligament lesions showed

a similar proportion of horses returning to athleticism after bone
marrow-derived allogeneic MSC therapy (Table 2) (85). A recent
large clinical equine study on soft tissue lesions found 18% of
horses reinjuring within 2 years of follow up (Table 2) (86).
These data appear favorable in comparison to the 44% re-injury
rates among horses treated with rest and simple rehabilitation
techniques alone (99).

When evaluating the therapeutic potential of allogeneic MSCs
in experimental models of soft tissue lesions, laboratory animals
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were the only populations examined to date. Direct injection into
a rat Achilles tendon rupture model results in improved elasticity
and strength of treated tendons as compared to untreated
tendons at 30 days post-treatment (100). Intrathecal injection of
bone marrow-derived MSCs to treat a surgically created defect in
the intra-synovial portion of the Achilles tendon in sheep does
not improve healing of the treated tendons at 24 weeks post-
injury (101). A study using adipose-derived allogeneic MSCs
in a rat Achilles tendon tear model showed improved strength
of the injured tendon when treated into the lesion with MSCs
(102). Based on the evidence to date, tendons appear to have
improved healing when treated with allogeneic MSCs, and the
use of these treatments in equine tendon and ligament lesions
is warranted.

REPEATED ALLOGENEIC MSC
ADMINISTRATION FOR TREATMENT OF
DISEASE

Few studies have been completed to determine if repeat
administration of allogeneic MSCs is more beneficial than
a single treatment. As we have detailed, there would likely
be antibody presence in the animal upon repeat treatment
along with memory Tcells (62, 71, 75). Repeat treatment using
allogeneic MSCs has shown to cause an increase in leukocyte
recruitment when used intra-articularly (32). One study using
umbilical-derived MSCs showed no improvement in therapeutic
efficacy when clinical cases of equine joint disease were treated
twice in a 1 month interval as compared to those joints that
were only treated once (82). As previously discussed, one
rabbit study saw no improvement in arthritis when only one
treatment of bone marrow-derived MSCs was given, while
repeat therapy proved beneficial (98). In contrast, a study using
mouse model of colitis showed that allogeneic MSCs improved
the disease upon initial treatment, but when mice were again
inflicted with colitis, only syngenic MSCs were beneficial, not
the allogeneic MSCs that had provided therapy upon initial
treatment (103). It is a common concern that repeat allogeneic
therapy may lead to reduced therapeutic benefit in the horse,
and we have yet to fully answer this question. Judging from
the great amount of research showing immune response to
interaction of MSCs and leukocytes, adaptive immunity likely
will limit the functional ability of allogeneic MSCs upon repeat
administration unless a means to mitigate MHC expression has
been reconciled.

CONCLUSION

Allogeneic MSCs have both immunostimulatory and
immunosuppressive effects. Resounding immunosuppressive
effects are seen when MSCs are mixed with activated neutrophils
or activated lymphocytes (10, 11, 13, 28–31, 65). Allogeneic
MSCs are recognized by the innate and adaptive arms of the
immune system and their viability may be decreased following
immune recognition (62, 64, 71). An antibody response is
generated post-injection in the horse which likely would inhibit
their therapeutic efficacy upon repeat treatment (32, 62, 64, 103).
Allogeneic bone marrow- derived MSCs can survive in the
recipient long term when delivered into low vascularity regions
such as tendons and muscle (88, 90, 93).

There is evidence that use of allogeneic MSC therapy is
beneficial to the patient (38, 81–86, 103). Results of several studies
have shown allogeneic MSCs carry no greater rate of short-term
complications when used as a one-off therapy as compared to
other biologic therapies (8, 32–34), and improving laboratory
techniques will continue to lower the occurrence of side effects
(32). These side effects seen thus far have no relation to the level
of success of the treatment (38, 40). The response generated from
current allogeneic MSC therapies that may not survive long-term
is substantial and should not be disregarded. Potentially, a more
potent response will be generated from anMSC that is minimally
recognized by the recipient immune system and allowed to have
a longer time frame to exert a therapeutic effect (45). Methods
to mitigate alloantibody production are being researched. ELA
matching can be performed between recipient and donor.
Molecular manipulation the MSCs to prevent expression of
MHC I and II would decrease immune recognition. If repeat
MSC therapy is given, variation of the donor MSC haplotype
could minimize the immediate adaptive immune response. These
options deserve continued investigation to improve upon the
therapeutic benefits of allogeneic MSC therapy.
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