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Angular compounding for speckle 
reduction in optical coherence 
tomography using geometric image 
registration algorithm and digital 
focusing
Jingjing Zhao1, Yonatan Winetraub1,2,3,4, edwin Yuan5, Warren H. chan7, Sumaira Z. Aasi7, 
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Optical coherence tomography (OCT) suffers from speckle noise due to the high spatial coherence of the 
utilized light source, leading to significant reductions in image quality and diagnostic capabilities. In the 
past, angular compounding techniques have been applied to suppress speckle noise. However, existing 
image registration methods usually guarantee pure angular compounding only within a relatively small 
field of view in the focal region, but produce spatial averaging in the other regions, resulting in resolution 
loss and image blur. this work develops an image registration model to correctly localize the real-space 
location of every pixel in an OCT image, for all depths. The registered images captured at different 
angles are fused into a speckle-reduced composite image. Digital focusing, based on the convolution 
of the complex OCT images and the conjugate of the point spread function (PSF), is studied to further 
enhance lateral resolution and contrast. As demonstrated by experiments, angular compounding with 
our improved image registration techniques and digital focusing, can effectively suppress speckle noise, 
enhance resolution and contrast, and reveal fine structures in ex-vivo imaged tissue.

Since its conception1, optical coherence tomography (OCT) has proven to be a highly useful and versatile bio-
medical imaging modality, with the capability of non-invasively acquiring high-resolution, cross-sectional 
images. It has been widely used for diagnosis in ophthalmology2,3, with additional diagnostic capabilities for 
cancer4, cardiology5, angiography6, dentistry7, and dermatology8. Moreover, it serves as an important tool for 
brain and neuroscience research9,10, shows potential for generating histology-like images11,12, and can work with 
functionalized contrast agents13,14. Like other imaging techniques utilizing spatially coherent waves (including 
ultrasound), OCT images present with a speckled appearance, making visualization of fine structures difficult, 
and in some cases, impossible, without speckle reduction. Examples of this include the recognition of the tiny 
anatomical structures in dermatology, like tactile corpuscles and sweat ducts15, identification of different ret-
inal layers15,16, and tumor margin delineation in the brain17. A common mechanism for speckle reduction is 
to average images with uncorrelated speckle patterns. Different causes for speckle variation have been studied, 
including using a wavelength-diverse light source (frequency compounding)18,19, spatial compounding of adja-
cent regions20, dynamic speckle illumination (speckle modulation)15,21, and illumination from multiple incident 
angles (angular compounding)22. However, the number of speckle patterns generated by frequency compounding 
is limited by the total bandwidth of the light sources; spatial compounding induces loss of resolution; speckle 
modulation also causes resolution loss since introducing random phase patterns into the light wavefront makes 
the illumination area larger and unstable; angular compounding can also produce concurrent spatial compound-
ing and mismatch in the defocused regions because the detection area varies with angle23.
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At the microscopic level, the essence of speckle variation is to change the phase difference between scatterers. 
Compared to other speckle reduction methods, angular compounding is capable of continuously and linearly 
generating changes in phase from 0 to π2  by a continuous change in incident angle, resulting in a very effective 
speckle reduction, as analyzed in the discussion section. Feasibility of speckle reduction by angular compounding 
has been demonstrated24. Synchronous multi-angle detection is realizable25 at the cost of significant cross talk 
between angular images. For a large and adjustable angle change, moving the incident beam away from the lens 
optical axis is a popular method22,26,27. When this takes place, the angle-coded optical pathlength and propagation 
direction make the mapping between real space and image space change with angle. Although some universal 
image registration algorithms have been applied for angular compounding16,23,28,29, none of them are based on 
geometrical considerations of the beam path, resulting in errors produced in the registration process. The vertical 
correction23 can only guarantee pure angular compounding at the focal plane. The common ‘rotation + transla-
tion’ method28 does not correct quadratic deformations and can prevent spatial averaging in the focal region 
within a relatively small scanning range. The pure software method16,29 based on similar points in different images 
may reduce higher-order deformations but requires subjective human input. We build a common geometrical 
optical model of the angular compounding system. According to it, a geometrically-motivated image registration 
method is specially designed. It describes the quadratic mapping from the OCT space to physical space and can 
correct image translation, scaling, rotation, and nonlinear deformation. For angular compounding, it is able to 
remove inadvertent spatial averaging that is present in existing registration methods, preventing resolution reduc-
tion caused by spatial mismatch, and achieve angular compounding in the whole cross-sectional image. Besides 
the stated application towards correcting angle-coded images, the registration model is also useful for other appli-
cations, such as correcting the quadratic deformations of a system in which the scanning mirror is not at the back 
focal plane of the objective.

Since a focused Gaussian beam is typically used in an OCT system, the transverse resolution in an acquired 
B-scan image decreases with distance from the focal plane. Digital focusing of OCT images is a promising tech-
nique30–34 that can solve the trade-off between transverse resolution and the depth-of-field. Digital focusing is 
developed in this work to additionally complement angular compounding. Its abilities to increase lateral reso-
lution and contrast were demonstrated in the experiments. The idea behind our proposed digital focusing algo-
rithm is the convolution of a complex OCT image and a matched filter. The matched filter is equal to the conjugate 
of the point spread function (PSF). The PSF is shown to be related to the light distribution function and its expres-
sion is derived. This digital focusing method requires no additional hardware additions to the optical system35,36 
and can operate at different angles.

Results
Speckle reduction. Angular compounding OCT contains a transversely movable scanner that is responsible 
for changing the detection angles, allowing one to observe a single point from different angles, as shown in 
Fig. 1(a). The illumination is performed by a focused Gaussian beam, the expression for which is deduced in 
Supplementary S1. The detected area representing the point x y( , )0 0  is physically determined by the wavefronts 
(width, the focal size is 8 μm in our OCT system) and OCT axial resolution (height, 2 μm), as illustrated in 
Fig. 1(b). The gathered signal for the point is the sum of the scattered signals in the whole area, as expressed below
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where α stands for the incident angle, k is the wave number ( 2 /λ= π , λ is the wavelength), r is the average optical 
pathlength, An is the amplitude, ∆ αr n,  is the pathlength difference, ∆ +αr r( )n,  is the one-way optical pathlength, 

− ∆ +αA ik r rexp[ 2 ( )]n n,  is the scattering signal, and N  is the number of scatterers. The detected area will rotate 
with the angle and only the center region can be measured by all the angles, as presented in Fig. 1(c). Without loss 
of generality, it is assumed that two strong scatters with similar amplitudes are located in the center region. 
Ignoring the effect of the weak scatterers, the scattered signal is S iP A i Pexp( ) [1 exp( )],12 ,1 1 ,12= + ∆α α α , where 
∆ αP ,12  is  the phase dif ference equal to − = ∆ − ∆α α α αP P k r r( ) 2 ( ),2 ,1 ,2 ,1 ,  and the amplitude is 

= + ∆α αS A cos P2 1,12 1 ,12, as shown in Fig. 1(d). The intensity of the corresponding pixel in the OCT image 
is proportional to the product of the amplitude αS ,12  and the constant light-amplitude in the reference arm. For 
simplicity, αS ,12  is used to represent the pixel intensity. The phase difference ∆ αP ,12 can modulate the intensity 
from 0 ( P sign m m m{ ( )(2 1) , 0, 1, 2, },12 π∆ ∈ | | − = ± ±α ) to 2A1 ( P m m{2 , 0, 1, 2, },12 π∆ ∈ = ± ±α ). 
A zero represents a totally dark pixel and 2A1 represents the brightest one. The distribution of intensities within a 
speckle pattern is produced in this way.

As one can see, S12  is periodic in the phase difference P12∆  = P OP( )12,0 12δ∆ +  with period π2 , where ∆P12, 0 
is the initial difference and δOP12 is a phase shift. If we can continuously adjust δOP12 from 0 to πm2  

= ± ± m( 1, 2, ), the average pixel intensity will be stabilized at 1.27A1, as calculated from 
S d OP(1/2 ) ( )m

0

2
,12 12∫π δ

π
α , which is not affected by the initial phase difference. This is a significant improvement 

because the original intensity is a random value in the range of 0~2A1 with a variance of 0.62A1. This phase aver-
age process converts the originally dark and bright pixels to more uniform ones, eliminating speckle noise. 
Considering that a large phase difference may cause the two scatterers originally contained in one voxel to now be 
present in two voxels, the phase shift from 0 to π2  is the best choice. As shown in Fig. 1(e–h), an effective way to 
produce a phase shift is to change the incident angle, according to the below equation
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where D12 is the physical distance between the two scatterers, α∆  is the angle change, and RI  is the refractive 
index. It is desirable for the achievable upper limit of the phase shift to be π2 , meaning that α∆D12  is no less than 
a half wavelength. In this study, limited by the lens aperture (LSM03-BB, Thorlabs), the largest angle change is 8°. 
And the light source center wavelength is 920 nm (Ganymede SD-OCT, Thorlabs). Thus, the lower limit of D12 is 
3.3 μm, which is smaller than the 8 μm focus size (1/e2). If using the radius of focal spot RS as the lower limit, we 
can plug α∆ ≈ ∆ ⋅d f RI/( ) and λ π=R f D2 /S B (DB is the beam diameter, 5.4 mm in our system) into Eq. (2) and 
get d D0 8max B∆ = . . In experiments, 11 angles, [−4°,−3.2°, −2.4°, −1.6°, −0.8°, 0°, 0.8°, 1.6°, 2.4°, 3.2°, 4°], are 
applied and the movement range of d is from −2.5 mm to 2.5 mm.

image registration. Without correct image registration, the speckle reduction capability of angular com-
pounding cannot be appreciated. The image registration model seeks to find the real-space position x z( , ) of every 
pixel u v( , ) in a single OCT B-scan images taken at different angles. The expression is given in Supplementary S2 
and S4 and can be simply expressed as = ( )x f u v d u v, , , ,x f f  and ( )z f u v d u v, , , ,z f f= , where u v( , )f f  refers to 
the focus, and d is the bias distance for changing the incident angle as shown in Fig. 1(a). The focus position is 
basically independent of the incident angle and can work as a reference point. By fusing the angular images after 
the correction of image registration, the composite image is produced, and its quality can be evaluated by the ratio

∫ ∫ ∫ ∫= 
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where FTx z,  stands for Fourier transform along x- and z-directions, CI  is the composite image, HF means high 
frequencies of the Fourier transform, All represents the total frequencies, RHF is the ratio of high frequencies to 
the all. The average size of structures in the composite image will reach the minimum when the image registration 
achieves its best performance, resulting in the maximum ratio. In practice, FTx z,  is calculated from built-in Matlab 
functions, FT fftshift fft CI( 2( ))x z, = , here fft2 is for the two-dimensional (2D) fast Fourier transform and fftshift 
shifts the zero-frequency component to the center of the matrix. The HF region is given by removing a small 
central area containing the low frequencies from the FTx z,  matrix. In our cases, the width of the central area is 
chosen as one to three hundredths of the width of FTx z, , and the height is four to six hundredths that of FTx z, .

Figure 1. Speckle reduction by angular compounding in an OCT system. (a) The incident angle α is 
manipulated by the offsetting distance d, the distance between the lens optical axis and the galvo centerline, and 
α ≈ d farctan( / ). The scanning direction is along the x-direction. (b) The detected area for a point is determined 
by the light wavefronts and the axial resolution. (c) The area rotates with the incident angle. The dark blue dots 
represent strong scatterers and the light blue ones are weak scatterers. (d) Speckle can be generated by two 
strong scatterers with similar scattering amplitudes. (e,f) Finite element analysis (FEA) simulations by 
COMSOL software are applied to demonstrate the feasibility of speckle-reduction, the details of which can be 
found in method section. The light source is 920 nm and the light spatial frequency is doubled in the figure due 
to the round-trip optical path. The beam is rotated by the incident angle and the optical pathlength difference 
between the two scatterers is modulated simultaneously, changing the total amplitude (g) and phase difference 
(h) of the two scatterers. The distance D12 is 2 μm.
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Digital focusing. According to the principle of synthetic aperture optics, digital focusing is developed in 
order to improve the lateral resolution and contrast. Every B-scan image can be processed by the digital focusing 
algorithm before image registration. As shown in Supplementary S1, the light distribution for detection is 
expressed as U A x z d ik r x z d( , , , )exp[ ( , , , )]L θ θ= ⋅ , where A is the amplitude, k is wave number, r is the optical 
pathlength, and θ is the scanning angle of the galvo. According to the analysis in Supplementary S3 and the ref. 30, 
the point spread function (PSF) is approximately PSF A u v i k r u v( , , , 0)exp[ 2 ( , , , 0)]θ θ= ⋅ . The optical path-
length is two times r, since only the back-scattered light that propagates in the same direction as the incident light 
can be collected due to the confocal gate. The matched filter is designed as the conjugate of PSF, which equals to 

θ θ= − ⋅MF A u v k r u v( , , , 0)exp[ 2 ( , , , 0)]. To normalize the vertical amplitude, MF is multiplied by A1/max ( )v , 
where Amax ( )v  means the maximum value at the depth v. The digitally focused image is generated by the convo-
lution of the two-dimensional filter MF  with every complex B-scan image, along the scanning direction u. 
Considering the focus movement caused by the sample-air interface37, the matched filter should be finely adjusted 
vertically to achieve good performance according to the criterion proposed by Eq. (3). Since digital focusing seeks 
to enhance the horizontal resolution, the Fourier transform is operated only in the horizontal direction, and the 
ratio is ∫ ∫ ∫ ∫=R FT DF FT DF( )/ ( )HF HF x All x , where DF is the digitally-focused image.

Agar-bead phantom. As a sparse sample, the phantom composed of agar gel (J.T.Baker 500G-Agarose) 
and 1 μm Polystyrene (PS) beads (3.64 × 107 beads/ml, Spherotech) is able to clearly demonstrate the capabilities 
of angular compounding and digital focusing. The phantom was observed at eleven angles from −4° to 4°, and 
20 B-scans were taken for a single angle in order to remove photon noise, with 220 B-scans captured in total. To 
mimic a normal OCT image capture, the phantom was imaged with vertical illumination for 11 times (11 × 20 
B-scans). The scanning step is 0.976 μm. Images are displayed on a logarithmic scale. This sampling strategy was 
also applied to the rest of the experiments in this work.

As shown in Fig. 2(a), the OCT images by different incident angles are coded by angle, meaning that the 
location of a bead in each image changes with the angle, and directly overlapping these images will form a mis-
matched image where the beads exhibit apparent artifacts. The corrected angular compounding (AC) is achieved 
by our image registration model that map the pixels in every angular image to their real-space positions. The 
registered images are fused into the composite image, as illustrated in Fig. 2(b), in which the bead profiles are 
clear and symmetrical. Furthermore, nearly constant lateral resolution and deeper penetration are realized by 
digital focusing (DF), as demonstrated in Fig. 2(c). Supplementary S4 compares this image registration method 
with the common ‘rotation + translation’ method26. The image taken by normal OCT acquisition is shown in 
Fig. 2(d). Comparing the normalized standard deviation (STD)15 of the background (excluding the beads based 
on the intensity difference, as at one depth, the weakest intensity of the top 10% brightest pixels is used as the 
threshold value for the beads and background) in the regions marked by the blue dashed boxes in Fig. 2(b–d), the 
reduction in STD by angular compounding is significantly larger than that by normal OCT acquisition, as shown 
in Fig. 2(e). This effect takes place because simply increasing the number of B-scans only eliminates random noise 
but has no effect on speckle noise, which is due to the optical path differences between scatterers. Since digital 
focusing does not physically change the optical path differences either, the angular compounding images with or 
without digital focusing present almost the same trend in Fig. 2(e). Digital focusing enhances the contrast (con-
trast = (bead intensity) ÷ (background intensity) − 1) and deepens the penetration within the image, as shown 
in Fig. 2(f). The penetration depth is improved from 400 μm to 500 μm. In addition, the contrast-to-noise ratio 
(CNR) of the images generated by normal OCT or angular compounding are around 10–15 dB within the depth 
of 400 μm, but with digital focusing, the CNR is maintained at 12–18 dB within a 500 μm depth range.

Marked by red and yellow boxes, two examples are selected from Fig. 2(b–d), and their zoom-in views are 
shown in Fig. 2(g,h). The first example is close to the focal plane and contains three neighboring beads. As illus-
trated in Fig. 2(g), the speckle noise in the normal OCT image is so strong that it is difficult to recognize Bead 2 
and Bead 3, while this is not a problem for angular compounding since we can see their clear profiles in both of 
‘AC’ and ‘AC + DF’ images. Besides the direct visual evidence, the relative STD (=STD/Mean) of the image back-
ground is calculated to evaluate the speckle intensity, which is 0.17, 0.08, and 0.11 in ‘normal’, ‘AC’, and ‘AC + DF’ 
images. Observing the cross sections through the three beads (intensity profile along the red dashed line), shows 
that angular compounding causes the profiles of Bead 2 and Bead 3 to be more Gaussian. With digital focusing, 
the intensities of Bead 2 and Bead 3 increase by 28% (=0.45/0.35 = 1.28). The bead diameter is 7 μm (full width 
at half maximum, FWHM), which is a reasonable value since it is close to the lens resolution (6.8 μm, FWHM). 
The second example is beneath the focal plane and consists of multiple beads, as shown in Fig. 2(h). The beads 
are masked by speckles in normal OCT, leading to fragmentary profiles. By suppressing speckle, angular com-
pounding can depict the complete bead profiles. Furthermore, digital focusing converts the bead profiles from 
ellipses into circles. Benefitting from the better resolution, the diameter of Bead 4 improves from 12 μm to 7 μm, 
and Bead 7 and Bead 8 can be resolved in the ‘AC + DF’ image. Thanks to the contrast enhancement, in the com-
parison between ‘AC’ profile and ‘AC + DF’ profile, the contrast of Bead 4 intensity to the background grows from 
1.5 to 3.5, and CNR increases from 13.5 dB to 15.3 dB.

onion. Featuring a simple and regular structure of elongated cells38, onion epidermal tissue is an ideal sample 
to evaluate the performance of angular compounding. Images given by normal OCT, angular compounding, and 
angular compounding with digital focusing are shown in Fig. 3(a–c). Visually, digital focusing provides better vis-
ibility of the deep structures (cell walls indicated by yellow arrows) in Fig. 3(c). Figure 3(d–f) present the close-up 
views of the marked regions. In Fig. 3(d–f), strong speckle exists on the cell walls in normal OCT but are dimin-
ished with angular compounding, and the tiny structure indicated by the red arrow becomes clear in the ‘AC’ 
and ‘AC + DF’ images. The red line f1 in Fig. 3(d) is the focal plane for Fig. 3(a–f). Cell walls in the upper halves 
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of Fig. 3(d,e) are blurred due to defocusing, while they are refocused by digital focusing in Fig. 3(f). In Fig. 3(g), 
the focal plane is moved to line f2 in order to take an in-focus image of the area around the yellow dashed line. 
The lateral intensities of the cell wall along the yellow dashed lines in Fig. 3(d–g) are plotted in Fig. 3(h). The ‘AC’ 
profile is smoother than the ‘normal’ one, and the ‘AC + DF’ profile is pretty close to the profile achieved by the 
‘in-focus’ image. The CNRs for the four profiles are respectively 7 dB, 11 dB, 16 dB, and 14 dB, and the cell wall 
sizes (FWHM) given by ‘AC’, ‘AC + DF’, and ‘in-focus’ are 10 μm, 7 μm, and 5.5 μm.

Human skin. The primary application of OCT is in the area of biomedical imaging. Two samples of fresh 
human skin were processed by angular compounding (AC) OCT with digital focusing (DF). The improvements 
compared to normal OCT are analyzed below.

Figure 2. Demonstrations of angular compounding and digital focusing by using the agar phantom containing 
1 μm PS beads. (a) Eleven angles, [−4.0°, −3.2°, −2.4°, −1.6°, −0.8°, 0°, 0.8°, 1.6°, 2.4°, 3.2°, 4.0°], whilst 
imaging the same area, and the composite image created by directly overlapping the 11 angular OCT images 
is entirely mismatched. Twenty B-scans are taken for every angle to reduce random noises. (b) The angular 
compounded image is produced by fusing the correctly registered angular images. (c) With digital focusing, 
the composite image presents better horizontal resolution and deeper penetration. (d) The image composed of 
220 B-scans (20 × 11) by a normal OCT system is used as a control group. (e) The reduction in the background 
standard deviation (STD) versus the number of angles for AC and AC + DF. In the normal OCT, the data is 
captured at zero angle 11 times. The regions for STD calculations are marked by the blue rectangles in (b–d). (f) 
The contrast varies with depth, and Z is the vertical distance to the sample surface. (g) The zoom-in views of the 
red rectangles in (b–d) show three adjacent beads close to the focal plane and their intensity profiles along the 
horizontal direction (on the linear scale). (h) The zoom-in views of the yellow rectangles in (b–d) show several 
beads away from the focal plane. AC, angular compounding; DF, digital focusing; STD, standard deviation. 
Scale bar, 200 μm in (a–d), 50 μm in (g,h).
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The first sample is skin from the shin of an 89-year-old female In Fig. 4(a,b), speckle reduction allows visuali-
zation of the clear boundaries of the anatomical structures, such as the profiles of the three semi-circular features 
(yellow arrows) and the interfaces between structures (green arrows). The zoom-in views of the two selected 
regions are respectively shown in Fig. 4(e–g,i–k). Speckle suppression by our techniques makes the boundary 
of the hole (orange arrow) shaper and clearer in Fig. 4(e,f), deblurs the contents of the orange box in Fig. 4(e,f), 
enhances the visibility and contrast of the crack-like structures (blue arrows and blue rectangle) and the tiny 
structures (white boxes) in Fig. 4(i,j). Other similar examples can be found by further examining the images. 
Digital focusing works for this densely scattering sample. In terms of resolution, as demonstrated in Fig. 4(f,g), 
the fine structural details pointed out by the red arrows are spatially resolved more clearly, for example, the 
horizontal size of point p1 is 14 μm (FWHM) in ‘AC’ image and 10 μm in ‘AC + DF’ image., The image processed 
by digital focusing shows superior contrast. The maximum intensity difference that blue rectangle in Fig. 4(j) 
achieves is 11.5 dB, while in Fig. 4(k) it is 10.3 dB. Further evidence for the image quality improvement is that the 
epidermis layer becomes more identifiable in the ‘AC + DF’ images, as shown in Fig. 4(c,d),(h).

The second sample is skin from cheek (60 years, male). In Fig. 5(a,b), although the stratum corneum boundary 
(blue arrows) and the epidermis-dermis interface (red arrows) are distinguishable in normal OCT, they look more 
continuous and have higher contrast in the ‘AC + DF’ image, especially for the left-most segment indicated by the 
yellow arrows. Figure 5(c,d) are the zoom-in images of the marked areas. Once again, the visibility improvements 
in the ‘AC + DF’ image are demonstrated by the clearer epidermis-dermis interface (orange arrows), the sharper 
profile of the vessel-like structure (white arrow), the recovered shape of the two semi-circular features (green 
arrows), and the newly revealed tiny structures in the hole-like structure (black arrow). Moreover, in Fig. 5(c,d) 
the maximum intensity difference of ‘AC + DF’ image is 4.2 dB larger than that of the ‘normal OCT’ image.

Discussion
Without the correct registration of the images taken at different angles, pure angular compounding is not achiev-
able for all depths due to defocusing in the composite image. The introduced spatial compounding contributes to 
resolution reduction and image blurring in the off-focal regions. The image registration model developed in this 
work solves this problem by calculating the real-space location of a pixel from its angle-coded coordinates in the 
OCT image, making the speckle suppression by pure angular compounding available for all depths. Limited by 
the nature of the Gaussian beam, lateral resolution decreases in the off-focal planes. Therefore, digital focusing is 
implemented to complement angular compounding, for generating greater resolving power and higher contrast.

Here the principle of speckle reduction is further analyzed. Equation (1) reveals that the phase differences 
between scatterers in one voxel can modulate the scattering intensity between the darkest and the brightest inten-
sities. The average of the intensities produced by the phase differences from 0 to 2π approaches a stable value that 
is dominated by the scattering amplitudes of the individual scatterers, and the speckle is removed by using this 
average value to represent the voxel intensity. This ergodic process reduces the coherence between scatterers, 
which is approximatively expressed as

S A i P S d P d P f A A Aexp( 2 ) 1
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Figure 3. Speckle reduction and contrast enhancement in an onion sample. (a–c) The sample is respectively 
captured/processed by normal OCT, AC, and AC + DF. (a–f) The close-up views of the red rectangles in (a–c). 
Line f1 in (d) locates the focal plane for (a–f). (g) In normal OCT, the focal plane is moved to line f2 to take an 
in-focus image of the cell wall marked by the yellow dashed line. (h) The intensity profiles along the yellow lines 
in (d–g) are normalized to the maximum of all four curves, which is the peak of the ‘in-focus’ profile in this 
case. AC, angular compounding; DF, digital focusing. Scale bar, 100 μm in (a–c), 50 μm in (d–g).
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where S stands for the scattering intensity, An is the amplitude of one scatterer, ∆P n1,  is the phase difference 
between the n th scatterer and the first one, and f  represents a function of scattering amplitudes. In this work, the 
modulation of the phase difference is realized by using multiple incident angles. Other methods for adjusting 
phase differences also have the potential to diminish speckle. For example, one can directly rotate the sample with 
small angles39 or artificially cause tiny deformations inside the sample40. If the scattering amplitudes of the scat-
terers in one voxel can be changed with different variations, the averaging strategy will be conducive to speckle 
reduction, for example, as is the case with random speckle illumination15,41. Apparently, using several light sources 
with different center wavelengths is another method because the phase difference is inversely proportional to 
wavelength42. Among the above methods, changing incident angle is optimal because of its easy realization of the 
π2  change in phase difference for every pair of scatterers. The situation is complex when one voxel has multiple 

strong scatterers. According to Eqs. (2) and (4), the signal scattering from one voxel is written as

∫∑α α
τ

α∆ = − ⋅ ∆ − ⋅ ∆ → ∆ ≈
τ

= ( )S A i P exp i kD S d f A A A( ) exp( 2 ) ( 2 )
1 ( , , , )

(5)n
N

n n n n1 1, 1,
0

1 2 

Figure 4. Human skin at shin (89 years, female). The images yielded by normal OCT (a) and angular 
compounding with digital focusing (b), the zoom-in views of the red and yellow rectangles are shown in (e–g) 
and (i–k). (c,d) The gray images are color-coded by using the ‘hot’ colormap. The focal plane is marked by the 
red line f1 in (g). (h) The intensity profile along line l1, which is the average of 20 horizontally adjacent lines. The 
epidermis-dermis interface in the ‘AC + DF’ image is shaper with better contrast. AC, angular compounding; 
DF, digital focusing. Scale bar, 100 μm.
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where D n1,  is the physical distance between the n th scatterer and the first one (its sign is positive if a positive angle 
change can decrease the phase difference), the period for every item is λ D( /2 )n1, , and τ is the least common mul-
tiple of these periods in order to cover all the possible cases, and can be a large value. It indicates that the more 
scatterers in one voxel, the larger the maximum angle change is required. On the other side, a greater number of 
scatterers will endow a new incident angle with a higher likelihood of breaking the conditions for generating 
speckle. In this context, although angular compounding with a relatively small range of angles cannot average all 
the possible intensities of the voxel containing multiple scatterers, it is still able to effectively reduce speckles.

The proposed image registration model can describe the quadratic mapping from the OCT space to the physi-
cal space. Although the model is based on the explicit geometrical structure of the optical system, the analysis in 
Supplementary S4 proves that an easy calibration procedure can simplify the model and make it equivalent to the 
simpler ‘rotation + translation’ model. The digital focusing algorithm developed here is based on the convolution 
of the complex OCT image and the 2D matched filter (MF), which is the conjugate of the point spread function 
(PSF). The algorithm can be expressed as = ⋅−conv MF OCT FT FT MF FT OCT( , ) [ ( ) ( )]u u u u

1 , where convu and FTu 
present the convolution and Fourier transform along the horizontal direction u, respectively. Compared to the 
traditional digital focusing methods that only involve the phases, the operator in the spatial frequency domain, 
FT MF( )u , has a Gaussian envelope in amplitude and works like a low-pass filter. Due to this, the horizontal resolu-
tion by MF is a little larger than that given by the matched filter with unity magnitude (uniform amplitude profile 
in frequency domain), = ⋅−MF FT exp i Phase FT MF{ [ ( ( ))]}U u u

1 , where Phase function returns the phase angle for 
each element of FT MF( )u . In our case, the disadvantages of MFU  include the reductions in penetration depth and 
contrast, as shown in Supplementary S5. For these reasons, MF is used for our experiments. One limitation of the 
digital focusing algorithm in this work is that it utilizes the data acquired from a single xz plane and thus, strictly 
speaking, PSF is only valid for the scatterers in the xz plane. Resultantly, this defocus correction method cannot 
fully correct the defocus contributed by out-of-plane scatterers. The more accurate re-focused image can be gener-
ated when both the x and y spatial frequencies are taken into computation, and 3D scanning is necessary34. The 
light source may affect the digital focusing. Generally, the swept source can offer a quicker scanning speed with 
balanced photodetectors instead of a spectrometer, but suffers from worse phase stability due to the moveable 
elements inside33,43,44, and the supercontinuum source can reach higher fluence with a wider bandwidth but it is 
nosier and worse in phase stability45,46. The superluminescent diode source is more stable in phase, beneficial to 
digital focusing43,47, which is used in our system. We did not test our methods with a swept-source or a supercon-
tinuum source. Theoretically, the geometrical image registration is not influenced by the type of light source, while 
the performance of digital focusing is related to the phase stability of the light source.

The main challenge faced by the current implementation of angular compounding is that non-synchronized 
detection and mechanical movements for individual angles are required, resulting in a much longer total sampling 
time than with a normal OCT, prohibiting real-time imaging. One potential solution is to establish multiple opti-
cal channels for single angles using the same light source48. Based on this idea, a design is proposed in 
Supplementary S6. During one B-scan acquisition, all the points of the sample will be illuminated at these pre-set 
angles and the collected data can be processed with image registration concurrently, giving a speckle-removed 
image in real time. Digital focusing can also be performed simultaneously by the software. Furthermore, this 
design contains no movable parts, which is beneficial to the system robustness and stability. Another interesting 
research question for multi-angle detection in OCT is to study the three-dimensional (3D) angles of the incident 
beams. In this work, the optical paths of the illumination lights are contained in the xz plane, as shown in Fig. 1(a). 

Figure 5. Speckle reduction and increased visibility in human cheek skin (60 years, male). The images are taken 
by normal OCT (a) and AC + DF (b), and the zoom-in views of the marked regions are shown in (c,d). AC, 
angular compounding; DF, digital focusing. Scale bar, 100 μm.
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We expect that observing at 3D angles can not only improve image quality and accuracy but also reveal new infor-
mation, as demonstrated by the measurement of Henle’s fiber layer in the eye49.

Method
Experimental setup. The OCT system is based on a commercial spectral-domain instrument (Ganymede 
with a user-customizable scanner OCTP-900, Thorlabs). The central wavelength of the superluminescent diode 
is 920 nm with a bandwidth of 200 nm, offering an axial resolution of 2 μm (in the air), and the diameter of the 
single-mode beam is 5.4 mm. The lens LK3-BB used to focus the beam has a focal length of 36 mm and provides 
a lateral resolution of 8 μm (1/e2, or 6.8 μm for FWHM). The galvomirror-objective distance is about 59 mm. 
Although it is optimal to place the galvanometer mirror in the back focal plane of the lens, it is not achievable in 
our setup since the lens has to be installed on a separate and static mount (not directly on the scanner) for the 
horizontal movements of the scanner and an additional space is required between the galvomirror and the lens. 
The adverse effects introduced are analyzed in Supplementary S4. For detection, the lens and the sample are fixed, 
and the scanner is horizontally moved (along the scanning direction) by a linear motor (Z812, Thorlabs) to adjust 
the offset distance between the lens axis and the scanner’s optical axis. Corresponding to the 11 incident angles, 
[−4.0°, −3.2°, −2.4°, −1.6°, −0.8°, 0°, 0.8°, 1.6°, 2.4°, 3.2°, 4.0°], 11 offset distances are implemented, [−2.5 mm, 
−2.0 mm, …, 0, …, 2 mm, 2.5 mm]. The 2048-pixel spectrometer acquires A-scans at the rate of 30 kHz, the high-
est rate accessible in the system. A high acquisition rate will reduce the potential phase drifts of the light source. 
The scanning step is 0.976 μm. For single detection, 20 B-scans are acquired in order to reduce random noises 
by averaging. The coordinate system of the lens is calibrated to the coordinate system of the scanner by using the 
method developed in our previous work28. The sample refractive index is 1.34 for agar gel50, 1.34 for onion51, and 
1.41 for human skin52.

Human samples. Human tissue specimens that would otherwise have been discarded during surgical exci-
sion of skin growths were collected, placed in keratinocyte media, and stored at 4 °C for an average of four hours 
before being transported via a courier service to the laboratory. The specimens were stored again at 4 °C in the 
laboratory refrigerator and would be imaged within six hours after being embedded in agar gel in Petri dishes. 
Informed consent was obtained from all subjects. All experimental protocols were approved by the Stanford 
Institutional Review Board (Protocol #48409), and all methods were carried out in accordance with relevant 
guidelines and regulations.

finite element analysis. The 2D FEA model is built using the ‘electromagnetic waves, frequency domain’ 
module of COMSOL software. It consists of two materials, air in the upper half space and water in the lower half 
space, as shown in Fig. 1(e). The ‘scattering boundary condition’ is used for the top boundary of the whole rectan-
gular space, where the incident wave enters into the calculation domain, and the other three boundaries are ‘perfect 
electric conductor’. The incident wave on the top boundary is given by the electric field of AI and the normal direc-
tion of ∂ ∂ ∂ ∂P x P y( / , / )I I , where AI and PI are the beam amplitude and phase, respectively. The incident Gaussian 
beam is expressed as A iP w w x w iky ikx y R y i y Rexp( ) [( / )exp( / )]exp{ /[2 2 / ] arctan( / )}I I b b y y0

2 2 2 2= − ′ − ′ − ′ ′ + ′ + ′ , 
where k is the wave number, w0 is the waist radius, wb represents ⋅ + ′w y Rsqrt[1 ( / )]y0

2 2 , Ry is the Rayleigh range 
of w /0

2π λ, ( α α′ = − − −x x x y y( )cos ( )sin0 0 , y x x y y( )sin ( )cos0 0α α′ = − + − ) are the rotated coordinates, 
α is the incident angle, and x y( , )0 0  is the center of the focus predicted by the propagation directions of the incident 
lights. Triangular meshes are generated to subdivide the FEA model into discrete geometric cells with the size limi-
tation of no more than one-eighth wavelength. Eleven incident angles are simulated. In each case, the complex 
amplitudes of the two points, as illuminated in Fig. 1(f), are used for the calculations of the absolute value of the sum 
of the two complex numbers, Fig. 1(g), and the phase difference, Fig. 1(h).

Data process flow. First, we scan the sample through 11 angles, 20 B-scans for each angle. Then, the data is 
processed by the code as follows.

 (1) PREPARATION. Convert the spectral interferences to spatial information via the Fourier transform, 
yielding the raw OCT complex B-scan images. Calculate an angular image by averaging the absolute values 
of its 20 B-scan images, 11 angular images in total.

 (2) FOCUS. Recognize the sample surface in each angular image by observing intensity differences. Estimate 
the focus position by locating the pixel that has nearly equal distances to the sample surfaces in all the 
different angular images or the smallest possible average distance. According to Eq. (3), find the accurate 
position of the focus.

 (3) DIGITAL FOCUSING. Apply the proposed digital focusing to process every complex B-scan image, then 
calculate the new angular images by averaging the absolute image values.

 (4) IMAGE REGISTRATION. Register the 11 digitally-focused angular images from OCT space to physical 
space, and combine them to be one fused image.

For the data of 11 angles × 20 B-scans × (1024 × 1024 pixels), the computing cost for the above four steps is 
about 20 mins (by Matlab, CPU i7-8700, 64 g RAM). Sometimes, tiny bulk movements (a few pixels) of the sample 
in the vertical direction may occur due to environmental vibrations. A test program can be added after Step 2, 
which is able to detect such small movements by comparing the surface locations in the registered images and 
further vertically translate the raw OCT images for offset.
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