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Unilateral brachial plexus injury (BPI) impairs sensory and motor functions of the upper

limb. This study aimed to map in detail brachial plexus sensory impairment both in

the injured and the uninjured upper limb. Touch sensation was measured through

Semmes-Weinstein monofilaments at the autonomous regions of the brachial plexus

nerves, hereafter called points of exclusive innervation (PEIs). Seventeen BPI patients

(31.35 years± 6.9 SD) and 14 age-matched healthy controls (27.57 years± 5.8 SD) were

tested bilaterally at six selected PEIs (axillary, musculocutaneous, median, radial, ulnar,

and medial antebrachial cutaneous [MABC]). As expected, the comparison between the

control group and the brachial plexus patients’ injured limb showed a robust difference

for all PEIs (p ≤ 0.001). Moreover, the comparison between the control group and

the brachial plexus uninjured limb revealed a difference for the median (p = 0.0074),

radial (p = 0.0185), ulnar (p = 0.0404), and MABC (p = 0.0328) PEIs. After splitting

the sample into two groups with respect to the dominance of the injured limb, higher

threshold values were found for the uninjured side when it occurred in the right dominant

limb compared to the control group at the median (p = 0.0456), radial (p = 0.0096),

and MABC (p = 0.0078) PEIs. This effect was absent for the left, non-dominant arm.

To assess the effect of the severity of sensory deficits observed in the injured limb

upon the alterations of the uninjured limb, a K-means clustering algorithm (k = 2) was

applied resulting in two groups with less or more severe sensory impairment. The less

severely affected patients presented higher thresholds at the median (p = 0.0189), radial

(p = 0.0081), ulnar (p = 0.0253), and MABC (p = 0.0187) PEIs in the uninjured limb

in comparison with the control group, whereas higher thresholds at the uninjured limb

were found only for the median PEI (p = 0.0457) in the more severely affected group.

In conclusion, an expressive reduction in touch threshold was found for the injured limb

allowing a precise mapping of the impairment caused by the BPI. Crucially, BPI also led to

reduced tactile threshold in specific PEIs in the uninjured upper limb. These new findings

suggest a superordinate model of representational plasticity occurring bilaterally in the

brain after a unilateral peripheral injury.

Keywords: Semmens-Weinstein monofilaments, sensory threshold, brachial plexus neuropathy, impairment, light

touch sensation, deafferentation, uninjured
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INTRODUCTION

Brachial plexus injury (BPI) affects the sensory and motor
functions of the upper limb to varying degrees resulting in
complex patterns of sensorimotor dysfunction, often with very
poor prognosis (1, 2). Affecting predominantly young male
subjects [20–29 years, 89% male—(1)], BPI has major impacts on
psychosocial well-being and quality of life (3, 4). A key aspect
is that BPI often leads to loss of at least part of the upper
limb movements (5) thus putatively compromising movements
such as directional reaching, grasping and skilled manipulative
movements with the upper limb. This is due not only to the loss
of motor impairment, but also to the loss of sensation, known
to be of particular importance in manipulative movements (6)
[review in (7)]. Although most research in BPI has focused on
motor impairment, relatively little has been done to further our
understanding of its associated sensory dysfunction, despite its
potential to inform both to clinicians and researchers about its
severity and degree of impairment as well as to help improve
strategies to increase the functionality of the upper limb.

Furthermore, current investigations of sensory dysfunction
after a peripheral deafferentation consider the sensory deficit
evaluation only in the injured limb and are often directed to a
limited portion of the affected body surface (8–14). Given the
heterogeneous nature of BPIs, it is important to make a complete
investigation of all nerve territories of the BP, especially in its
autonomous zones (2), corresponding to areas of skin in which
each single nerve can be better assessed (15–17).

Although usually not evaluated after a peripheral nerve
injury, changes in sensory function affecting the uninjured limb
have been found in a variety of deafferentation models such
as nerve block (18), nerve injury (19), amputation (20, 21),
and in burned patients (22, 23). These changes have generally
been interpreted as being the result of central nervous system
adaptations occurring after the deafferentation.

Considering the lack of studies investigating the uninjured
limb and possible sensory changes resulting from a BPI lesion,
this study aimed to evaluate the sensory thresholds in BPI
patients using Semmes-Weinstein monofilaments (SWM). We
expected that a complete investigation of sensory thresholds
in both upper limbs would allow not only the identification
of the pattern of lesion-induced loss of sensation in the most
affected limb but also reveal possible sensory deficits in the
uninjured upper limb. This might expand the current knowledge
on sensory changes after peripheral nerve lesions, providing
novel approaches to clinical evaluation and also opening up
new possibilities for the study of central reorganization after
peripheral injury.

METHODS

Participants
Seventeen BPI patients (2 females) with a mean age of 31.35
years ± 6.9 SD (19–40), were recruited at the Institute of

Abbreviations: BPI, Brachial plexus injury; MABC, medial antebrachial

cutaneous nerve; PEI, Point of exclusive innervation; SWM, Semmes-Weinstein

monofilaments.

Neurology Deolindo Couto (INDC-UFRJ). Fifteen patients
were right handed (1 left handed and 1 ambidextrous) (24).
Inclusion criteria were age equal to or above 18 years, preserved
ability to communicate and unilateral traumatic BPI (any
level and severity, pre- or post- nerve surgery, see Table 1),
diagnosed through clinical and complementary exams such as
electromyography and magnetic resonance imaging. Exclusion
criteria were a previous history of primary or secondary
central and peripheral nervous system disease. Participants were
consecutively recruited between the years 2014 and 2015.

Eighteen healthy right-handed participants were also
evaluated, and from this sample fourteen age-matched healthy
participants were included in the analysis (27.57 years ± 5.8
SD). The remaining four participants were excluded based
on k-means clustering applied to homogenize the sample
(see Statistics).

Before the evaluation, all participants were asked whether
they felt comfortable enough to be evaluated. They were then
informed about the experimental procedures and provided
written informed consent to participate in the study, which was
approved by the local ethics committee (Institute of Neurology
Deolindo Couto—UFRJ, Brazil) and was in accordance with the
declaration of Helsinki.

Semmes-Weinstein Monofilaments
Assessment
In order to assess touch thresholds of the upper limb, a set of
20 Semmes-Weinstein Monofilaments (SWM, Bioseb, Vitrolles,
France) were used. SWM are classified by the necessary force in
grams to bend them against the skin, ranging from 0.007 to 160 g
or, as expressed in log (10 × F; with F = force in milligrams),
1.84 to 6.20. The force values for each monofilament after the
assessment using an analytical balance (Shimadzu Corp., Kyoto,
Japan) were slightly different from the values specified by the
manufacturer (see Supplementary Material). We decided to use
the values we found rather than those of themanufacturer. Values
for each monofilament are displayed in Supplementary Table 1.

Six stimulation points, called hereafter points of exclusive
innervation (PEIs), were identified to perform the sensory test.
The PEIs were within the five dermatomes (C5-T1) (25) of the
BP and corresponded to the autonomous zones of six BP nerves:
axillary, musculocutaneous, median, radial, ulnar and medial
antebrachial cutaneous (MABC) (15) (Figure 1A).

During the assessment, participants sat in a chair in a
quiet room together with the experimenters BR and AS. The
upper limb to be tested rested on a pillow. Each limb was

assessed separately. A black curtain blocked the volunteer’s
view of the assessed limb (Figure 1B). Both experimenters

were trained to conduct the assessment the same way and

while one experimenter was applying the filaments the other
one was taking notes about the evoked sensations and the

threshold values. The experimenters were not blind regarding
the subject’s condition since all the patients had the injured arm
with some degree of paralysis and hypotrophy. The uninjured
upper limb of the BPI patients was assessed first, or the right
upper limb, in the case of healthy volunteers. The order of PEI
stimulation was pseudo-randomized for each upper limb. For
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TABLE 1 | BPI patient characteristics and time between injury and surgery and time between injury and the assessment.

Id Hand. Lesion Side T1 Surgical procedures T2

BPI01 R S, M, I R x x 5.3

BPI02 R S, M, I R 6.1 C5 graft and unsp. NT 15.2

BPI03 A S, M, I L 3.3/4.2 Int. to Musc. NT + Sup. NN 28.2

BPI04 L S, M, I L 3 Int. to Musc. NT + Acc. to Sup. NT 24

BPI05 R S, M, I L 12.2 C5, C6, and C7 NN 13.2

BPI06 R S, M, I L 8.4 Acc. to Sup. NT 36.1

BPI07 R S R 6.1 Ul. to Musc. NT + Acc. to Sup. NT + Rad. to Axi. NT 45.7

BPI08 R S, M R 4.9 Ul. to Musc. NT + Acc. to Sup. NT 7.7

BPI09 R S, M L 11.7 Ul. to Musc. NT 12.9

BPI10 R I R x x 3

BPI11 R S, M L 11.3 Ul. to Musc. NT 17.6

BPI12 R S, M, I L 5.6 Int. to Musc. NT + unsp. NN and neuroma dissection 7.5

BPI13 R S, M R 6/10.4 Ul. to Musc. NT + Acc. to Sup. NT 12.4

BPI14 R S, M L 4.6/10.7 Ul. to Musc. NT + unsp. NN 15

BPI15 R S, M, I L x x 14.1

BPI16 R S, M, I L 3 Int. to Musc. NT + Acc. to Sup. NT 5.5

BPI17 R S, M, I R 11.8/13.8 Int. to Musc. NT + Acc. to Sup. NT 18.4

Hand., handedness; R, right; L, left; A, ambidextrous; S, superior; M, middle; I, inferior; NT, nerve transfer; Int. to Musc, intercostal to musculocutaneous; Acc. to Sup., accessory

to suprascapular; Ul. to Musc., ulnar to musculocutaneous; Rad. to Axil., radial to axillary; NN, nerve neurolysis; Sup., suprascapular nerve; unsp., unspecified procedures; T1, time

between the injury and the surgery in months; T2, time between the injury and the sensory assessment in months.

FIGURE 1 | (A) Illustration of the six Points of Exclusive Innervation (PEIs) in the upper limb. (B) Illustration of the experimental setup.

each PEI, monofilaments were applied in ascending order—from
the thinnest to the thickest. The thinnest filament detected by the
participant in 3 out of 5 applications was considered as the tactile
threshold for that PEI (26). All the procedures were explained
and demonstrated to the participants in advance. The intervals

between each stimulation were arbitrary to avoid the learning
of the stimulation sequence and, consequently, false positives.
When the participant was not able to feel even the thickest
filament (6.20, see Supplementary Table 1) his touch threshold
was established at this filament (6.20).
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Statistical Analysis
Threshold values for each participant were log transformed
(10 × force in mg—see Supplementary Table 1). For each PEI,
the threshold values were described as medians.

K-means Clustering
Both for the control and the patients’ group we used k-means
cluster analysis (27) to assign individuals to clusters based on
their threshold values for the six PEIs. The k-means algorithm
partitions the sample into k clusters based on variables of interest.
The algorithm uses a heuristic to find centroid seeds for k-
means clustering and then computes the squared Euclidean
distance from each observation to each centroid, assigning each
observation to its closest centroid. The goal of this procedure
is to minimize the within-cluster variance and maximize the
between-cluster variance.

The D’agostino-Pearson test was then used to assess normality
of the groups. Since data from some PEIs did not respect
Gaussian distribution, non-parametric tests were applied.

Control Group
For setting the control group, the K-means clustering algorithm
was applied and resulted in a cluster comprising 14 participants
(four participants were excluded from further analyses). The
comparison between each PEI with its counterpart in the same
control participant (right arm vs. left arm) was performed by
means of the Wilcoxon signed-rank test. Since the comparison
between right and left upper PEIs revealed no difference (axillary,
p = 0.5000; musculocutaneous, p = 0.7127; median, p = 0.3523;
radial, p = 0.3493; ulnar, p = 1; MABC, p = 0.2123), the mean
between the corresponding right and left PEIs from both upper
limbs was calculated. This procedure was performed to establish
a single threshold value per PEI for each participant.

To investigate if the sensory threshold differed among the six
PEIs of the control group, the Kruskal-Wallis test was applied,
followed by Dunn’s Multiple Comparison Test to compare the
six PEIs with each other—alfa= 0.05.

Control vs. Patients
The Mann-Whitney test was applied to compare PEIs between
control participants and BPI patients (control × injured; control
× uninjured upper limbs). For each patient, threshold values for
all PEIs of the uninjured limb were normalized to the median
values of the control group and these normalized data were
used to calculate Spearman correlation coefficients employing the
patients’ age and the time interval between the injury and the
assessment (T2 from Table 1).

To investigate the effect of the side of the injury, patients were
separated into two groups comprising BPI in the dominant right
(n = 7) or non-dominant left limb (n = 8). BPI03 and BPI04
were excluded from the sample because they were ambidextrous
and left handed, respectively (Table 1). The Mann-Whitney test
was performed to compare the threshold values of the uninjured
side of both patient groups (dominant and non-dominant injury)
with those of the control group. In addition, a K-means clustering
algorithm was applied to the BPI group to separate patients into
two groups as a function of their sensory impairment (k = 2).

Thus, based on their PEI threshold values on the injured side,
patients were grouped into more or less severely affected. Sensory
thresholds of the uninjured side of both patient groups were then
compared with the control group using the Mann-Whitney test.
This analysis aimed to investigate if different levels of sensory
deficits in the injured side would result in different patterns of
sensory changes in the uninjured side.

RESULTS

Control Values for Absolute Touch
Threshold—“Typical” Index
A typical index per PEI was calculated for control subjects.
The comparison among the six PEI threshold values in the
control group revealed a significant difference (p < 0.0001).
Dunn’s Multiple Comparison Test (alfa = 0.05) revealed that the
most proximal PEIs had lower threshold values than the most
distal ones (Figure 2). Median (25th and 75th percentiles) PEI
threshold values are presented in Table 2.

Control vs. Injured Side
The comparison between the control group and the BPI patients’
injured side showed a clear difference for all evaluated PEIs
(Figure 3). It confirms the important sensory deficit in the latter
group. Touch thresholds on the injured side were highly variable
among patients, ranging from 1.84 to 6.20 (Table 2). For several
patients, even the thickest monofilament was not detectable in
some PEIs.

Control vs. Uninjured Side
The comparison between the control group and the patients’
uninjured side is shown in Figure 4. Statistical analysis showed
differences for the median, radial, ulnar, and MABC PEIs,
indicating that the uninjured side is also affected by the BPI.
Moreover, sensory threshold values from the patients uninjured
limb were globally considerably more variable than those of the
control group, with several patient values lying above the control
group range (Table 2).

Spearman correlation coefficients analysis showed no
significant correlation between the normalized values of each
uninjured PEI and patient age or for the time interval between
the injury and the assessment (p > 0.1).

Side of Injury and Sensory Deficits in the
Uninjured Side
After excluding the left handed and the ambidextrous patients
we found that patients with BPI in the dominant right
limb presented higher threshold values for the uninjured side
compared to the control group at the median (p= 0.0456), radial
(p = 0.0096) and MABC (p = 0.0078) PEIs (axillary: p = 0.0732;
musculocutaneous: p = 0.6531; ulnar: p = 0.0628). Conversely,
patients with BPI in the non-dominant left limb showed no PEI
threshold difference from those of the control group (axillary:
p = 0.3762; musculocutaneous: p = 0.1157; median: p = 0.0568;
radial: p= 0.2722; ulnar: p= 0.4035;MABC: p= 0.6539).Table 3
presents median threshold values of both groups. With respect to
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FIGURE 2 | Comparison between the six PEIs of the control group revealed a significant difference (Kruskal-Wallis test—p < 0.0001). Dunn’s Multiple Comparison

Test (alfa = 0.05) applied to compare all pairs of PEIs revealed that the most proximal PEIs (axillary and musculocutaneous) had lower thresholds than the distal PEIs

(median, radial and ulnar). *** p < 0.05 at the Dunn’s Multiple Comparison Test.

TABLE 2 | Median (Q1–Q3) threshold values for the control group and the injured

and uninjured upper limbs of the BPI patients.

PEIs Control (n = 14) Injured (n = 17) Uninjured (n = 17)

Axillary 1.84 (1.84–2.30) 6.02 (4.84–6.20)*** 1.84 (1.84–2.30)

Musculoc. 1.84 (1.84–2.07) 6.20 (2.45–6.20)*** 1.84 (1.84–1.84)

Median 2.79 (2.72–2.95) 4.65 (3.69–6.20)*** 3.06 (2.95–3.60)*

Radial 2.84 (2.56–2.95) 4.65 (3.42–6.20)*** 3.06 (2.85–3.69)*

Ulnar 2.85 (2.72–3.06) 4.11 (3.33–6.20)** 3.60 (2.85–3.69)*

MABC 2.32 (2.01–2.86) 4.11 (2.83–6.20)** 2.85 (2.45–3.60)*

*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001 compared to the control group (n = 14).

the ambidextrous and the left handed patients we cannot take any
conclusion regarding the small sample size.

Severity of Injury and Sensory Deficits in
the Uninjured Side
A K-means clustering algorithm applied to the BPI group (k= 2)
resulted in the formation of two groups: one with less severe
sensory impairment (n= 10: BPI01, BPI02, BPI03, BPI07, BPI08,
BPI09, BPI10, BPI11, BPI13, and BPI14) and the other with
more severe BPI impairment of sensory function (n = 7: BPI04,
BPI05, BPI06, BPI12, BPI15, BPI16, and BPI17). For graphs
depicting the patients’ individual assessment of both limbs, see
Supplementary Figures 1, 2.

The comparison between the control group and the uninjured
side of the less severely affected patients (n = 10) revealed
higher thresholds for patients at the median (p = 0.0189), radial
(p = 0.0081), ulnar (p = 0.0253), and MABC (p = 0.0187) PEIs
(axillary: p = 0.6482; musculocutaneous: p = 0.3864). Similar
results were obtained after excluding the ambidextrous patient
from the sample, with higher thresholds for the uninjured side in
the less severely affected patients (n= 9) compared to the control
group (axillary: p = 0.5261; musculocutaneous: p = 0.4581;

median: p = 0.0277; radial: p = 0.0161; ulnar: p = 0.0466; and
MABC: p= 0.0367).

From this sample of less severely affected patients, six have
undergone ulnar to musculocutaneous nerve transfer. For these 6
patients the difference between the uninjured side and the control
group was found only for the ulnar nerve (p = 0.0332) (axillary:
p = 0.5500; musculocutaneous: p = 0.1745; median: p = 0.0791;
radial: p= 0.1582; MABC: p= 0.2452).

The comparison between the uninjured side of the more
severely affected patients and the control group showed statistical
difference only for the median PEI (p = 0.0457) (axillary:
p = 0.3976; musculocutaneous: p = 0.3958; radial: p = 0.3109;
ulnar: p = 0.3434; MABC: p = 0.3288). This group comprised 6
right-handed and one left-handed patients. When the left handed
patient was excluded from this group, no difference between the
uninjured side and the control group was observed (axillary:
p = 0.7989; musculocutaneous: p = 0.1745; median: p = 0.1033;
radial: p= 0.3002; ulnar: p= 0.6440; MABC: p= 0.4543).

Taken together, these results suggest that more severe injuries
are associated with minor sensory dysfunction in the uninjured
upper limb. In contrast, for the less severe group, the unaffected
upper limb presented a higher number of affected PEIs. Table 4
presents median threshold values of both groups.

DISCUSSION

By applying Semmes-Weinstein monofilaments, we were able
to characterize, for the first time, superficial sensibility deficits
in points of exclusive innervation (PEI) both in the injured
and the uninjured upper limbs in BPI patients as compared to
an age-paired and sex-matched control group. The comparison
between the control group and the BPI patients’ injured side
showed higher thresholds for all PEIs in the affected limb.
Interestingly, the comparison between the sensory thresholds
of the control group and those of the BPI patients’ uninjured
side also revealed higher thresholds for the median, radial, ulnar
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FIGURE 3 | Individual sensory threshold values in the 6 PEIs of the control group compared to the BPI patients’ injured upper limb. Lines represent the median values

of each group with the interquartile ranges. P-values of the statistical difference between groups (control × injured) are presented in each graph. The broken line

represents the top limit of the set of monofilaments used (6.20). � = control (n = 14) and � = BPI patients (n = 17).

FIGURE 4 | Individual sensory threshold values of the 6 PEIs of the control group compared to the BPI patients’ uninjured upper limb. Lines represent the median

values and the interquartile ranges of each group. P-values of the difference between groups (control × uninjured) are presented in each graph. The broken line

represents the top limit of the set of monofilaments (6.20). � = control (n = 14) and � = BPI patients (n = 17).

and MABC PEIs. After splitting the sample of right handed
patients with respect to the dominance of the injured limb, we
found higher threshold values for the uninjured side in the BPI
patients in the right dominant limb compared to the control
group at the median, radial and MABC PEIs. On the other hand,
in patients with BPI in the left non-dominant arm, this effect

was absent. Using the K-means clustering algorithm, the patient
sample was then split into two groups based on the threshold
values of the injured side. Thresholds of the uninjured side of the
resulting two groups of patients were compared to those of the
control group. Less severely affected BPI patients (n = 10) had
higher thresholds for the median, radial, ulnar and MABC PEIs.
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TABLE 3 | Median (Q1–Q3) threshold values for the injured and uninjured upper limbs after a BPI in the dominant and non-dominant limb.

Dominant (n = 7) Non-dominant (n = 8)

PEIs Injured Uninjured Injured Uninjured

Axillary 6.02 (4.11–6.20)*** 2.30 (1.84–3.60) 6.02 (5.62–6.20)** 1.84 (1.84–1.84)

Musculoc. 2.85 (1.84–6.20)* 1.84 (1.84–1.84) 6.20 (2.75–6.20)*** 1.84 (1.84–1.84)

Median 3.78 (3.60–5.26)** 3.06 (2.85–3.60)* 6.20 (4.61–6.20)*** 3.06 (2.90–3.06)

Radial 4.65 (2.85–5.57)* 3.60 (2.85–3.60)* 6.20 (3.863–6.20)** 2.95 (2.60–3.73)

Ulnar 3.60 (2.85–4.60)* 3.60 (2.85–3.60)* 5.88 (3.60–6.20)** 2.85 (2.85–3.73)

MABC 3.06 (2.30–4.90)* 3.06 (2.85–3.60) 6.11 (3.73–6.20)*** 2.60 (1.95–2.60)

*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001 compared to the control group (n = 14).

TABLE 4 | Median (Q1–Q3) threshold values for the injured and uninjured upper limbs of the less and more severe BPI.

Less severe (n = 10) More severe (n = 7)

PEIs Injured Uninjured Injured Uninjured

Axillary 5.67 (3.98–6.02)*** 1.84 (1.84–2.30) 6.20 (6.02–6.20)** 1.84 (1.84–2.85)

Musculoc. 2.72 (2.18–6.06)* 1.84 (1.84–1.84) 6.20 (6.20–6.20)*** 1.84 (1.84–1.84)

Median 3.89 (3.60–4.61)** 3.06 (3.01–3.19)* 6.20 (6.20–6.20)** 3.06 (2.85–3.60)*

Radial 3.94 (3.01–4.65)* 3.60 (2.85–3.78)* 6.20 (6.20–6.20)** 2.85 (2.60–3.60)

Ulnar 3.60 (2.79–3.73) 3.60 (2.85–3.64)* 6.20 (6.20–6.20)** 2.85 (2.85–3.78)

MABC 3.33 (2.30–3.73)* 3.06 (2.52–3.64)* 6.20 (6.02–6.20)** 2.60 (2.30–2.85)

*p ≤ 0.05, **p ≤ 0.001, ***p ≤ 0.0001 compared to the control group (n = 14).

Conversely, more severe BPI patients showed higher thresholds
only for the median PEI. These results suggest that both the
laterality and the degree of sensory impairment of the injured
arm associate to higher sensory thresholds in the uninjured side.
These findings expand the current knowledge on sensory changes
after peripheral nerve lesions, providing novel approaches to
clinical evaluation and also opening up new possibilities for the
study of central reorganization after peripheral injury.

“Typical” Threshold Values for the Upper
Limb
In this study, it was possible to establish the control group’s
“typical” threshold for each PEI. The lack of difference between
the sensory thresholds for the left and right upper limb in
the control subjects corroborates previous findings (28). A
“typical” threshold value has been previously described in healthy
subjects (29). Many studies have employed this threshold value to
evaluate all dermatomes of the upper limb (hand/arm/forearm)
(11, 12, 14). Nevertheless, we found lower threshold values in
proximal PEIs (axillary and musculocutaneous) than in distal
PEIs (median, radial and ulnar). One possible explanation for
this discrepancy may be related to the hairiness of the evaluated
skin. Proximal PEIs are in hairy skin regions while the distal
ones are in glabrous skin (30). The hair follicle shaft has
collars of mechanoreceptor terminals, including at least three
low threshold mechanoreceptor subtypes (31). Therefore, hair
deflection might be associated with a lower threshold in the
proximal PEIs. In this case, applying the normative threshold
value of 2.85, which is higher than the “typical” threshold found

for this population, to assess the entire upper limb could induce
the detection of false negative sensory deficits.

Threshold Values in the Injured Upper Limb
After a BPI
The assessment of the injured upper limb of the BPI patients at
the six selected PEIs agreed with their clinical diagnoses. Indeed,
in the majority of our sample BPI had been documented as
affecting mainly the superior and middle trunk of the brachial
plexus. Accordingly, axillary, musculocutaneous and the median
PEIs presented the highest sensory thresholds when compared
to the control group. The huge variability amongst threshold
values found for most PEIs in the injured limb (Figure 2) can
be attributed to the highly variable degree of severity that is
commonly seen for BPI (1).

Unilateral BPI Induces Bilateral Touch
Threshold Impairment
BPI led to increased tactile threshold in specific PEIs of the
uninjured upper limb. These results are in agreement with a
variety of deafferentation models that also found changes in
sensory processing in the uninjured limb (18–23, 32). Both
in burn patients (22, 23) and lower limb amputees (20), the
assessment of cutaneous threshold presented higher values for
the uninjured limb as compared to controls.

The sensory impairment in the uninjured limb found in BPI
patients suggests that BPI leads to central modifications in the
hemisphere contralateral to the uninjured limb, as shown in
different models of deafferentation (33–41). As reviewed by Wall
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et al. (42), chronic nerve injuries (peripheral nerve injury, root
injury, spinal injury, and amputation) in humans and primates
promote not only cortical but also subcortical changes at all
levels of the somatosensory system. In animal models, unilateral
injuries also lead to bilateral changes in the somatosensory
ascending pathway (43–46).

For contralateral alterations to be reflected in the ipsilateral
hemibody there must be an interhemispheric transfer of
information at some level in the brain. Sensory input is ordinarily
processed in the contralateral primary somatosensory cortex but
there is also to some extent an ipsilateral cortical response to
peripheral stimulation (47, 48). As shown by Iwamura et al.
(47), this ipsilateral response seems to depend on the opposite
hemisphere via transcallosal connections between homotopic
areas. In addition, as described by Preuss and Goldman-Rakic
(49) in primates, the midline thalamic nuclei project bilaterally to
the prefrontal cortex, an important path of top-down regulation
of attention to a given stimulus (50). Thus, the altered ascending
information coming from the injured limb could lead to reduced
activity in the intralaminar nuclei and reduce the attentional
network associated with the detection of ascending tactile stimuli,
both for the injured and the uninjured limb.

BPIs of the Dominant Right Limb Are
Linked to a Large Sensory Impairment in
the Uninjured Side
When the injury occurred in the dominant right limb, higher
sensory thresholds were observed in the non-dominant left
uninjured limb. Thus, higher thresholds were found for the
uninjured limb when the limb was the dominant one. With
respect to the ambidextrous and the left handed patients we
cannot take any conclusion due to the small sample size.

A behavioral study of tactile perception after bilateral hand
transplant showed that the somatosensory perception of the
right hand was largely reduced when the right side of the
face was concurrently stimulated. The same was not true for
the left side (51). After a bilateral hand allograft, Vargas et al.
(52) showed that the motor cortical reorganization was faster
and more extensive for the non-dominant hand than for the
dominant hand. One possibility raised by these authors was
that the hemisphere contralateral to the dominant hand is more
“hardwired” (and thus less plastic) in the context of a bilateral
hand allograft. Interestingly, the amputation of the dominant
upper limb elicits more errors and slower responses in motor
imagery and handedness judgment tasks (53).

Greater cortical functional reorganization is observed in
patients with BPI when the dominant limb is affected as
compared to the non-dominant limb (54). This suggests that a
relatively more extensive adaptive process may occur following
an injury to the dominant hand. The long-standing loss and/or
disuse of the dominant limb may degrade the sensorimotor
efficiency of both the dominant and the non-dominant upper
limb. If this is correct, then it is possible that a dominant side
BPI has a greater impact over sensorimotor representations,
with reduced plasticity in the hemisphere contralateral to the
dominant hand.

Reduced Sensory Impairments in the
Injured Side Are Linked to Greater Sensory
Impairment in the Uninjured Side
The group of patients with less severe sensory impairment

presented a higher number of affected PEIs in their uninjured
upper limb, while the more severe lesions were associated

with lower sensory dysfunction in the uninjured upper limb.
These results suggest that the severity of injury is inversely

related to the impaired threshold detection observed in the

uninjured upper limb. One possibility is that the less severe
injury is associated with a higher sensorimotor disorganization

in the hemisphere contralateral to the injured limb. This, in

turn, would affect the representations of the uninjured limb
to a greater extent. Indeed, Jain et al. (55) showed in owl
monkeys that an incomplete unilateral cervical (C3–C4) dorsal

column section leads to expanded cortical representations in
the contralateral cortical somatosensory area 3b. Interestingly,

the remaining parts of the hand in the deafferented cortical
areas present larger receptive fields and abnormal response
properties compared to complete lesions. It was also shown

that the combination of median+radial nerve injury leads to
far more silent regions in the primary somatosensory cortex
(S1) than that of the median+ulnar lesion (56–58). These
results suggest that both the type and extent of peripheral
lesion matter when it comes to the cortical reorganization
of S1 topographical maps. The manner by which these
changes reflect modifications of the representation of the
unaffected limb is unknown. The abnormal reorganization
taking place in the less severe injuries can thus contribute
to higher touch thresholds in the contralateral hemibody due
to changes in interhemispheric communication of cortical
maps (40, 41).

The group of patients classified as more severely impaired
corresponded to those with extended lesions (superior, medium,
and inferior trunks, SMI), most of them having undergone an
intercostal to musculocutaneous nerve transfer. This surgery has
already been proven to produce changes in the biceps cortical

representation (59, 60). However, the small sample of patients
with this type of surgery recruited in the present study precluded
any further analysis on the effect of this nerve transfer upon

sensory threshold impairment in the uninjured limb.
The group of less severely affected patients comprised those

having undergone ulnar to musculocutaneous nerve transfer.
Contrasting with the prevailing effect of higher threshold values
found for the uninjured side, for these patients the difference
between the uninjured side and the control group was found
only for the ulnar nerve. As discussed above, a less severe injury
would be associated with a higher sensorimotor disorganization
in the hemisphere contralateral to the injured limb. This in turn
would lead to a change in the cortical representation of the
uninjured limb. In this context, the ulnar to musculocutaneous
nerve transfer, already associated to functional improvement of
the affected limb (61) and possibly of cortical representation
restoration (62), could play a role by reducing the tactile
threshold impairment of the uninjured limb through callosal
modulatory effects (38).
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CONCLUSION

This is the first report of superficial sensibility deficit in
both injured and the uninjured upper limbs in BPI patients.
Furthermore, the higher sensory deficits in the uninjured side
were associated to BPI of the dominant limb and the lower
severity of sensory deficits in the injured side. These findings
corroborate previous results reported after other peripheral
injuries such as in amputees and suggest a superordinate model
of representational plasticity occurring bilaterally in the brain
after unilateral peripheral deafferentation. Indeed, peripheral
nerve lesion causes continuous, time-dependent adaptation in
the cortical network (63, 64). Among the limitations of the
current study we highlight the small sample size as well as its
heterogeneity regarding the lesion extent, the occurrence and
type of surgical intervention and the time elapsed from lesion.
Expanding the knowledge on sensory changes after peripheral
nerve lesions might provide novel approaches to understand and
treat BPI.
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Supplementary Figure 1 | Individual sensory threshold values in the 6 PEIs of

each BPI patients’ injured (dark gray) and uninjured (light gray) upper limbs of the

more severe group. The black line represents the median values of the control

group (n = 14). The top dashed line represents the higher threshold value possible

to assess with our filaments set (6.20). φ = PEIs in which the subjects were unable

to feel even the thickest filament assessed (6.20).

Supplementary Figure 2 | Individual sensory threshold values in the 6 PEIs of

each BPI patients’ injured (dark gray) and uninjured (light gray) upper limbs of the

less severe group. The black line represents the median values of the control

group (n = 14). The top dashed line represents the higher threshold value possible

to assess with our filaments set (6.20). φ = PEIs in which the subjects were unable

to feel even the thickest filament assessed (6.20).

Supplementary Table 1 | Calibration measures of the set of 20 SWM used.

Forces in grams (g) and the log of the force (log) (10 × force in mg) needed to

bend the filament (90◦ to the skin) in a “C” shape according to the manufacturer

(Manufacturer’s information) and after filaments calibration (Mean of the

Calibrations).
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