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Abstract

Hepatitis C virus (HCV) infection is a major global health
problem. There is no effective vaccine and the current
treatment regimen with pegylated interferon a and ribavirin is
associated with significant adverse events. Therefore, there is
an urgent need to identify new antiviral targets for HCV
therapy. In recent years, a growing number of microRNAs
(miRNAs) have been reported to be able to regulate HCV
replication and infection by interacting with the HCV genome
directly or by regulating host innate immunity to build a
nonspecific antiviral state within cells. In this review, we
discuss HCV virology and standard of care followed by miRNA
in general, and then give a brief overview of miRNAs involved
in HCV infection and discuss their potential application as a
therapeutic option for the treatment of HCV infection.
E 2013 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

HCV: virology and treatment

Hepatitis C virus (HCV) is a small, hepatotropic, positive-
strand RNA virus with a genome of approximately 9.6 kb in
length.1,2 The HCV genome consists of a single open reading
frame that encodes viral proteins and a 59 and 39 noncoding
region (NCR). The 59 NCR contains the internal ribosome
entry site that initiates the translation of the HCV genome into
a single polyprotein;2 the 39 NCR is required for efficient HCV
RNA replication,3 as it has a specific tripartite structure: a
variable region that is important for efficient RNA replication;
a poly(U/UC) tract of variable length; and a highly conserved
X tail.4–6 Studies have demonstrated that the conserved
elements in the 39 NCR, including a minimal poly(U) tract of
about 25 bases, are essential for HCV replication in cell
culture and in vivo.7–10 Although the detailed mechanisms by
which the 39 NCR elements act on RNA replication are not
clear, it is likely that binding of one or more viral or host

proteins to this RNA structure is necessary to establish the
replication complex.11 The open reading frame encodes a
polyprotein precursor of about 3000 amino acids that is
cleaved by host and viral proteases into three structural
proteins (core, E1, and E2) and seven nonstructural proteins
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) (Fig. 1).3,12

HCV has six major genotypes and each genotype contains
numerous variants.13 Each genotype has its own epidemio-
logic characteristics. Genotypes 1–3 have worldwide distribu-
tion. Genotype 1 is predominant in America14,15 and
Europe,16,17 followed by genotypes 2 and 3;18,19 and
genotype 4 is the most common genotype in Africa and the
Middle East,20–22 and is often seen among immigrants or
indigenous injection drug users in North America and
Europe.23,24 Genotype 5 is mainly distributed in South
Africa25 and genotype 6 has been found primarily in Asia.26–28

HCV infection is a major cause of liver disease, with a high
possibility of chronic infection. If left untreated, chronic HCV
infection frequently results in progressive fibrosis, cirrhosis,
and an increased risk of hepatocellular carcinoma.2 The most
recent report from the World Health Organization estimates
that about 150 million people worldwide are chronically
infected with hepat i t is C vi rus (www.who. int) .
Unfortunately, there is still no effective vaccine for HCV.29

To date, the standard of care for chronic HCV infection in most
countries is combination therapy with pegylated interferon
(IFN) a and ribavirin. However, the sustained virologic
response (SVR) rate is just 40–50% in patients infected with
HCV genotype 1 and 80% in patients infected with HCV
genotypes 2 or 3.2,30,31 Since 2011, treatment for HCV
infection has been improved by adding one of the HCV
nonstructural protein NS3/4A serine protease inhibitors,
telaprevir or boceprevir, to pegylated IFN a and ribavirin.32

This regimen improves the SVR to 75% in patients infected
with HCV genotype 1.33 NS3/4A serine protease plays at least
two roles in the HCV life cycle. First, it is responsible for
cleaving the HCV polypeptide into individual viral proteins; it
is essential for viral replication and virion assembly.32,34,35

Second, NS3/4A protease inhibits the innate immune
response to facilitate HCV persistence. Therefore, NS3/4A
protease is a good target for inhibitors that inhibit HCV
replication and restore the host’s innate immunity. Following
the successful determination of the crystal structure of NS3/
4A protease, small molecules specifically binding to the
catalytic site of the NS3/4A protease were developed34 and
two protease inhibitors, telaprevir and boceprevir, are now
used to treat HCV infection in some countries. Although
protease inhibitor-based therapy significantly improves the
SVR,32,34 the high cost, severe adverse events, and rapid
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emergence of resistance mutations associated with these
drugs limit their use in the developing countries where
treatment is needed most.34 Therefore, there is a pressing
need to identify new treatment options that are cost- and
clinically effective for all HCV genotypes.

MicroRNA: synthesis and functions

MicroRNAs (miRNAs) belong to a noncoding gene family
involved in eukaryotic posttranscriptional gene regulation.36–
39 Transcription of miRNA genes forms primary transcripts
(pri-miRNAs) that usually contain a hairpin structure. The
stem-loop structure is then cleaved by an RNaseIII-like
enzyme called drosha, together with its binding partner
DGCR8 (DiGeorge syndrome critical region 8), to yield
precursor miRNAs (pre-miRNAs) that are subsequently
transferred from the nucleus to the cytoplasm with the help
of exportin-5. In the cytoplasm, pre-miRNAs are processed
by dicer RNA polymerase III into a duplex structure, from
which one strand is separated and functions as the guide
strand (functional strand) to be loaded together with
Argonaute proteins into an RNA-induced silencing complex
that recognizes and binds to the target mRNA. The other
strand is degraded and nonfunctional (Fig. 2).36,40–44 MiRNA
exerts its function by degrading the target mRNA (if
the miRNA has perfect base pairing with its target mRNA)
or inhibiting mRNA translation (if there is only partial
pairing).45–47

The human genome encodes more than 1500 miRNAs
(www.mirbase.org, released January 2012). Each miRNA
can regulate numerous target genes and each mRNA is
likely to be regulated by several miRNAs.48,49 The interac-
tion of miRNAs and their target mRNAs results in a complex
network that is involved in almost every cell process,
including development, differentiation, proliferation, death,
disease pathology, and antiviral defence.50–53 Most recently,
increasing evidence suggests that cellular miRNAs and
other components of the miRNA pathway can interact with
viruses at multiple levels to influence viral replication.54,55

In this review, we summarize the miRNAs involved in HCV
infection and their proposed connection with antiviral innate
immunity.

Fig. 1. The hepatitis C virus (HCV) genome and polyprotein. The HCV genome contains a single open reading frame that encodes a polyprotein that is
cleaved by viral and host proteases to generate three structural and seven nonstructural proteins. Adapted from Georgel et al.3 and Rice12

Fig. 2. The biogenesis of miRNA. Primary-miRNA (pri-miRNA) is pro-
cessed by a drosha–DGCR8 microprocessor complex and forms a 70–100
nucleotide hairpin precursor (pre-miRNA). The pre-miRNA is transported
from the nucleus to the cytoplasm by exportin-5 and cleaved by dicer into
mature miRNA. Mature miRNA is loaded into an Argonaute (Ago) protein,
where one strand of miRNA duplex is discarded. The retained strand
mediates target selection by base pairing between miRNA and the 39

untranslated region of the target mRNA. Adapted from Bartel,36

Broderick and Zamore,40 Winter et al,41 Kim,42 Thibault and Wilson,43

and Haasnoot and Berkhout44
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MiRNA and the innate immune response

Innate immunity is the host’s first line of defense against
invading microbial pathogens. Type I IFN is a major player in
the innate immune response, and is induced through path-
ways mediated by two distinct pathogen-associated molecu-
lar-pattern receptors: toll-like receptors (TLRs) and retinoic
acid-inducible gene I (RIG-I)/melanoma differentiation-
associated gene 5. The miRNAs miR-155 and miR-146a/b
have been shown to be involved in these pathways.56 The
potential target genes of miR-146a, such as interleukin-1
receptor-associated kinase 1 and 2, TNF receptor-associated
factor 6, RIG-I, and IFN-regulatory factor 5, play a critical
role in these type I induction pathways.57 Inducible expres-
sion of miR-155 has been observed in both bacterial and viral
infections, and may act as a negative feedback regulator of
theTLR pathway to dampen the innate immune response.58–60

In addition, miR-155 has been shown to be involved in
carcinogenesis.61–64 Two oncogenic viruses, Kaposi’s sar-
coma-associated herpesvirus and the avian a-herpesvirus
Marek’s disease virus type 1, can encode miR-155 mimics
miR-K12-11 and miR-M4, respectively.65–67 Both of the
virus-encoded miRNAs share high sequence similarity with
miR-155 and therefore function as an ortholog of cellular miR-
155.65–68 Although numerous lines of evidence point to the
fact that more and more miRNAs are involved in host innate
immunity either directly or indirectly,53,55,69,70 we are just at
the very start of understanding the diverse roles of miRNA in
regulating host immunity. More studies are needed to under-
stand how cellular miRNAs interact with the antiviral innate
immune response. Data from these studies may shed light on
potential therapeutic targets.

MiRNA and HCV infection

Recent studies demonstrate that miRNAs can affect the
replication of some pathogenic viruses. MiRNAs have diverse
roles in HCV infection. Some cellular miRNAs inhibit HCV RNA
replication, while others stimulate its replication.

MiRNAs that suppress HCV replication

Type I IFN plays an irreplaceable role in anti-HCV defense.
Quite interestingly, as the key player in HCV therapy, IFN b

treatment can rapidly modulate the expression of numerous
cellular miRNAs.71 Using microarray technology, Pedersen et
al. analyzed the expression of cellular miRNAs in IFN-
stimulated cells and found that the expression levels of about
30 miRNAs were altered (increased or decreased).71

Furthermore, they analyzed the sequence of these miRNAs
and HCV genomic RNA and identified eight IFN b-induced
miRNAs (miR-1, -30, -128, -196, -296, -351, -431, and -448)
that matched with HCV genome perfectly. Functional assays
showed that overexpression of these miRNAs by transfection
of the miRNA mimics reproduced the antiviral effect of IFN b

in Huh7 cells, while their neutralization with anti-miRNAs
dampened the antiviral effects of IFN b against HCV.71

Similarly, another independent study reported that miR-196
inhibited HCV RNA replication in HCV replicon cells (geno-
types 1b and 2a).72 Both studies illustrated that one of the
mechanisms for IFN inhibition of HCV RNA replication is
probably the induction of cellular miRNAs that can directly
degrade HCV RNA. In addition to the IFN-inducible miRNAs
described above, there are many other miRNAs that can also

inhibit HCV replication. For example, the overexpression of
miR-199a has been reported to suppress HCV RNA replica-
tion, while inhibition by a specific antisense oligonucleotide
upregulated viral replication in two cell lines bearing the
replicons HCV-1b or -2a.73

In addition to the direct inhibition, some miRNAs inhibit
HCV RNA replication indirectly by activating the IFN pathway.
For example, miR-130a has been shown to be able to inhibit
HCV replication in both replicon (genotype 1b) and JFH1
infectious models. Li et al. transfected miR-130a mimic into
cultured Huh7.5.1 cells stably expressing an HCV genome
and found that replication of HCV RNA was significantly
inhibited.74 Further studies showed that the expression levels
of type I IFNs (IFN a and IFN b) were significantly increased.
As Huh7.5.1 cells are deficient in both TLR3 and RIG-I, two
important mediators of type I IFN induction, these cells
cannot recognize HCV infection and, as a result, almost no
type I IFNs are produced following virus infection. These
results imply that miR-130a may inhibit HCV replication
indirectly, probably by restoring the host innate immune
response in TLR3- and RIG-I-deficient cells.74 However, other
investigators have demonstrated that HCV infection upregu-
lates miR-130a, and that interferon-induced transmembrane
protein 1 (IFITM1) is a direct target for this miRNA: knock-
down of miR-130a enhanced IFITM1 expression and reduced
HCV replication.75 This study demonstrated that HCV evades
innate immune attack by decreasing antiviral IFITM1 expres-
sion through miR-130a. Since Li et al found miR-130a up-
regulated the IFN expression, the expression of the IFN-
stimulated gene IFITM1 should increase (although not tested
in their study). These two studies reached seemingly contra-
dictory results, which may indicate that miR-130a has more
than one target, and the interaction of this miRNA with the
host innate immune system is complex. In any case, the
interaction between miR-130a and the host innate immune
system deserves further study.

MiRNAs that stimulate HCV replication

MiR-122 is the most abundant liver-specific miRNA, account-
ing for around 70% of the total miRNA content in mammalian
liver tissue.76 It is undetectable in other tissues in mice.76

Studies have demonstrated that miR-122 acts as a regulator
of fatty-acid metabolism in mouse liver,77 and reduced miR-
122 levels are associated with hepatocellular carcinoma.78–81

In addition, of all the miRNAs, miR-122 is unique in its
stimulatory, not inhibitory, role in HCV replication.82 The
discovery that miR-122 is required for HCV replication linked
a host miRNA to a human infectious disease for the first
time.83 The role of miR-122 in HCV replication was first
reported by Jopling et al. in 2005.82 They sequestrated miR-
122 with antisense oligonucleotides and found that HCV RNA
accumulation decreased.82 In addition, they also identified
two target sites in the HCV 59 untranslated region that are
necessary for HCV replication. Since then, a large number of
elegant studies have been performed to show that the
interaction between miR-122 and viral 59NCR is essential to
promote HCV replication.84–88

The role of miR-122 as an important, possibly essential,
host factor for HCV production makes it an attractive
candidate for antiviral therapy. Modified antisense agents
and small-molecule inhibitors have been developed as
potential new lead compounds for drug discovery.89 Most
recently, treatment with miravirsen (SPC3649) efficiently
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suppressed HCV genotype 1a and 1b infections in chimpan-
zees, with no evidence of viral resistance or side effects.90

Miravirsen, a locked nucleic acid–modified DNA phosphor-
othioate antisense oligonucleotide of miR-122, has also been
trialed in patients with chronic HCV genotype 1, with the
results showing a dose-dependent reduction in HCV RNA
levels without the occurrence of viral resistance.91

In addition to targeting HCV RNA directly, Yoshikawa et al.
found that overexpression of miR-122 suppresses the activity
of IFN-stimulated response element (ISRE) while significantly
silencing miR-122-enhanced IFN-induced ISRE activity.92

ISREs are specific nucleotide sequences located in the
promoters of IFN-stimulated genes that encode antiviral
proteins and can induce transcription of these genes by
binding with IFN-stimulated gene factor 3.93 Furthermore,
Yoshikawa et al. found that silencing miR-122 decreased the
expression of suppressor of cytokine signaling, a negative
regulator of IFN signaling, in mouse liver, leading to increased
IFN anti-HCV activity.92 This study indicates that the anti-HCV
effect of miR-122 might also be mediated by decreasing the
expression of antiviral proteins or increasing negative reg-
ulators of cytokine production.

Most recently, it has been reported that miR-141, which
can be induced by HCV infection, may also be necessary for
efficient HCV replication.94 MiR-141 belongs to the miR-200
family, which is believed to play an essential role in tumor
suppression by inhibiting epithelial–mesenchymal transition,
the initiating step of metastasis.95,96 Banaudha et al.
transfected an miR-141 mimic or antagonist into HCV1a-
infected hepatocytes to increase or deplete intracellular miR-
141 expression, respectively.94 The results showed that
overexpression of miR-141 enhanced HCV replication, while
depletion of miR-141 inhibited virus replication. Meanwhile,
they identified DLC-1 (deleted in liver cancer 1) as one of the
target genes.94 Increasing miR-141 decreased DLC-1 protein
levels without a parallel decrease in DLC-1 mRNA levels,
suggesting that miR-141 primarily targets translational
inhibition of DLC-1.94 DLC-1 encodes a member of the Rho-
GTPase activating protein (GAP) family of proteins. The Rho-
GAP proteins can specifically catalyze the conversion of the
active GTP-bound RhoA protein into the inactive GDP-bound
protein.97,98 Active RhoA protein is required for Ras-mediated
tumorigenic transformation,99 and Rho-GAPs may therefore
act as important negative regulators in human carcinogen-
esis. In hepatocellular carcinoma, homozygous deletion or
loss of DLC-1 mRNA expression usually occurs in vivo and in
vitro.98,100 In addition, restoration of DLC-1 in hepatoma cell

lines lacking DLC-1 results in reduced cell proliferation as well
as reduced metastatic activity.100 Since HCV-infected cells
express miR-141, and its overexpression significantly sup-
presses DLC-1 expression,94 the results indicate the presence
of a novel mechanism of HCV infection-associated miRNA-
mediated regulation of a tumor suppressor protein, which is
worth further exploration.

MiRNAs involved in HCV infection and their interactions
with the innate immune system are summarized in Table 1.

Future directions

MiRNAs are endogenous, short, noncoding RNAs that function
at the posttranscriptional (mRNA) level through mRNA
degradation or inhibition of translation. Host miRNAs play
various important roles in many cellular processes, including
host innate immunity and cell defense. Increasing lines of
evidence suggest that many miRNAs are involved in the viral
life cycle. For HCV, miRNAs can either stimulate or inhibit viral
RNA replication through distinct mechanisms. In the past few
years, many studies have focused on identifying differentially
expressed miRNAs before and after HCV infection. Identifying
their target mRNAs remains a great challenge, as a complex
network of interaction exists between miRNAs and mRNAs.
Although high-throughput screening methods such as gen-
ome-wide association studies and microarrays may reveal
the complicated network of regulation and eventually identify
targets for intervention, functional studies will have to be
performed to validate these targets experimentally.

Remarkably, the advent of anti-miR-122 drugs is opening
a new era for HCV therapy. AlthoughmanymiRNAs have been
identified in vitro, and the function of many of these has not
been verified in vivo, miRNAs have great potential as
therapeutic targets for viral infection, in addition to many
other diseases.
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Table 1. Summary of miRNAs involved in HCV infection and their interactions with the innate immune system

miRNA Effect on HCV infection Link to innate immunity Reference

miR-130a Inhibits HCV replication in vitro Restores the IFN signaling pathway 74

Benefits HCV infection in vitro Targets interferon-induced transmembrane proteins 75

miR-196 Inhibits HCV expression in vitro Targets Bach1, which is involved in the inflammatory
response

71, 72

miR-199a Inhibits HCV replication in vitro Independent of IFN signaling pathway 73

miR-122 Promotes HCV replication Decreases IFN-induced ISRE activity 92

Positively regulates the HCV life cycle Targets the HCV genome directly (independent of the
IFN signaling pathway)

82, 86

miR-141 Required for HCV replication in vitro – 94

HCV, hepatitis C virus; IFN, interferon; ISRE, interferon-stimulated response element; miRNA, microRNA
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