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SUMMARY

During cell division, mitotic motors organizemicrotu-
bules in the bipolar spindle into either polar arrays at
the spindle poles or a ‘‘nematic’’ network of aligned
microtubules at the spindle center. The reasons for
the distinct self-organizing capacities of dynamic mi-
crotubules and different motors are not understood.
Using in vitro reconstitution experiments and com-
puter simulations, we show that the human mitotic
motors kinesin-5 KIF11 and kinesin-14HSET, despite
opposite directionalities, can both organize dynamic
microtubules into either polar or nematic networks.
We show that in addition to the motor properties
the natural asymmetry between microtubule plus-
and minus-end growth critically contributes to the
organizational potential of the motors. We identify
two control parameters that capture system compo-
sition and kinetic properties and predict the outcome
of microtubule network organization. These results
elucidate a fundamental design principle of spindle
bipolarity and establish general rules for active fila-
ment network organization.

INTRODUCTION

The internal organization of eukaryotic cells depends on cyto-

skeletal networks. Dynamic microtubules and actin filaments,

motile crosslinkers, and other associated proteins drive active

networks into a variety of organizational states required for

distinct cell functions (Helmke et al., 2013; Sanchez and Feld-

man, 2017). Polarized microtubule networks serve as tracks for

directional cargo transport during interphase (Kapitein and Hoo-

genraad, 2015; Keating and Borisy, 1999; Sanchez and Feld-

man, 2017). In contrast, in large cells of embryos and plants mo-

tors mediate the formation of arrays of aligned microtubules or

actin filaments, causing global cytoplasmic flows to distribute

nutrients and organelles (Ganguly et al., 2012; Goldstein et al.,

2008; Monteith et al., 2016; Palacios and St Johnston, 2002).

These networks consisting of aligned filaments of mixed-polarity

are also called ‘‘nematic,’’ a term borrowed from liquid crystal
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terminology (Needleman and Dogic, 2017). How cells control

the organization of active filament networks with different topol-

ogies is an open question.

During cell division, microtubule crosslinking motors orga-

nize microtubules into bipolar spindles, an architecture that is

crucial for correct chromosome segregation. The role of mo-

tors is particularly evident in female meiosis, when the bipolar

spindle self-organizes from randomly oriented microtubules

nucleated locally in the vicinity of chromosomes (Heald et al.,

1996). Minus-end-directed motors contribute to the formation

of radial, polarized microtubule arrays with their minus ends

focused at the spindle poles, and plus-end-directed motors

are required to arrange nematic arrays of aligned microtubules

with mixed-polarity in the spindle center (Brugués et al.,

2012; Helmke et al., 2013; Kapoor, 2017). It is unclear why

particular mitotic motors promote different organizational

states. The critical determinants of filament self-organization

are not known.

Biomimetic systems with limited sets of purified proteins have

provided mechanistic insight that can be applied to intracellular

networks. When microtubules were grown in the presence of

artificial microtubule stabilizers, crosslinking motors produced

locally contracting networks, leading to the formation of monop-

olar structures (asters) (Hentrich and Surrey, 2010; Nédélec

et al., 1997; Surrey et al., 2001). Experimental and theoretical

work suggested that such networks with polarity-sorted micro-

tubules form when motors are sufficiently fast to reach microtu-

bule ends and remain bound there, so that multiple microtubule

ends can be brought together to form a stable radial array (Head

et al., 2014; Nedelec and Surrey, 2001; Nédélec et al., 1997; Sur-

rey et al., 2001; Torisawa et al., 2016). The minus-end-directed

microtubule crosslinking motor kinesin-14 that contributes to

spindle pole focusing in cells is one such motor that can form

microtubule asters in vitro (Braun et al., 2017; Fink et al., 2009;

Hentrich and Surrey, 2010; Kwon et al., 2008; Norris et al.,

2018; Surrey et al., 2001).

Nematic networks of extensile bundles were observed in vitro

when short, static microtubules were combined with purified

artificial kinesin-1 clusters in the presence of crowding agents

that promoted microtubule bundling (Henkin et al., 2014; San-

chez et al., 2012). Motors transportedmicrotubules ofmixed-po-

larity causing bundle extension and large-scale hydrodynamic

flows. High microtubule concentrations and the crowding agent
stitute. Published by Elsevier Inc.
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present in these experiments appeared to have changed the

rules of self-organization. Whether motors can organize microtu-

bules also into nematic networks under more physiological con-

ditions is unknown. Kinesin-5 is the main plus-end-directed

microtubule crosslinker that functions in the central region of

the spindle and exerts outward forces in spindles (Blangy

et al., 1995; Hagan and Yanagida, 1992; Hoyt et al., 1992; Kapi-

tein et al., 2005; Miyamoto et al., 2004; Sawin et al., 1992; Sharp

et al., 1999; Tanenbaum et al., 2008). This activity is consistent

with its ability to slide individual pairs of anti-parallel microtu-

bules apart in vitro (Hentrich and Surrey, 2010; Kapitein et al.,

2005; Roostalu et al., 2011; van den Wildenberg et al., 2008).

Yet, self-organization experiments with purified kinesin-5 and

manymicrotubules have so far failed to reveal network organiza-

tions that correspond to this motor’s function in cells (Hentrich

and Surrey, 2010; Torisawa et al., 2016).

Taken together, multiple parameters such as protein concen-

trations, kinetic motor properties, the degree of crowding, and

potentially the dynamic properties of microtubules influence

the organization of biological filament/motor systems. When

trying to understand such a multi-dimensional organizational

phase space, the question arises whether it is possible to iden-

tify a minimal set of critical determinants or control parameters

that predict network organization. Identifying such control

parameters can directly provide insight into complex system

behavior.

To gain such a mechanistic understanding of microtubule/

motor network organization, we explored the organizational

capacity of human kinesin-5 and kinesin-14 in the presence

of dynamic microtubules. In self-organization experiments

with purified motors and microtubules with tunable plus- or

minus-end dynamics, we show that both motors, despite

opposite directionalities, can form either polar or nematic

microtubule networks. We find that the normal asymmetry of

microtubule growth plays an important role in determining a

motor’s natural organizational capacity. Numerical computer

simulations of active network organization identify two control

parameters, each combining a motor and a microtubule prop-

erty, that predict the outcome of network organization. Taken

together, our results suggest a simple set of rules that explain

bipolar spindle organization by mitotic motors and dynamic

microtubules.

RESULTS

KIF11 Organizes Dynamic Microtubules into Nematic
Networks
To establish asymmetric microtubule growth dynamics in vitro

and mimic the situation in the cell, we used a C-terminal frag-

ment of the human microtubule minus-end stabilizer CAMSAP3

(CAMSAP3-C) (Figures 1A and S1) (Atherton et al., 2017;

Hendershott and Vale, 2014; Jiang et al., 2014). Addition of

CAMSAP3-C stimulated microtubule formation in pure tubulin

solutions, as visualized by the end binding protein EB3 (Figures

1B and 1C) (Montenegro Gouveia et al., 2010). CAMSAP3-C

suppressed minus-end dynamics and allowed the plus-ends of

the nucleated microtubules to grow for at least an hour (Figures

1C and 1D).
We next investigated how purified human plus-end-directed

microtubule crosslinking kinesin-5 KIF11 (Ferenz et al., 2010)

organizes free microtubules with such asymmetric growth prop-

erties. We mixed fluorescently labeled tubulin and motors and

initiated microtubule nucleation by a temperature shift (Fig-

ure 1E). Within minutes, KIF11 produced dynamic networks of

aligned microtubules, generating persistent large-scale wave-

like movements (Figure 1F; Video S1). This network differed

from unstructured or contractile networks assembled by purified

kinesin-5 in the presence of microtubule-stabilizing agents

observed previously (Hentrich and Surrey, 2010; Torisawa

et al., 2016). Instead, the aligned microtubule bundles appeared

to be locally extensile as shown by increasing bundle lengths or

increasing distances between photo-bleached bundle segments

over time (Figures S2A and S2B). This suggests that KIF11-

dependent anti-parallel sliding drives the organization and mo-

tion of these three-dimensional microtubule networks (Fig-

ure S2C). Together, these results demonstrate that nematic

networks of extensile bundles can be generated by a natural

mitotic kinesin and dynamic microtubules with a broad length

distribution (Figure S2D). This formation of a nematic network

by KIF11 reconstitutes its function in the central part of spindles.

Reducing the CAMSAP3-C concentration lowered the effi-

ciency of nematic network formation by dynamic microtubules

and KIF11 (Figure 2A). To understand the reason behind this ten-

dency, we measured the microtubule growth and KIF11 speeds

under conditions similar to the self-organization experiments.

Plus-end growth speeds decreased slightly with increasing

CAMSAP3-C concentration (Figure 2B), probably as a conse-

quence of soluble tubulin depletion at increased nucleation

efficiencies resulting in more microtubule polymer (Figure 2C).

The KIF11 speed was slightly higher than the microtubule

growth speeds (Figures 2B, gray range, and S2E). Nevertheless,

KIF11 did not form asters in self-organization experiments by

coalescing microtubule plus-ends (Figure 2C) but distributed

uniformly throughout the nematic network at the higher

CAMSAP3-C concentrations (Figure 1F). These results indicate

that increased microtubule densities present at higher

CAMSAP3-C concentrations may hinder aster formation by

promoting bundling of unsortedmicrotubules despite themotors

moving slightly faster than microtubules grow.

KIF11 Can Also Organize Dynamic Microtubules into
Polar Networks
To understand KIF11-dependent network assembly, we

explored the experimental phase space ofmicrotubule organiza-

tion. Keeping the CAMSAP3-C concentration fixed (500 nM), we

lowered the tubulin concentration to reduce the microtubule

plus-end growth speed (Figure 3A) and the amount of polymer-

ized tubulin (Figure 3B). Networks of extensile bundles still

formed, but more slowly (Figure 3C). At further reduced tubulin

concentration, initially bundled networks appeared to form and

began to polarity-sort and contract, as indicated by the local in-

crease of the microtubule and KIF11 intensities (Figure 3D;

Video S2). However, over time these foci dissolved accompa-

nied by the relaxation and disengagement of the network as indi-

cated by a rather diffuse distribution ofmicrotubules andmotors.

Remarkably, when the tubulin concentration was further lowered
Cell 175, 796–808, October 18, 2018 797
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Figure 1. Self-Organization of Microtubules and Plus-End-Directed Motor KIF11 into Nematic Networks of Extensile Bundles

(A) Scheme of CAMSAP3-C-mediated asymmetric microtubule growth.

(B) Total internal reflection fluorescence (TIRF) microscopy images of 25 nM Alexa546-labeled SNAP-EB3 (Alexa546-EB3, cyan) tracking growing microtubule

ends in the absence and presence of 250 nM mGFP-CAMSAP3-C at 30 mM tubulin. GMPCPP-stabilized microtubule ‘‘seeds’’ in magenta. Background sub-

tracted maximum intensity projections of 25 frames imaged at 1/s 10 min after the start of microtubule nucleation are shown.

(C) Kymographs showing microtubule plus-end growth using 25 nM Alexa546-EB3 in the presence of 250 nM mGFP-CAMSAP3-C starting 2 and 60 min after

microtubule nucleation. Yellow arrowheads indicate non-growing minus-ends.

(D) Microtubule growth speed distribution in the absence (top) and presence (bottom) of 250 nM mGFP-CAMSAP3-C at 30 mM tubulin. Number of growth ep-

isodes measured: without mGFP-CAMSAP3-C, 239; with mGFP-CAMSAP3-C, 148. Despite CAMSAP3-C not being restricted to microtubule minus-ends under

these high CAMSAP3-C concentrations (Atherton et al., 2017), nucleated microtubules have asymmetric growth dynamics.

(E) Scheme of motor/microtubule self-organization experiment.

(F) Confocal fluorescence microscopy images showing time course of KIF11-mGFP-mediated (green) organization of a nematic network of extensile bundles of

CF640R-labeled microtubules (magenta). Protein concentrations were: tubulin, 30 mM; mCherry-CAMSAP3-C, 1,000 nM; and KIF11-mGFP, 27 nM. Time in

min:s. Temperature was 33�C.
See also Figure S2 and Video S1.
and the KIF11 concentration increased, isolated asters formed.

Strong motor accumulation in the aster center indicated that mi-

crotubules were polarity-sorted with their plus-ends focused in-

ward (Figure 3E; Video S3). Increasing both the KIF11 and the

tubulin concentration produced tense interconnected contractile

networks (Figure 3F).

These results demonstrate that the samemotor can form either

locally extensile nematic or locally contractile polar networks sim-

ply depending on the protein composition of the system. High

tubulin and low KIF11 concentrations promote nematic network

organization (Figure 3G, left, blue), in agreement with high con-

centrationsof staticmicrotubulesbeinga requirement for nematic
798 Cell 175, 796–808, October 18, 2018
network formation in the presence of crowding agents (Henkin

et al., 2014; Sanchez et al., 2012). In contrast, increased KIF11

concentrations at low tubulin concentrations produced isolated

asters (Figure 3G, left, black) or globally contracting networks

(Figure 3G, left, purple). The specific outcomeof self-organization

also depends critically on the CAMSAP3-C concentration (Fig-

ure 3G,right), which affects both themicrotubule density and indi-

rectly their growth speed (Figures 2B and 2C). Taken together,

highermicrotubuleconcentrationsandhighergrowthspeedspro-

mote nematic network formation (Figure 3G, right, blue), whereas

slow growth speeds and sparse microtubules promote polar

network organization (Figure 3G, right, black).
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Figure 2. CAMSAP3-C Concentration Influ-

ences Microtubule Self-Organization by

Affecting Microtubule Growth Speed and

Density

(A) Confocal fluorescence microscopy images

showing a time course of KIF11-mGFP-dependent

organization of CF640R-labeled microtubules at

different mCherry-CAMSAP3-C concentrations.

Tubulin and KIF11 are present at 30 mMand 27 nM,

respectively. Time in min:s.

(B) Box-and-whiskers plot depicting microtubule

plus-end growth speeds at different CAMSAP3-C

concentrations. The boxes extend from 25th to 75th

percentiles, the whiskers extend from 5th to 95th

percentiles, and the mean value is plotted as a line

in the middle of the box. Number of plus-end

growth episodes measured at different mGFP-

CAMSAP3-C concentrations: 0 nM, 61; 250 nM,

148; 500 nM, 72; 1,000 nM, 186. The same source

data has been used for the 0 nM and 250 nM con-

dition as for Figure 1D. The shaded area indicates

the typical range of KIF11-dependent microtubule

transport speeds as estimated from microtubule

gliding assays in the same buffer (Figure S2E).

(C) TIRF microscopy images of 25 nM Alexa546-

EB3 tracking growing microtubule ends showing

enhanced microtubule formation at increasing

mGFP-CAMSAP3-C concentrations at 30 mM

tubulin (imaged at 2 min 20 s after initiating

microtubule nucleation). Temperature was 33�C.
Competition between Motor Crosslinks at the Ends and
Along the Sides of Microtubules Determines Network
Organization
To understand mechanistically how dynamic microtubules

and crosslinking motors drive network self-organization, we

investigated the organizational phase space with three-dimen-

sional numerical simulations using Cytosim (Nedelec and

Foethke, 2007) (Figure S3). Global network contraction has

been studied extensively (Alvarado et al., 2017; Belmonte

et al., 2017; Foster et al., 2015; Letort et al., 2015; Stam

et al., 2017; Torisawa et al., 2016). We therefore focused on

the conditions that lead to nematic networks or asters, which

show opposite characteristics regarding local extension

versus contractility, and the degree of microtubule polarity-

sorting. The simulation space was a thin three-dimensional

box (40 3 40 3 0.4 mm). Microtubules were modeled as

elastic rods with a static minus- and dynamic plus-end.
They nucleated stochastically and

grew to an average length of 2.5 mm

before undergoing catastrophe after

which they shrunk and vanished. New

microtubules were nucleated by a fixed

amount of nucleators, maintaining their

number at steady state. Soft-core steric

interactions were implemented between

microtubules. Kinesin-5-like crosslink-

ing motors bound stochastically up to

two microtubules simultaneously and

walked processively toward microtu-
bule plus-ends, unbinding stochastically. Motors that reached

the ends did not unbind instantaneously but dwelled there for

a finite time. Microtubule growth and motor speed, key pa-

rameters of the model, were based on our experimental mea-

surements, other parameters were based on previously

measured values (Table S1).

Simulations allowed us to separate the effects of microtubule

growth speed and microtubule number that vary concurrently in

experiments when the tubulin or CAMSAP3-C concentration is

changed. Systematically varying key parameters revealed a

rich phase space with two distinct stable network organizations;

a nematic network of aligned, mixed-polarity microtubule do-

mains (Figure 4A) and a polar state of isolated asters with inter-

connected microtubule plus-ends (Figure 4B). The mechanistic

principles behind these transitions can be understood from the

different types of motor crosslinks characterizing each state

(Figure 4C).
Cell 175, 796–808, October 18, 2018 799
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Figure 3. Tubulin and KIF11 Concentrations Influence Microtubule Network Organization

(A) Box-and-whiskers plot depicting microtubule plus-end growth speeds at different CAMSAP3-C concentrations. Number of plus-end growth episodes

measured at different tubulin concentrations: 7.5 mM, 31; 15 mM, 17; 30 mM, 72. The boxes extend from 25th to 75th percentiles, the whiskers extend from 5th to

95th percentiles, and the mean value is plotted as a line in the middle of the box. The same data is plotted for the 30 mM condition at 500 nMmGFP-CAMSAP3-C

as for Figure 2A.

(B) TIRF microscopy images of CF640R-labeled microtubules showing enhanced microtubule formation at increasing tubulin concentrations in the presence of

500 nM mGFP-CAMSAP3-C (imaged 2 min 20 s after initiating microtubule nucleation).

(C–F) Confocal fluorescence microscopy images showing the time course of KIF11-mediated organization of different types of networks at the following

respective concentrations for tubulin and KIF11: 20 mM and 27 nM (C), 10 mM and 27 nM (D), 7.5 mM and 82 nM (E), and 15 mM and 164 nM (F). The mCherry-

CAMSAP3-C concentration was always 500 nM. Time in min:s.

(G) Organizational phase spaces summarizing the different experimental outcomes of KIF11-mediated microtubule network organization as a function of KIF11

and tubulin concentrations (left) and as a function of CAMSAP3-C and tubulin concentrations (right). Both plots pool the outcomes of the same 60 self-

organization reactions. Temperature was 33�C.
See also Videos S2 and S3.
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Figure 4. Computer Simulations Reveal

Two Distinct Microtubule/Motor Organiza-

tional States

(A) Snapshots showing the evolution of a nematic

microtubule network. Simulated time in min:s. All

simulation images are 3D projections of a snap-

shot onto the x-y plane. Colors indicate microtu-

bule orientation (code: right). For visual clarity

unconnected microtubules bearing no cross-

linking motors are displayed in gray.

(B) Snapshots showing the evolution of asters.

Simulated time in min:s.

(C) Schematic defining 5 different ways in which a

motor can crosslink two microtubules (left).

Schematic representations of the organization of

microtubules and the composition of crosslinks in

the nematic network state and the aster state

(middle and right).

(D) Final snapshot of a nematic network showing

only microtubules (left) and only motor crosslinks

color-coded according to their type as in (C)

(middle). Plot showing the time courses of different

populations of motor crosslinks (colored lines,

color-coded as in C) and the average microtubule

length (black dashed line) for the nematic network

(right).

(E) Final snapshot of an aster state showing only

microtubules (left) and onlymotor crosslinks color-

coded according to their type as in (C) (middle).

Plot showing the time courses of different pop-

ulations of motor crosslinks (colored lines, color-

coded as in C) and the average microtubule length

(black dashed line) for the aster state (right).

Simulation parameters are the same as in (A) and

(B) for the nematic network and the asters,

respectively.

See also Figure S4 and Videos S4 and S5.
The nematic network state occupied a parameter regime

corresponding experimentally to a high tubulin concentration.

High microtubule numbers promoted steric interactions leading

to microtubule alignment (Figures 4D, left, and S4A, top) and

the formation of side-side motor crosslinks connecting parallel

(Hp links) and anti-parallel microtubules (Hap links). In this

regime, microtubule growth speed was comparable to the

motor speed; motors did not efficiently reach microtubule

plus-ends but dwelled on the microtubules’ sides. Equal

numbers of Hp and Hap crosslinks therefore dominate in the

nematic network state (Figure 4D, middle, right). Both Hp and

Hap crosslinks are motile, but only Hap links contribute to rela-

tive microtubule sliding and the extension of aligned microtu-

bule domains (Figures S4B–S4D; Video S4) similar to the

nematic networks of extensile bundles observed experimentally

(Figures 1F and 2C; Video S1).
The aster state occupied a parameter

regime corresponding experimentally to

a low tubulin concentration. When the

number of microtubules was lowered

and the microtubule growth speed was

decreased to 3–6 times below the motor

speed, isolated asters formedwithmotors
accumulating at their centers (Figure 4E, left, and S4A, bottom;

Video S5) like in the experiments (Figure 3E; Video S3). At slow

microtubule growth speeds, motors efficiently reached microtu-

bule plus-ends. End-side crosslinks (T links) that transform into

end-end crosslinks (V links) dominate this regime (Figure 4E,mid-

dle, right). At low microtubule numbers and with enough motors,

microtubule plus-ends are connected via V links into isolated as-

ters (Figure 4E, left, middle) (Head et al., 2014; Nedelec and Sur-

rey, 2001; Nédélec et al., 1997). V links are static and accumulate

at the center of the asters (Figure 4E, middle) and Hp links move

inwardon theasters’ spokes (VideoS5). Thegradual transitionbe-

tween the nematic and polar states (Figure S4A) and their respec-

tive parameter regimes are in good agreement with the experi-

mental phase space (Figure 3G, left). The crosslink dynamics

also demonstrate that a stable network topology is established

within the simulated time (Figures 4D and 4E, right).
Cell 175, 796–808, October 18, 2018 801
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Figure 5. Computational Exploration of the

Multi-Dimensional Parameter Space of

Microtubule/Motor Networks Reveals Crit-

ical Parameters Driving Active Network

Organization

(A) Three phase spaces showing the organiza-

tional state of the network as a function of micro-

tubule growth speed and motor number at three

different numbers of microtubules. Simulation

outcomes are classified (Figure S5; STAR

Methods) and color-coded (see ‘‘Classification

key’’). Each circle represents one simulation.

(B) Phase spaces in (A) can be collapsed onto

a single space by plotting the classified states as

a function of growth speed and the number of

motors per microtubule. Where simulations are

coincident in the collapsed phase space the circle

is divided between them.

(C) Three collapsed phase spaces for three

different motor and microtubule speed scalings.

Speeds are increased by a factor of 3 (middle)

and 5 (right).

(D) Phase spaces in (C) can be collapsed onto a

single space by plotting the classified states as a

function of the ratio of growth speed to motor

speed and the number of motors per microtubule.

For all simulations see Table S1 for parameter

values if not shown.

See also Figure S6.
Dimensionality Reduction of Parameter Space Reveals
Two Control Parameters
What are the control parameters that govern the composition of

different crosslinks in the network and consequently its topol-

ogy? We screened the parameter space and classified the

outcome of self-organization according to two bespoke criteria;

an aster strength parameter, cmax, and a polarity-sorting param-

eter P, based on the composition of motor crosslinks in the
802 Cell 175, 796–808, October 18, 2018
network and its connectivity. Color-cod-

ing the network types allowed us to visu-

alize the different organizational states in

the phase space (Figure S5).

First, we varied the microtubule growth

speed and the number of motors at three

different numbers of microtubules (keep-

ing motor speed constant), producing

three planar sections through the multi-

dimensional parameter space (Figure 5A).

Nematic networks (blue) formed at

high microtubule growth speeds and as-

ters (red) formed at low microtubule

growth speeds and high motor numbers.

A gradual transition zone (blue to orange)

separated the nematic and polar states

(Figures 5A and S5).

The boundary between the different

states in each phase space shifted sys-

tematically with increasing microtubule

number, favoring the nematic states at

the expense of the polarity-sorted asters
(Figure 5A). The three phase spaces could be collapsed on top

of each other by plotting the same data as a function of microtu-

bule growth speed and a combined parameter, i.e., the ratio of

the motor number per microtubule number (NMot/NMT) (Fig-

ure 5B). This suggests that the number ofmotors permicrotubule

is a control parameter for network formation.

To analyze how motor speed relative to microtubule growth

speeddeterminesnetworkorganization,weexplored thestructure



of collapsed phase spaces for three motor speeds. Scaling the

microtubule growth and motor speeds by a factor of 3 and 5 (Fig-

ure 5C; Table S1) resulted in similar phase spaces that could be

collapsed together by using the ratio—but not the difference (Fig-

ure S6A)—of the microtubule growth speed per motor speed (vg/

vm) as a second combined parameter (Figure 5D). One can show

theoretically that the ratio of microtubule growth speed to motor

speed determines the ratio of end-bound motors to side-bound

motors on a single filament (Figures S6B and S6C). Extrapolating

this to microtubule/motor networks suggests that the parameter

vg/vm controls the spatial distribution of different motor crosslinks.

When vg/vm is low, there are many end-end crosslinks relative to

side-side crosslinks, favoring the formation of asters (Figures 4B,

4D, and 5D). The opposite is true when vg/vm is high, which leads

tonematic states that donot polarity-sort (Figures 4A, 4D, and5D).

The single filament theory also shows that motor accumulation

at plus-ends is strongest when microtubules are short (Fig-

ure S6C). This explains why the population of V links peaks at

early times and is depleted in favor of Hp and Hap links as the

average microtubule length increases (Figures 4D and 4E, right).

The tilted boundaries between nematic and polarity-sorted

states in the phase spaces (Figure 5) suggest that the control

parameter NMot/NMT can to some extent compensate for and

counteract the influence of the other control parameter vg/vm,

also in agreement with our experimental observations (Fig-

ure 3G). Nematic networks can occur at low values of vg/vm,

where polarity-sorting is favored, if NMot/NMT is small. This indi-

cates that the absolute number of end-bound motors, and not

only the relative amount, is a critical determinant of network fate.

In conclusion, we reduced the dimensionality of the organiza-

tional parameter space and identified two dimensionless control

parameters. They characterize the collective forces produced by

motor crosslinks that drives the formation of either nematic or

polar networks of dynamic microtubules.

HSET Organizes Microtubules with Natural Dynamics
into Polar Networks
Our understanding suggests that a minus-end-directed microtu-

bule crosslinking motor such as kinesin-14 will have a strong ten-

dency to form asters and accumulate at the centers of these

asters when microtubule minus-ends are static, especially when

the motor can become enriched between overlapping microtu-

bules, as shown for kinesin-14 (Braun et al., 2017; Hentrich

andSurrey, 2010). Self-organizationexperimentswithpurifiedhu-

man kinesin-14 HSET (Figure S1) and dynamic microtubules

confirmed this expectation. They showed that over a range of

tubulin (10–40 mM), CAMSAP3-C (250–1,000 nM), andHSET con-

centrations (3.1–400 nM), this motor formed either microtubule

asters or contractile networks (Figures 6A and 6B). This has pre-

viously been observed for X. laevis kinesin-14 and clusters of

Drosophila kinesin-14 with Taxol-nucleated microtubules, and

for humanHSETwithmicrotubulesgrowing fromstabilizedmicro-

tubule ‘‘seeds’’ (Hentrich and Surrey, 2010; Surrey et al., 2001).

WhenMicrotubule Dynamics Are Inverted HSET Forms a
Nematic Network
To test the generality of the rules of active network formation

developed here, we asked whether HSET, a mitotic motor with
a completely different domain structure and motile properties

compared to kinesin-5, can also produce a nematic network

instead of asters under the appropriate conditions. This should

happen when the microtubule growth asymmetry is inverted so

that HSET would have difficulty accumulating at the growing

minus-ends. To engineer this condition, we replaced the

minus-end stabilizer CAMSAP3-C by the designed ankyrin

repeat protein (D1)2 (DARPin) that was previously shown to

selectively inhibit microtubule plus-end growth (Figure 6C) (Pec-

queur et al., 2012). We used a very high tubulin concentration to

promote efficient spontaneous microtubule nucleation and to

allow for fast minus-end growth. We verified that the DARPin

selectively inhibited the growth of individual microtubule plus-

ends under these conditions (Figures 6D and 6E), inverting the

growth asymmetry. Fast minus-end growth reached the range

of HSET-dependent gliding speeds (Figures 6E and S7).

Strikingly, under these conditions, HSET indeed produced

nematic networks of extensile bundles with the motors now be-

ing evenly distributed within the dynamic network (Figure 6F;

Video S6). This shows that, remarkably, both plus- and minus-

end-directed motors can produce either locally contractile net-

works leading to asters or nematic networks of extensile bun-

dles, depending on the experimental conditions. It validates

our finding that motor directionality is not the sole determinant

of its morphogenetic potential. Instead, relative motor speed

compared to the growth speed of the microtubule end toward

which it is directed, and the relative concentrations of motors

and microtubules are the critical control parameters that deter-

mine the architecture of the forming filament network.

DISCUSSION

We investigated the determinants of polar versus nematic cyto-

skeletal network organization using mitotic motor proteins and

dynamic microtubules. We focused on these two prototypical

active filament network states because of their importance for bi-

polar spindle organization required for chromosome segregation

during cell division. Compared to previous self-organization as-

says (Hentrich and Surrey, 2010), several technical improve-

ments (STAR Methods) allowed us to explore a considerably

larger part of the phase space of network organizations than

before, because a wider range of protein activities could be

investigated. Using microtubules with tunable growth dynamics,

we found that minus- and plus-end-directed microtubule cross-

linking motors that in the cell typically contribute exclusively to

either polar or nematic microtubule organizations (Gaetz and

Kapoor, 2004; Heald et al., 1996; Mayer et al., 1999; Sawin

et al., 1992), have nevertheless the general capacity to produce

both types of networks. Our ability to reverse the natural

preference of eachmotor for a particular organization by control-

ling the microtubule growth asymmetry demonstrates that the

organizational capabilities of a motor can only be understood

by also taking the dynamic properties of microtubules into

account.

Nematic microtubule networks were previously observed only

for rather artificial conditions compared to the situation in the

central spindle (Henkin et al., 2014; Sanchez et al., 2012).

Here, we found that nematic microtubule networks can also
Cell 175, 796–808, October 18, 2018 803
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(A and B) Confocal fluorescence microscopy images showing time course of (A) HSET-mediated organization of microtubule asters and of (B) a globally con-

tracting microtubule network of CAMSAP3-C-nucleated microtubules at the indicated protein concentrations.

(C) Scheme showing inverted microtubule growth asymmetry in the presence of microtubule plus-end capper DARPin (D1)2.

(D) Kymographs showing fast microtubule minus-end growth using Alexa546-EB3 to visualize microtubule ends growing at 60 mM tubulin from GMPCPP-sta-

bilized microtubule ‘‘seeds’’ (left) or of spontaneously nucleated microtubules (right) in the presence of 2.9 mM DARPin (D1)2.

(E) Microtubule growth speed distribution in the absence (top) and presence (bottom) of 2.9 mM DARPin (D1)2 at 60 mM tubulin. Number of microtubule growth

episodes measured: without DARPin (D1)2, 271; with DARPin (D1)2, 328.

(F) Confocal fluorescence microscopy images showing time course of mCherry-HSET-mediated organization of microtubules with inverted growth asymmetry

into networks of extensile bundles in the presence of 2.9 mMDARPin (D1)2 at 60 mM tubulin. mCherry-HSET concentration was 100 nM. Temperature was 33�C.
See also Figure S7 and Video S6.
self-organize under closer-to-physiological conditions, reconsti-

tuting kinesin-5’s natural microtubule organizing function during

spindle assembly. We showed that this state can be obtained

with dynamic, and not only static microtubules as shown previ-

ously, and motor-dependent microtubule crosslinking at high

microtubule densities is sufficient for generating this prototypical

network state.

We identified two control parameters that determine microtu-

bule/motor network organization and reflect underlying mecha-

nistic driving forces; (1) the ratio of motor number per microtu-

bule number that captures the organizational capacity of the

system, and (2) the ratio of microtubule growth speed per motor
804 Cell 175, 796–808, October 18, 2018
speed that captures the competition between end-bound and

side-bound motor crosslinks. Both control parameters combine

a microtubule and a motor characteristic, emphasizing the

importance of system-level properties for determining the

outcome of active network self-organization. Together, these

two control parameters define a phase space of reduced dimen-

sionality that can be used to predict the organizational outcome

of a microtubule/motor system (Figure 7A). Previous simulations

of the special case of motor-mediated organization of static mi-

crotubules under a confining force produced a phase space that

maps well onto our reduced dimensionality phase space,

emphasizing the generality of its structure (Head et al., 2011).
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The rules for microtubule/motor network organization derived

here are independent of the directionality and detailed molecular

domain structure of the motors, which differ between plus-

directed kinesin-5 KIF11 and minus-directed kinesin-14 HSET

(Fink et al., 2009; Kashina et al., 1996; Scholey et al., 2014).

Hence, these rules are universally applicable for network organi-

zation by motors and dynamic microtubules. In the presence of

crowding agents, fast microtubule growth speeds are not

required for nematic organization (Henkin et al., 2014; Sanchez

et al., 2012). This is likely the case because crowding-induced

bundling strongly favors side-bound over end-bound motor

crosslinks, even when microtubules are static.

Our work reveals that the asymmetry of microtubule growth

properties is an important morphogenetic determinant in the

spindle and responsible for motors of opposite directionality

having different preferences for network organization. Fast and

dynamically growing microtubule plus-ends and static minus-

ends favor nematic versus polar network organization by plus-

and minus-motors, respectively. This basic design principle

puts a strong constraint on the structure of the bipolar spindle

that can be conceptualized as a central nematic network coex-

isting stably with two polar networks (Figure 7B). Balancedmotor

activities, as well as localized microtubule nucleation around

chromosomes, likely play an important role for mediating this

coexistence (Brugués et al., 2012; Burbank et al., 2007).
We observed the gradual transition be-

tween nematic and polar organization in

our experimental and simulated phase

spaces. This may imply that, in the spin-

dle, the control parameters can change

gradually as the degree of microtubule

polarity-sorting changes from spindle

center to pole (Brugués et al., 2012).

Our results show that 2- to 3-fold

changes in protein concentrations can

be sufficient to transition from nematic

to polar organization, providing the cell

with an opportunity to affect microtubule

network architecture by spatially or

temporally controlling protein activities.

Our rules for motor-mediated cytoskel-

etal network organization also provide

explanations for several spindle pheno-

types observed in mitotic cells or meiotic

cell extract resulting from a variety of per-
turbations (Figure 7B). When plus-end directed motors like kine-

sin-5 dominate after dynein inhibition, a nematic network of

aligned microtubules with unfocused poles forms (Gaetz and

Kapoor, 2004; Heald et al., 1996). This is because microtubule

plus-ends grow faster than the moderately fast kinesin-5, similar

to the network formed by purified KIF11 and dynamic microtu-

bules in our experiments at high tubulin concentrations. In

contrast, whenminus-directedmotors like dynein dominate after

kinesin-5 inhibition in mitotic/meiotic cytoplasm, monopolar

spindles form in the absence of significant minus-end growth

(Mayer et al., 1999; Sawin et al., 1992). This is similar to microtu-

bule asters formed by purifiedminus-directedmotors andmicro-

tubules with non-dynamic minus-ends.

The physiological importance of relative microtubule growth

and motor speeds is also supported by the observation that

an artificial kinesin-5 that is fast enough to accumulate at micro-

tubule plus-ends has been shown to prevent normal spindle

formation in meiotic cell extract by separating half-spindles,

forming a central inverted pole instead of a nematic network

(Cahu and Surrey, 2009).

Finally, the importance of the number of motors per microtu-

bule for network organization may explain why a variety of

perturbations that lead to a reduction of microtubule numbers

(by either reducing microtubule nucleation efficiency or microtu-

bule stability) without affecting motor abundance, disfavor the
Cell 175, 796–808, October 18, 2018 805



formation of the central nematic zone and hence induce monop-

olar (or multipolar) spindle phenotypes (Aguirre-Portolés et al.,

2012; Cassimeris and Morabito, 2004; Hannak et al., 2002;

Kline-Smith and Walczak, 2002; Petry et al., 2011).

Hence, the concepts developed here not only explain the

contributions of asymmetrically growing microtubules and

different motors for normal spindle shape, but also for commonly

observed phenotypes when motor activities or the numbers of

the major molecular constituents of the spindle network are

unbalanced. The next challenge will be to reconstitute and

model more complex active networks, extending the concepts

developed here. A major aim will be to gain a quantitative under-

standing of the conditions allowing the unique coexistence of

nematic and polar networks in multi-motor systems such as

the bipolar spindle. Furthermore, it will be interesting to see to

what extent these principles can also be extended to other cyto-

skeletal systems in cells such as dynamic actin networks (Gold-

stein et al., 2008; Palacios and St Johnston, 2002; Wollrab

et al., 2018).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Bacterial strain for molecular cloning:

Escherichia coli DH5a

EMBL Strain name: DH5a

Bacterial strain for generating bacmids:

Escherichia coli DH10MultiBac

Gift from Imre Berger Strain name: DH10MultiBac

Bacterial strain for recombinant protein

expression: Escherichia coli BL21 pRil

EMBL Strain name: BL21 pRil

Chemicals, Peptides, and Recombinant Proteins

HSET This study Corresponding recombinant DNA: pCT012

mCherry-HSET This study Corresponding recombinant DNA: pJR291

KIF11-mGFP This study Corresponding recombinant DNA: pJR303

mGFP-CAMSAP3-C This study Corresponding recombinant DNA: pCT010

mCherry-CAMSAP3-C This study Corresponding recombinant DNA: pCT011

SNAP-EB3 Previously used by

Jha et al. (2017)

N/A

DARPin (D1)2 Gift from Marcel Knossow

and Andreas Plückthun;

Pecqueur et al., 2012

N/A

Pig brain tubulin Purified according to

Castoldi and Popov (2003)

N/A

Catalase Sigma-Aldrich Cat#: C40

Glucose Oxidase Serva Cat#: 22778.01

Bovine Serum Albumin Sigma-Aldrich Cat#: 05470

K-casein Sigma-Aldrich Cat#: C0406

B-casein Sigma-Aldrich Cat#: C6905

Neutravidin LifeTechnologies Cat#: A2666

(3-Glycidyloxypropyl)trimethoxy-silane Sigma-Aldrich Cat#: 440167

Biotin-CONH-PEG-NH2 (3000 Da) Rapp Polymere Gmbh Cat#: 133000-25-20

HO-PEG-NH2 (3000 Da) Rapp Polymere Gmbh Cat#: 103000-20

Deposited Data

Source data for Figures 4, 5, S4, and S6. This study https://doi.org/10.17632/s8wz47nc9p.1

Experimental Models: Cell Lines

Insect cells for recombinant protein expression:

Spodoptera frugiperda 21 (Sf21)

EMBL Cell line name: Sf21

Recombinant DNA

pCT010 (pFastBacSTREP-mGFP-CAMSAP3-C) This study cDNA from Origene (NCBI Reference Sequence:

NM_001080429.2)

pCT011 (pFastBacSTREP-mCherry-CAMSAP3-C) This study cDNA from Origene (NCBI Reference Sequence:

NM_001080429.2)

pCT012 (pFastBacSTREP-HSET) This study cDNA from Origene (NCBI Reference Sequence:

NM_002263.3)

pJR291 (pFastBacSTREP-mCherry-HSET) This study cDNA from Origene (NCBI Reference Sequence:

NM_002263.3)

pJR303 (pFastBacSTREP-KIF11-mGFP) This study cDNA from ImaGene (GenBank ID: BC136474.1)

pETMZ-SNAP-EB3 First used by Jha et al. (2017) Original cDNA gift from Michael Steinmetz;

Montenegro Gouveia et al., 2010

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

FiJi for image analysis NIH, USA https://fiji.sc/

Python for data analysis CWI, the Netherlands https://www.python.org/

Wolfram Mathematica for data analysis Wolfram Mathematica https://www.wolfram.com/mathematica/

Cytosim Nedelec and Foethke, 2007 https://github.com/nedelec/cytosim

Other

StrepTrap HP column GE Healthcare Cat#: 28907547

HiPrep 26/10 Desalting column GE Healthcare Cat#: 17508701

Superose 6 Increase 10/300 GL column GE Healthcare Cat#: 29091596

Superose 6 XK 16/70 column GE Healthcare Cat#: 90100042
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Thomas

Surrey (thomas.surrey@crick.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Escherichia coli bacterial strains DH5a, BL21 pRil, and DH10MultiBac were grown in Luria Bertani (LB) medium in the presence of

appropriate antibiotics.

For expression of recombinant proteins in insect cells we used Spodoptera frugiperda strain Sf21 grown in suspension at 27�C in

Sf-900TM III SFM (1x) Serum Free Medium (GIBCO). Absence of mycoplasma contamination was verified regularly.

METHOD DETAILS

Molecular cloning
The full-length protein coding sequences of human kinesin-5 KIF11 (aa 1 – 1056) and human kinesin-14 HSET (aa 1 - 673), and the

C-terminal fragment of human CAMSAP3 (CAMSAP3-C: aa 757 - 1276) were amplified by PCR using the respective cDNAs as tem-

plates (for KIF11 Genbank: BC136474.1 (ImaGene); for HSET NCBI reference Sequence: NM_002263.3 (Origene), for CAMSAP3-C

NCBI Refernece Sequence: NM_001080429.2 (Origene)). The C-terminal fragment of CAMSAP3 was chosen based on its ability to

preferentially bind to and stabilize the microtubule minus end and inhibit its growth (Hendershott and Vale, 2014; Jiang et al., 2014).

The PCR-amplified coding sequences were then cloned into pFastBacSTREP-based baculovirus expression vectors (Roostalu et al.,

2015) to generate the following expression constructs: StrepTagII-KIF11-A3G5-mGFP (pJR303) having KIF11 C-terminally fused to

an alanine (A) – glycine (G) linker followed by monomeric GFP (green fluorescent protein (Snapp et al., 2003; Zacharias et al., 2002);

StrepTagII-HSET containing HSET without a fluorescent tag (pCT012), StrepTagII-mCherry-G5A-HSET having HSET N-terminally

fused to monomeric Cherry (Shaner et al., 2004) separated by a GA-linker (pJR291); StrepTagII-mCherry-G5A-CAMSAP3-C

(pCT010) and StrepTagII-mGFP-G5A-CAMSAP3-C (pCT011) having the C-terminal fragment of CAMSAP3 N-terminally fused to

either mCherry or mGFP separated by a GA-linker. The StrepTagII in these constructs could later be removed by Tobacco Etch Virus

(TEV) protease cleavage. The final protein products are referred to as KIF11-mGFP, untagged HSET, mCherry-HSET, mCherry-

CAMSAP3-C, and mGFP-CAMSAP3-C throughout the manuscript. All constructs were verified by sequencing. Baculovirus prepa-

ration and protein expression in Sf21 insect cells (Spodoptera frugiperda) were carried out according to manufacturer’s protocols

(Bac-to-Bac system, Life Technologies).

The bacterial expression construct for producing a full-length human EB3 with an N-terminal hexa-histidine and SNAP-tag has

been described elsewhere (Jha et al., 2017).

Protein purifications
Sf21 cells expressing recombinant mGFP-CAMSAP3-C or mCherry-CAMSAP3-C were resuspended in ice-cold CAMSAP3 lysis

buffer (50 mM HEPES, 300 mM KCl, 5 mM MgCl2, 1 mM EDTA, 5 mM 2-mercaptoethanol (2-ME), pH 8.0) supplemented with pro-

tease inhibitors (Roche), DNase I (10 mg ml/ml, Sigma), and avidin (10 mg per liter of culture to capture biotin from insect cell media).

Resuspended cells were lysed by douncing (40 strokes) and the lysate was clarified by ultracentrifugation (183,860 g, 45 min, 4�C).
Clarified lysate was then passed through a StrepTrap HP column (GE Healthcare). The column was washed with CAMSAP3 lysis

buffer containing 0.5 mM ATP and then with CAMSAP3 lysis buffer. The protein was eluted in CAMSAP3 elution buffer (50 mM

HEPES, 300 mM KCl, 2 mM MgCl2, 1 mM EDTA, 50 mM arginine, 50 mM glutamate, 2.5 mM D-desthiobiotin, 5 mM 2-ME,
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pH 7.5) supplemented with protease inhibitors. The N-terminal StrepTagII was removed by overnight TEV protease cleavage on ice.

The protein was then passed through HiPrep Desalting columns (GE Healthcare) to exchange the buffer to CAMSAP3 storage buffer

(50 mM HEPES, 300 mM KCl, 2 mM MgCl2, 250 mM sucrose, 50 mM arginine, 50 mM glutamate, 5 mM 2-ME, pH 7.5). The protein

was then run oncemore over a StrepTrapHP column to remove unspecifically binding contaminants. The flow-throughwas then sub-

jected to size-exclusion chromatography using a Superose 6 Increase column (GE Healthcare) equilibrated in CAMSAP3 storage

buffer. The mGFP-CAMSAP3_C or mCherry-CAMSAP3-C containing fractions were pooled, concentrated (Vivaspin 30,000

MWCO, Sartorius), ultracentrifuged (278,088 g, 10 min, 4�C), aliquoted, snap frozen, and stored in liquid nitrogen until use.

Sf21 cells expressing recombinant KIF11-mGFP were resuspended in ice-cold KIF11 lysis buffer (50 mM Na-phosphate, 300 mM

KCl, 5 mMMgCl2, 10 mM 2-ME, 1 mM ATP, pH 7.5) supplemented with protease inhibitors, DNase I (10 mg ml/ml), and avidin (10 mg

per liter of culture). Resuspended cells were lysed by douncing (40 strokes) and the lysate clarified by ultracentrifugation (183,860 g,

45min, 4�C). Clarified lysate was then passed over a StrepTrap HP column. The column was washed with KIF11 lysis buffer and pro-

tein was eluted in KIF11 elution buffer (50mMNa-phosphate, 300mMKCl, 2mMMgCl2, 2mMD-desthiobiotin, 10mM2-ME, 0.1mM

ATP, pH 7.5) supplemented with protease inhibitors. The N-terminal StrepTagII was removed by overnight TEV protease cleavage on

ice. The protein was then purified further by size-exclusion chromatography using a Superose 6 XK 16/70 column (GE Healthcare)

equilibrated in KIF11 storage buffer (50 mM Na-phosphate, 300 mM KCl, 2 mM MgCl2, 10 mM 2-ME, 0.1 mM ATP, pH 7.5). The

KIF11-mGFP containing fractions were pooled, concentrated (Vivaspin 30,000 MWCO), ultracentrifuged (278,088 g, 10 min, 4�C),
aliquoted, snap frozen, and stored in liquid nitrogen until use.

HSET and mCherry-HSET were purified like CAMSAP3 proteins, however HSET lysis buffer (50 mM Na-phosphate, 300 mM KCl,

5 mMMgCl2, 1 mMEGTA, 5mM 2-ME, 0.5 mMATP, pH 7.5), HSET elution buffer (50 mMNa-phosphate, 300mMKCl, 1 mMMgCl2,

1 mM EGTA, 2.5 mM D-desthiobiotin, 5 mM 2-ME, 0.1 mM ATP, pH 7.5) and HSET storage buffer (50 mM Na-phosphate, 300 mM

KCl, 1 mM MgCl2, 1 mM EGTA, 5 mM 2-ME, 0.1 mM ATP, pH 7.5) were used instead of the corresponding CAMSAP3 buffers.

The SNAP-EB3 protein was expressed in Escherichia coli BL21 pRIL, purified, and labeled with SNAP-Surface AlexaFluor546

(NEB) (called Alexa546-EB3 from here on) and stored in EB3 storage buffer (50 mM Na-phosphate, 400 mM KCl, 5 mM MgCl2,

0.5 mM 2-ME, pH 7.2) as described recently (Jha et al., 2017).

Porcine brain tubulin was purified as described (Castoldi and Popov, 2003). Purified tubulin was recycled and labeled with

Alexa647-N-hydroxysuccinimide ester (NHS; Sigma-Aldrich), CF640R-NHS (Sigma-Aldrich), or biotin-NHS (Thermo Scientific), as

described previously (Hyman et al., 1991). Labeling ratios were kept relatively low (below 0.5) to preserve protein activities.

Purified recombinant DARPin (D1)2 was a kind gift from Marcel Knossow and Andreas Plückthun (Pecqueur et al., 2012).

Protein concentrations were determined by Bradford assay or by spectroscopy measurements (absorption at 280 nm) for tubulin.

Concentrations refer to protein monomers (KIF11-mGFP, HSET and CAMSAP3-C constructs, Alexa546-EB3, DARPin (D1)2) or

dimers (tubulin).

Microtubule self-organization assays with dynamic microtubules
Flow chambers were assembled from a glass slide and a cover glass separated by a double sticky tape. Unlike in previous self-

organization studies with microtubules and motors, for improved surface passivation here both glasses were silanized and reacted

with polyethylene glycol as described (Bieling et al., 2010) except that HO-PEG-NH2 (3000 Da) (Rapp Polymere) was used. Thismodi-

fication together with biochemical improvements allowed exploring a considerably wider range of protein activities than in previous

self-organization experiments (Hentrich and Surrey, 2010). A flow chamber was washed with self-organization assay buffer (SAB:

20mMPIPES, 1mMEGTA, 2mMMgCl2, 50mMKCl, 1% glucose (w/vol), 1.5 mMATP, 1mMGTP, 5mM2-ME, pH 6.8) and warmed

up to 33�C on ametal block. Meanwhile the final assaymix was prepared on ice and ultracentrifuged at 278,088 x g for 10min at 4�C.
The supernatant was transferred to a fresh Eppendorf tube, allowed to come to room temperature, and then flowed into the

pre-warmed flow chamber on a 33�C metal block. The sample was then transferred to the spinning disc confocal microscope

and imaging was started 2-4 min after flowing the sample into the warm chamber.

For KIF11-mediated microtubule organization in the presence of CAMSAP3-C, the final assay mix consisted of 64% SAB, 27.2%

BRB80 containing oxygen scavengers, BSA and recycled and fluorescently labeled tubulin, 3.3% mCherry-CAMSAP3-C solution in

CAMSAP3-C storage buffer and 5.5% KIF11-mGFP solution in KIF11-mGFP storage buffer. The final protein concentrations in the

assay were 164 mg/ml catalase, 684 mg/ml glucose oxidase, 1 mg/ml BSA, 7.5 – 30 mM recycled and fluorescently labeled tubulin

(containing 3.5 – 7% Atto647- or CF640R-labeled tubulin), 250 – 1000 nM mCherry-CAMSAP3-C, and 9 – 273 nM KIF11-mGFP,

as indicated in the text.

For HSET-mediated microtubule organization in the presence of CAMSAP3-C, the final assaymix consisted of 63.5%SAB, 27.2%

BRB80 containing oxygen scavengers, BSA and recycled and fluorescently labeled tubulin, 4.8% mGFP-CAMSAP3-C or mCherry-

CAMSAP3-C solution in CAMSAP3-C storage buffer, and 4.5%mCherry-HSET solution in HSET storage buffer. The final protein con-

centrations in the assay were 164 mg/ml catalase, 684 mg/ml glucose oxidase, 1 mg/ml BSA, 10 – 30 mM recycled and fluorescently

labeled tubulin (containing 3.5 – 7% Atto647- or CF640R-labeled tubulin), 250 – 1000 nM mGFP-CAMSAP3-C or mCherry-

CAMSAP3-C, and 3.1 – 400 nM mCherry-HSET or untagged HSET.

For HSET-mediated microtubule organization in the presence of DARPin (D1)2 (leading to inverted microtubule dynamics), the final

assaymix consisted of 50.5%SAB, 44%BRB80 containing oxygen scavengers, BSA and recycled and fluorescently labeled tubulin,

4.5%mCherry-HSET solution in HSET storage buffer, and 1%DARPin (D1)2 solution in DARPin (D1)2 storage buffer. The final protein
Cell 175, 796–808.e1–e7, October 18, 2018 e3



concentrations in the assay were 164 mg/ml catalase, 684 mg/ml glucose oxidase, 1 mg/ml BSA, 60 mM recycled and fluorescently

labeled tubulin (containing 3.5% CF640R-labeled tubulin), 2.9 mM DARPin (D1)2, and 100 nM mCherry-HSET.

Microtubule nucleation assays
The flow chamber assembly and all sample preparation steps were performed similarly to the self-organization assay except that

imaging was performed now by total internal reflection (TIRF) microscopy and SAB contained 0.15% (w/vol) methylcellulose

(SAB-MC, methylcellulose cp 4,000, Sigma-Aldrich) to facilitate microtubule positioning near the coverslip for imaging.

To evaluate the effect of varying CAMSAP3-C concentrations on microtubule nucleation, we monitored the Alexa546-EB3 comets

marking growingmicrotubule ends in a final assaymix consisting of 68%SAB-MC containing Alexa546-EB3, 27.2%BRB80 contain-

ing oxygen scavengers, BSA, recycled tubulin, and 4.8% mGFP-CAMSAP3-C solution in CAMSAP3-C storage buffer. The final

protein concentrations in the assay were 164 mg/ml catalase, 684 mg/ml glucose oxidase, 1 mg/ml BSA, 30 mM recycled tubulin,

250 – 1000 nM mGFP-CAMSAP3-C, and 25 nM Alexa546-EB3.

To evaluate the effect of varying the tubulin concentration on microtubule nucleation we monitored fluorescently labeled microtu-

bules in a final assaymix consisting of 68%SAB-MC, 27.2%BRB80 containing oxygen scavengers, BSA, recycled and fluorescently

labeled tubulin, and 4.8%mGFP-CAMSAP3-C solution in CAMSAP3-C storage buffer. The final protein concentrations in the assay

were 164 mg/ml catalase, 684 mg/ml glucose oxidase, 1 mg/ml BSA, 30 mM recycled and fluorescently labeled tubulin (containing

3.5% of CF640R-labeled tubulin), and 500 nM mGFP-CAMSAP3-C.

Microtubule dynamics assays
Flow chamberswere assembled froma silanized and biotin-PEG functionalized cover glass (functionalizedwith a 9:1mix of HO-PEG-

NH2 (3000 Da) and biotin-CONH-PEG-NH2 (3000 Da), both Rapp Polymere) (Hentrich and Surrey, 2010) and a silanized and PEG-

passivated (HO-PEG-NH2 (3000 Da)) counter glass prepared as described above for improved passivation, separated by double

sticky tapes. The assay itself is a modification of the protocol developed earlier (Bieling et al., 2010). In short, the flow chamber

was first washed on a metal block on ice with k-casein buffer (SAB supplemented with 50 mg/ml k-casein (Sigma-Aldrich)) and

then incubated on ametal block on ice for 3min in NeutrAvidin (LifeTechnologies) solution (50 mg/ml in k-casein buffer). The chamber

was subsequently washed with SAB and incubated for 3 min at room temperature with SAB containing an appropriate dilution of

GMPCPP-stabilized biotinylated and fluorescently-labeled microtubule ‘seeds’ (prepared as described earlier) (Bieling et al.,

2010). The chamber was then washed twice with SAB to remove the unbound ‘seeds’ followed by flowing in the final assay mix

(see below) that had been brought to room temperature after first mixing it on ice, followed by ultracentrifugation at 278,088 x g

for 10 min at 4�C. The flow chamber was then sealed with silicone grease. Imaging was started at 3 min and again at 60 min after

placing the sample on the microscope stage.

For evaluatingmicrotubule growth speeds in the presence of CAMSAP3-C, the final assaymixwas composed of 68%SAB contain-

ing Alexa546-EB3, 27.2% BRB80 containing oxygen scavengers, BSA and recycled tubulin, and 4.8%mGFP-CAMSAP3-C solution

in CAMSAP3-C storage buffer. The final protein concentrations in the assay were 164 mg/ml catalase, 684 mg/ml glucose oxidase,

1 mg/ml BSA, 25 nM Alexa546-EB3, 7.5 – 30 mM recycled tubulin, and 250 – 1000 nM mGFP-CAMSAP3-C, as indicated in the text.

For evaluating microtubule growth speeds in the presence of DARPin (D1)2, the final assay mix was composed of 50.5% SAB con-

taining Alexa546-EB3, 44% BRB80 containing oxygen scavengers, BSA and recycled tubulin, 4.5% HSET storage buffer, and 1%

DARPin (D1)2 solution in DARPin (D1)2 storage buffer. The final protein concentrations in the assay were 164 mg/ml catalase,

684 mg/ml glucose oxidase, 1 mg/ml BSA, 25 nM Alexa546-EB3, 60 mM recycled tubulin, and 2.9 mM DARPin (D1)2.

Microtubule gliding assays
Flow chambers were assembled from a poly-(L-lysine)-PEG (SuSoS)-passivated counter glass and an untreated cover glass sepa-

rated by double sticky tape as described previously (Roostalu et al., 2011). The flow chamber was first washed twice with SAB, and

then equilibrated for 2 min at room temperature in b-casein buffer (SAB containing 1 mg/ml b-casein (Sigma-Aldrich)), followed by

incubation with either KIF11-mGFP (20.5 nM – 328 nM) or mCherry-HSET (3.125 nM – 400 nM) in b-casein buffer for 5 min on a metal

block on ice to allow for unspecific immobilization of the motor to the untreated cover glass. The motors were pre-diluted in their own

storage buffers (see above) to ensure identical incubation conditions at different motor concentrations. Unbound motor was subse-

quently removed by two washes with SAB at room temperature. Then the chamber was filled with the final assay mix composed of

72.8% SAB and 27.2% BRB80 (80 mM PIPES, 1 mM EGTA, 1 mM MgCl2, pH 6.8) containing oxygen scavengers, bovine serum

albumin (BSA), and GMPCPP-stabilized fluorescently labeled microtubules (prepared as described previously (Roostalu et al.,

2015), 3.5% CF640R tubulin). Final concentrations of accessory proteins in the assay mix were 164 mg/ml catalase (Sigma-Aldrich),

684 mg/ml glucose oxidase (Serva), and 1 mg/ml BSA (Sigma-Aldrich). The chamber was then sealed with silicone grease and trans-

ferred to the microscope. Imaging was started 2 minutes after placing the sample on a microscope stage.

Fluorescence microscopy
Microtubule self-organization assays were imaged either on a 3i Marianas spinning disc confocal fluorescence microscope

described earlier (Baumann and Surrey, 2014), or on a Cairn spinning disk confocal system (Cairn Research, Faversham, UK) based

on a Nikon Eclipse Ti frame equipped with an Andor Zyla sCMOS camera and X-light V2 spinning disk unit, always using a 20x
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objective. A 488 nm laser was used used to excite mGFP-, a 561 nm laser was used to excite mCherry- or Alexa546-, and a 638 nm

laser was used to excite Alexa647-, or CF640R-labeled proteins. Multichannel time lapse imaging was performed by acquiring im-

ages at 20 - 45 s intervals as 4 - 5 z stacks spaced at 12.5 mm apart sequentially for each channel. Images were acquired at 5 s in-

tervals for higher time resolution single channel time lapse experiments to visualize microtubule bundle extension or to follow bleach

mark separation after bundle photobleaching by a high power laser pulse at 638 nm. Exposure times were between 200 – 300 ms for

all laser lines. Individual z-planes are presented in the figures.

Microtubule gliding assays, microtubule dynamics assays, andmicrotubule nucleation assays were imaged by total internal reflec-

tion fluorescence (TIRF) microscopy either on an iMIC TIRF microsocope (FEI Munich) described elsewhere (Roostalu et al., 2015) or

on a custom TIRF microscope (Cairn Research, Faversham, UK) based on a Nikon Ti-E frame described previously (Zhang et al.,

2017) using a 100x objective. A 561 nm laser was used to excite mCherry- or Alexa546, and 638 nm or 640 nm lasers were used

to excite Alexa647- and CF640R-labeled proteins. For multichannel time lapse imaging the images were acquired at 1-2 s intervals,

imaging channels alternatively. Exposure times were between 100 – 200 ms for all channels.

Imaging conditions (laser power, acquisition frame rate and exposure time) were always kept constant within a set of experiments

to allow for direct comparisons between samples. All imaging was performed in a heated chamber at 33�C ± 1�C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microscopy image analysis
Fluorescence microscopy images were processed and analyzed in Fiji and in MATLAB. Raw TIRF microscopy images were aligned

as described earlier (Maurer et al., 2014), and also corrected for microscope stage drift if necessary using the Image Stabilizer plugin

for ImageJ (Kang Li, http://www.cs.cmu.edu/�kangli/code/Image_Stabilizer.html). Microtubule growth speeds and microtubule

gliding velocities were determined by kymograph analysis. A mean microtubule growth speed was the average of the speeds of in-

dividual growth episodes of Alexa546-EB3-marked microtubules (or mGFP-CAMSAP3-C marked microtubules at lower tubulin con-

centrations where high concentrations of mGFP-CAMSAP3-C decorated the microtubule lattice and prevented EB3 accumulation at

the ends) observed in the evanescent field of the TIRFmicroscope (either from start of growth to catastrophe, and/or from the appear-

ance of a EB3 comet in the evanescent field until its disappearance). This analysis provides only a rough estimate of microtubule

growth speeds as microtubules frequently appear and then grow out of the evanescent field, and as opposed to surface-bound mi-

crotubules, can move around considerably even while growing in the evanescent field. The total length of microtubule growth trajec-

tories for the nematic network regime was estimated from the same dataset by measuring the total EB3 comet displacement per

microtubule by kymograph analysis (from the appearance of the EB3 comet in the evanescent field until its disappearance, or until

the last frame of the kymograph). This analysis provides a lower limit of the actual microtubule lengths, because thesemeasurements

were conducted between 2-12 min after initiation of nucleation by temperature shift whereas the self-organization experiments were

considerably longer in duration (up to 90 min) and likely contained longer microtubules. In addition, the EB3-marked growing micro-

tubule ends frequently appear and then grow out of the evanescent field instead of staying near the glass surface throughout the

wholemicrotubule lifetime. Meanmicrotubule gliding speedswere calculated as the average gliding speed of individual microtubules

on the motor-coated glass surface. The total number of growth episodes, growth trajectories and microtubule gliding speeds

measured for each condition are stated in the respective figure legends.

Simulation of active microtubule-motor networks in Cytosim
The model used is as previously described (Nedelec and Foethke, 2007). In brief, forces exerted on microtubules are due to motors

connecting microtubules (crosslinks) and due to excluded volume interactions with other microtubules (Figure S3). Microtubule mo-

tion is determined by over-damped Langevin equations, describing Brownian dynamics in a viscous fluid. The simulation space is a

thin cuboid with x, y and z-dimensions of size 40, 40 and 0.4 mm respectively. Periodic boundary conditions are enforced in the x and

y-dimensions mimicking an unbounded space in the x-y plane. In the z-dimension microtubules are confined. Simulations were run

for at least 6 times as long as the lifetime of the microtubule (50 mins), sufficient time for the topology of the simulated networks to

stabilize (Figures 4A, 4B, and 4D, right).

Initially, a fixed number of randomly distributed microtubule ‘nucleators’ create microtubules at rate knuc with initial length L0.

Dynamic instability of microtubule plus-ends is implemented with a two-state model without rescue defined by a constant catastro-

phe frequency kcat, a constant shrinkage speed vs and a force-dependent growth speed vg (Brun et al., 2009). The growth speed is

reduced in the presence of an antagonistic force, fa < 0, by an exponential factor, efa=fg , where fg > 0 is a characteristic force. After a

shrinking microtubule vanishes, its nucleator is free to nucleate again. Nucleation events and catastrophes are stochastic and gener-

ated as first-order random events with constant probability.

Excluded volume interactions betweenmicrotubules are implemented via a Hookean soft-core repulsive force such that they each

had an effective volume of 0.02 mm3, described by an open-ended cylindrical shell with its long axis coincident with the microtubule

and enclosed at either end by a hemisphere. The force between microtubules is fs = ksðd� d0Þ, for d < d0 and zero for d > d0, where

d is the distance between microtubules, d0 is an equilibrium distance and ks is a stiffness constant characterizing the strength of the

steric force. The stiffness constant is large enough that excluded volume interactions dominate over thermal fluctuations but small

enough that forces produced by crosslinking motors can cluster microtubule plus-ends. This choice was made to capture the
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effective behavior of short-range steric repulsion between microtubules. We omitted attractive interactions representing depletion

forces used elsewhere (Letort et al., 2015), because they are not present in our experiments. Forces produced by steric interactions

are always directed perpendicular to the microtubule axis, so as not to interfere with parallel sliding.

The motor KIF11 is modeled as a pair of motor domains connected by a Hookean spring-like link with resting length dm and stiff-

ness km. This link can rotate freely at both attachment points, such that the angle between two crosslinked microtubules is uncon-

strained. Diffusion of unbound motors is not modeled explicitly; it is assumed to be sufficiently fast that a uniform spatial distribution

of unboundmotors is maintained. If onemotor of a pair is bound to amicrotubule the other can bind to anymicrotubule within a range

rb at rate kon. Whereasmotor binding and unbinding are stochastic events, boundmotorsmove deterministically toward the plus-end

of the microtubule at a speed which is linearly proportional to its load vector fload, given by v = vm
�
1 + fload ,d=fstall

�
, where d is a unit

vector parallel to the microtubule, fstall > 0 is a characteristic stall force and vm > 0 is the unloaded speed of the motor. Motors detach

from the microtubule side at a rate koff and from the microtubule plus-end with a different rate kend, which are both modulated expo-

nentially by the load on the motor and a characteristic unbinding force funbind, according to Kramer’s law; k = koff exp
� jfload�� ��j=funbind�.

Quantification of extensile behavior in the nematic network state
To quantify the extensile behavior of the nematic state the parameter bv$bp� �

was used (Figures S4C and S4D). The unit vector of the

microtubule velocity, bv, was calculated as bv = v=jv j , where v = ðx�ðt +DtÞ � x�ðtÞÞ=Dt and x�ðtÞ is the position of the microtubule

minus-end at time t. Themicrotubule’s unit direction vector bp points along themicrotubule’s axis toward the plus-end at time t+Dt. All

microtubules present in frames t and t+Dtwere used in the average bv$bp� �
. For the data shown in Figure S4D,Dt = 100 s. Time-points

after 25 min were analyzed by which time the microtubule population had reached its steady-state average length. The velocity was

measured from the microtubules’ minus ends, in order to avoid a trivial contribution from the microtubules’ plus-end growth. The

major contribution to bv$bp� �
comes from anti-parallel sliding which moves microtubules backward as motors move toward their

plus-ends (Figures S4B and S4C) and results in a negative value of bv$bp� �
(Figure S4D). As the maximum motor speed is decreased

from 30 nm/s (corresponding to the nematic network) to zero, the magnitude of bv$bp� �
decreases (Figure S4D), but it does not vanish

entirely at zero motor speed. This is because growing microtubule plus-ends push on the surrounding network, which can drive the

minus ends backward. However, the resulting (negative) contribution to bv$bp� �
remains small compared to the contribution from

motor-induced sliding.

Parameter selection and phase space collapse
We adopted values measured from our experiments for critical parameters of our model (microtubule growth speed and motor

speed) and otherwise used measured values from literature where possible (see Table S1). The dimensions of the x-y plane

(40 3 40 mm) of the three-dimensional simulation space were chosen to be large compared to the average simulated microtubule

length (2.5 mm).

In scanning the parameter space to identify control parameters we varied key parameters over reasonable ranges. The number of

motors was explored up to amaximumof 16motors permicrotubule. Themicrotubules in the three phase spaces in Figure 5A cover a

volume fraction of the simulation space ranging from 10 to 30%. Higher densities were explored (Figures 4A and S4A, top) up to a

volume fraction of 70%.

Classification of active microtubule-motor networks
Two parameters were defined to classify the simulation outcomes and capture the gradual transition between the two distinct

network types; the nematic network and the asters. Both parameters are derived from the motor crosslinks made between micro-

tubules; V links connecting two microtubule plus-ends, T links connecting a microtubule plus-end to the side of another microtubule,

Hp links connecting parallel microtubules sides at an internal angle of 0 % q < p/3, Hap links connecting anti-parallel microtubules

sides at an internal angle 2p/3 < q% p and X links connecting microtubule sides at an internal angle of p/3 % q% 2p/3 (Figure 4C,

left).

The first parameter, cmax, is used to determine whether an aster is present in the network; it is the size of the largest cluster of mi-

crotubules connected via V-links, Cmax, as a proportion of the total number of microtubules NMT, i.e., cmax = Cmax/NMT. Simulated

networks with cmax R 0.01 were classified as asters and colored dark red in the simulated phase spaces (Figures 5, S5, and

S6A). This threshold was chosen so that asters were dense enough to have a radially isotropic distribution of microtubules, visually

similar to the experimental asters.

If the simulated network is not classified as an aster a secondmeasure is used to identify the nematic network and characterize the

transition in the phase space from the nematic network to the polar aster state. We defined the measure, P, quantifying the degree of

polarity-sorting as;P=Hp= Hp +Hap

� �
where Hpand Hap denote respectively the numbers of parallel and anti-parallel crosslinks, aver-

aged over the final 4% of the simulated time. With this measure, a nematic network of crosslinked microtubules with totally mixed

polarity would have P = 0.5 and a totally polarity-sorted network would have P = 1. In the simulated phase spaces (Figures 5, S5,

and S6A) the parameter P was visualized as a color gradient from blue (P = 0.5) to red (P = 1).

To test the reproducibility of the simulations and our classification procedure we repeated simulations for entire phase spaces and

observed that the classifications did not change significantly (data not shown).
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Theoretical motor distribution profile along a growing microtubule
The mechanistic principle underpinning the critical model parameter vg/vm can be explained through mathematical analysis of the

motor distribution profile along a single growing microtubule (Figure S6B), assuming: (1) A microtubule of finite length growing

with velocity vg. (2) Motor movement along MTs with a constant velocity vm. (3) Binding and unbinding of motors to the side of the

microtubule with rate k
0
on (molecules per unit length per time) and koff respectively. (4) Motors that reach the plus-end of the micro-

tubule do not detach immediately but remain bound and unbind at a rate kend. Analytical results for a more general version of

this model based on a continuous approximation of the classic TASEP model of a driven lattice gas (Kruse and Sekimoto, 2002;

Parmeggiani et al., 2004) have been reported previously (Tischer et al., 2010). In our model, the density of motors on the microtubule

side, rðx; tÞ, defined for 0< x, follows the equation,

vtr= k
0
onQ

�
vgt � x

�� koffr� vmvxr (S1)
where the step functionQð.Þ allowsmotors to bind only to existin
g positions on themicrotubule side, sinceQðvgt � xÞ = 1 for x < vgt

and is zero otherwise. The total number of side-bound motors, nsðtÞ, is then given by

nsðtÞ= r0

 
LðtÞ � lm

�
1� e

�LðtÞ
lm

�!
; (S2)
where r = k
0
=k and l = v =k : The total number of end-boun
0 on off m g off d motors, neðtÞ, can be found by balancing fluxes at the microtu-

bule’s plus-end,

vtneðtÞ= � kendneðtÞ+
�
vm � vg

�
r
�
vgt; t

�
: (S3)
The first term on the RHS accounts for unbinding of motors fro
m the tip of microtubules and the second term accounts for the

incoming flux from themicrotubule side.With the initial condition neðtÞ= 0 Equation S3 can be solved, see Tischer et al. (2010), to give,

neðtÞ= nN

�
1� je

�LðtÞ
lm � ð1� jÞe�LðtÞ

le

�
; (S4)
where n = r =k v � v
� �

is the number of motors at the end o
N 0 end m g f an infinitely long microtubule, le = vg=kend and j= ð1� le=lmÞ�1 is

a factor controlling which of the transient terms in Equation S4 dominate the evolution of neðtÞ.
Dividing Equation S4 by Equation S2 one can write,

neðtÞ
nsðtÞ =

�
v

0 � 1
��

1� je
�kofft

v
0 � ð1� jÞe�kendt

�
kend

�
t � v

0
koff

�
1� e

�kofft

v
0
�� for t> 0; (S5)
where v
0
= vm=vg and j = ð1� v

0 ðkoff=kendÞÞ�1. We see that the cr
itical parameter vm=vg, which was found to be a control parameter

in our model system (Figure 5D), sets the ratio of end-bound to side-bound motors on a single filament at time t, if the unbinding

rates koff and kend are fixed. Competition between these two populations of motors is therefore a key mechanism driving motor

and microtubule organization.

DATA AND SOFTWARE AVAILABILITY

The computational model was implemented in Cytosim, publicly available at https://github.com/nedelec/cytosim. The

Cytosim version specific to this study with additional code is available at https://github.com/nedelec/cytosim/commit/

1e9b8be78dc8aacf3aea905f46f9bb4751665592. Source data (simulation configuration files and documentation) relating to Figures

4, 5, S4, and S6 can be found online at https://doi.org/10.17632/s8wz47nc9p.1.
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Supplemental Figures

Figure S1. Coomassie-Stained SDS Gel with Purified Recombinant Proteins Used in This Study, Related to STAR Methods
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Figure S2. KIF11-Dependent Organization of Nematic Networks of Extensile Bundles, Related to Figure 1

(A) Binary confocal fluorescencemicroscopy images showing at high time-resolution the time course of dynamic fluorescent microtubule bundle extension within

a nematic network organized by KIF11. (B) Binary confocal fluorescence microscopy images showing the separation of two photo-bleached marks (yellow

asterisks) in an extensile bundle within a nematic network organized by KIF11. Binary images (after background subtraction and thresholding) of the microtubule

channel are presented to enhance the visibility of distinct network parts. Time is in min:s. (C) Nematic networks organized by KIF11 are three-dimensional as

revealed by confocal imaging of different focal planes in the flow chamber. Experiments presented in A - Cwere performed in the presence of 27 nMKIF11-mGFP,

30 mM tubulin, and 1000 nM mCherry-CAMSAP3-C. (D) Scatterplot depicting microtubule growth episode lengths at different CAMSAP3-C concentrations.

Number of growth episodes measured at different mGFP-CAMSAP3-C concentrations: 250 nM – 80, 500 nM – 54, 1000 nM – 107. Horizontal lines indicate

the mean and the standard deviation. (E) Box-and-whiskers plot depicting the dependence of KIF11-driven microtubule gliding speeds on the KIF11-mGFP

concentration used to immobilise the motor on the glass surface for gliding assays with GMPCPP-stabilized microtubules. The measured speeds agree with

previously reported speeds of metazoan kinesin-5 motors (Cole et al., 1994; Hentrich and Surrey, 2010; Kapitein et al., 2005; Krzysiak et al., 2006; Ma et al., 2011;

Sawin et al., 1992; van den Wildenberg et al., 2008). The boxes extend from 25th to 75th percentiles, the whiskers extend from 5th to 95th percentiles, and the

mean value is plotted as a line in the middle of the box. Number of gliding episodes measured at different KIF11-mGFP concentrations: 20.5 nM – 77, 41 nM – 87,

82 nM – 150, 164 nM – 128, 328 nM – 105. All experiments were carried out in self-organization buffer at 33�C.
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Figure S4. The Nematic Network State Exhibits Extensile Behavior, Related to Figure 4
There is a gradual transition between the nematic and aster state upon decreasing microtubule number and microtubule growth speed. (A) Snapshots of final

simulation outcomes as parameters are systematically varied. The number of microtubules (top) and the microtubule growth speed (bottom) are varied while

holding all other parameters constant. The colored blue border indicates simulations with the same parameter values. The type of organizational state is labeled

above the simulation snapshot. All simulation images are three-dimensional projections of a snapshot onto the x-y plane. Colors indicate microtubule orientation.

Color code: below, left. For visual clarity unconnectedmicrotubules bearing no crosslinkingmotors are displayed in gray. See Table S1 for simulation parameters

if not shown. (B) Time-course showing simulation snapshots of a nematic network (taken from Video S4). An aligned domain of microtubules is isolated from the

network and shown alone so that the extension of the domain can be clearly seen. Microtubules within this domain are selected on the basis that any point along

their length falls within the volume described by (�5 < x < 10 mm,�10 < y < 5 mm,�0.2 < z < 0.2 mm) (shown by a colored blue box, the origin is located at the center

of the simulation space) and their long axis is oriented at an angle of�93� < q <�53� with respect to the vertical. Microtubules colored in light and dark gray point

in opposite directions. The trajectories of two oppositely oriented microtubules are highlighted (blue and red). The distance between their static minus ends

increases due to anti-parallel sliding by motors while their plus-ends grow. Overall anti-parallel sliding results in the narrowing and lengthening of the entire

domain along its long axis over time. (C) Schematic illustration of the calculation of the parameter bv,bp (STAR Methods) for a single microtubule (black) driven

backward via a crosslinking motor connecting it to an anti-parallel microtubule (gray). (D) A plot showing the average value bv,bp (STAR Methods) for a range of

different motor speeds. Each point represents one simulation and the final point (red) represents the nematic network state. The increasing negative value of bv,bp
withmotor speed demonstrates thatmicrotubules are being continuously transported backward bymotors, which drives the extension of the alignedmicrotubule

domains.



Figure S5. Visualization of the Phase Space of SimulatedMicrotubule-Motor Networks by Classifying and Color-Coding the Network Types,

Related to Figure 5

Bespoke order parameters reveal a gradual transition between nematic and polar states. Final snapshots from 9 of the simulations from the phase space in

Figure 5A, left, are shown. All simulation images are three-dimensional projections of a snapshot onto the x-y plane. Colors indicatemicrotubule orientation. Color

code: right. For visual clarity unconnected microtubules bearing no crosslinking motors are displayed in gray. Each simulation outcome is classified using two

bespoke parameters cmax and P (STAR Methods). The values of Cmax and P are shown overlaid on the snapshots, where Cmax = cmax x microtubule number. The

classified state is displayed in the phase space below as a colored circle according to the classification key (left of the phase space). Due to low microtubule

numbers in this parameter scan the nematic states (blue circles) show less alignment than the nematic network of aligned microtubule domains described in

Figures 4A and 4D. However, the degree of polarity-sorting, captured by P, is similar in both cases.



Figure S6. The Ratio of Motor Speed vm to Microtubule Growth Speed vg Determines the Ratio of End-Bound Motors to Side-Bound Motors

on a Single Microtubule, Related to Figure 5

(A) Failed attempt to collapse the three phase spaces in Figure 5C plotting here the difference in motor speed and growth speed against motor number per

microtubule. Different colors indicate different types of network according to the classification key shown on the right (STAR Methods). Where simulations are

coincident in the collapsed phase space the circle is divided between them. y axis is not shown to scale. Comparewith the successful phase space collapse using

the ratio ofmotor speed and growth speed in Figure 5D. (B) (Top) Schematic representation of the single filamentmodel showing binding and unbinding kinetics of

a motor on a microtubule. Binding and unbinding of motors from the side of the microtubule occurs at rates k’on and koff respectively. Motors move determin-

istically at speed vm to the plus-end that is growing at speed vg. Motors unbind from the plus-end at rate kend. (Bottom) Examplemotor density profile. Dotted area

represents the total number of motors on the side, ns, and lined area represents the total number of motors at the plus-end, ne. (C) Time evolution of the ratio of

end-bound motors to side-bound motors on a single growing microtubule for different pairs of parameters vm and vg. Colored points represent average results

from 4 simulations (see Table S1 for parameter values) and black lines correspond to theory (Equation S5). Inset shows the average length of the microtubules

over the same period for two parameter sets. For the same ratio but different magnitudes of vm and vg (red circles, blue crosses), the ratio of side-bound to end-

bound motors will be the same at a given time point in the microtubule’s lifetime, although the lengths of the microtubules will differ at this time. This provides a

mechanistic explanation as to why the ratio of motor speed to microtubule growth speed is a control parameter in our model; it captures the spatial distribution of

motor crosslinks on microtubules.
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Figure S7. Microtubule Growth Episode Lengths in the Presence of DARPin and HSET Motor Speeds, Related to Figure 6

(A) Scatterplot depicting microtubule growth episode lengths at 60 mM tubulin in the presence of 2.9 mMDARPin (D1)2. Number of growth trajectories measured –

158. Horizontal lines indicate the mean and the standard deviation. (B) Box-and-whiskers plot depicting the dependence of HSET-driven microtubule gliding

speeds on the mCherry-HSET concentration used to immobilise the motor on the glass surface for gliding assays with GMPCPP-stabilized microtubules. These

speeds agree with previously measured vertebrate kinesin-14 gliding speeds (Braun et al., 2017; Hentrich and Surrey, 2010). The boxes extend from 25th to 75th

percentiles, the whiskers extend from 5th to 95th percentiles, and themean value is plotted as a line in themiddle of the box. Number of gliding episodesmeasured

at different mCherry-HSET concentrations: 3.1 nM – 160, 12.5 nM – 102, 25 nM – 129, 100 nM – 108, 400 nM – 92. All experiments were carried out in self-

organization buffer at 33�C.
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