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Abstract

Clostridioides difficile is the leading cause of healthcare-associated infectious diarrhoea. However, it is increasingly appreciated 
that healthcare-associated infections derive from both community and healthcare environments, and that the primary sites of 
C. difficile transmission may be strain-dependent. We conducted a multisite genomic epidemiology study to assess differential 
genomic evidence of healthcare vs community spread for two of the most common C. difficile strains in the USA: sequence type 
(ST) 1 (associated with ribotype 027) and ST2 (associated with ribotype 014/020). We performed whole-genome sequencing 
and phylogenetic analyses on 382 ST1 and ST2 C. difficile isolates recovered from stool specimens collected during standard 
clinical care at 3 geographically distinct US medical centres between 2010 and 2017. ST1 and ST2 isolates both displayed some 
evidence of phylogenetic clustering by study site, but clustering was stronger and more apparent in ST1, consistent with our 
healthcare-based study more comprehensively sampling local transmission of ST1 compared to ST2 strains. Analyses of pair-
wise single-nucleotide variant (SNV) distance distributions were also consistent with more evidence of healthcare transmission 
of ST1 compared to ST2, with 44 % of ST1 isolates being within two SNVs of another isolate from the same geographical col-
lection site compared to 5.5 % of ST2 isolates (P-value=<0.001). Conversely, ST2 isolates were more likely to have close genetic 
neighbours across disparate geographical sites compared to ST1 isolates, further supporting non-healthcare routes of spread 
for ST2 and highlighting the potential for misattributing genomic similarity among ST2 isolates to recent healthcare transmis-
sion. Finally, we estimated a lower evolutionary rate for the ST2 lineage compared to the ST1 lineage using Bayesian timed 
phylogenomic analyses, and hypothesize that this may contribute to observed differences in geographical concordance among 
closely related isolates. Together, these findings suggest that ST1 and ST2, while both common causes of C. difficile infection in 
hospitals, show differential reliance on community and hospital spread. This conclusion supports the need for strain-specific 
criteria for interpreting genomic linkages and emphasizes the importance of considering differences in the epidemiology of 
circulating strains when devising interventions to reduce the burden of C. difficile infections.

DATA SUMMARY

All whole-genome sequence data were uploaded to the 
National Center for Biotechnology Information (NCBI) 

Sequence Read Archive (SRA) under BioProject accessions 
PRJNA595724, PRJNA561087 and PRJNA594943. Metadata 
that comply with patient privacy rules are included in the 
Supplementary Material.
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INTRODUCTION
Clostridioides difficile is a Gram-positive spore-forming 
anaerobic bacterium that is a dominant cause of infec-
tious diarrhoea, colitis and colitis-associated death in the 
USA [1, 2]. While C. difficile infection (CDI) is classically 
considered to be nosocomial [3], recent molecular epide-
miological research suggests that fewer than 40 % of CDI 
cases are linkable to other symptomatic CDI cases within 
the same hospital [4–6]. This insight has disrupted the para-
digm of C. difficile as an exclusively nosocomial pathogen 
and expanded interest into the roles of alternative routes 
of C. difficile transmission, including community-based 
acquisition with subsequent progression to CDI within 
healthcare settings [7].

Different C. difficile strains may have varying propensities 
for transmission within healthcare vs the community, and 
fluroquinolone resistance has been raised as a potential 
defining characteristic of strains that spread more readily 
within healthcare settings [8]. In particular, the largely 
fluoroquinolone-resistant (FQR) ribotype (RT) 027 – 
also known as NAP1 via pulse-field gel electrophoreses 
or sequence type (ST) 1 via multi-locus sequence typing 
(MLST) – has been implicated in numerous hospital-
based CDI outbreaks and is most commonly healthcare-
associated according to surveillance definitions based 
on time since hospitalization [9–12]. Another common  
C. difficile lineage in the USA, RT014/020 (corresponding to 
STs 2, 49 and 13), is largely fluoroquinolone-sensitive (FQS) 
and, while it is frequently characterized as healthcare-
associated using these same surveillance definitions, has 
not been associated with hospital-based outbreaks [13]. 
Associations between C. difficile strain type and propensity 
for healthcare-associated transmission would indicate that 
devising effective interventions for reducing the burden 
of CDI may require an understanding of the molecular 
epidemiology of locally circulating strains, and that strain-
specific incidence may be a more meaningful metric for 
assessing the successful prevention of C. difficile transmis-
sion within hospitals.

Whole-genome sequencing (WGS) can provide insight 
into the potential contribution of healthcare vs commu-
nity spread of particular strains, even in the absence 
of comprehensive sampling of transmission networks. 
Recent studies that applied WGS to European clinical  
C. difficile isolates found that RT027/ST1 displayed genomic 
patterns consistent with healthcare-associated-spread, 
while RT014/020/ST2 displayed genomic patterns more 
consistent with community-associated reservoirs [6, 8]. 
However, these distinct epidemiological patterns have not 
yet been assessed using genomic data gathered from USA-
based C. difficile isolates. Here, we applied WGS to isolates 
collected from three geographically distinct US medical 
centres to assess differential genomic evidence of healthcare 
vs community spread between two of the most common  
C. difficile strains: ST1 and ST2.

METHODS
Data collection
C. difficile sequences were derived from clinical stool speci-
mens collected as part of existing molecular surveillance 
programmes that took place at three US medical centres: 
Michigan Medicine (UM) between 2010 and 2013 [14], Texas 
Medical Center Hospitals (TMC) between 2011 and 2017 
[15] and Memorial Sloan Kettering Cancer Center (MSKCC) 
between 2013 and 2017 [16]. At all three sites, toxigenic C. 
difficile-positive stool specimens were collected, C. difficile 
isolates were recovered from the specimens and DNA was 
extracted from a single colony using the Qiagen MagAttract 
Microbial DNA kit (Qiagen, Inc., Germantown, MD, USA) at 
UM; either the QIAamp DNA mini kit (Qiagen, Inc., German-
town, MD, USA) or the AnaPrep automated DNA extractor 
(BioChain Institute, Inc., Newark, CA, USA) at TMC; and the 
QIAamp DNA mini kit at MSKCC (Qiagen, Inc., German-
town, MD, USA) as previous described [14, 16, 17]. Isolates 
underwent fluorescent PCR ribotyping at UM and TMC [18] 
and MLST at MSKCC [19]. DNA from a sample of isolates 
that were typed as RT027 at UM and TMC or ST1 at MSKCC 
(n=201) and RT014/020 at UM and TMC or ST2 at MSKCC 
(n=263) was sent to UM for WGS. The Institutional Review 
Boards at each of the study sites approved the study protocols.

Impact Statement

Clostridioides difficile is a leading cause of healthcare-
associated infections, and new strategies for preventing 
C. difficile infections are urgently needed. However, there 
are many different strains of C. difficile, and existing 
evidence suggests that some strains may spread more 
frequently within healthcare settings while some may 
spread more frequently in the community. Whole-
genome sequencing of C. difficile isolates from multiple 
geographical locations with diverse patient populations 
can shed light on which strains spread more readily 
within hospitals, but data from the USA are lacking. This 
study leverages a collection of whole-genome sequences 
from three geographically distant sites in the USA and 
demonstrates genomic evidence for differential reliance 
on healthcare vs community spread between two of the 
most common strains causing C. difficile infection: ST1 
and ST2. Furthermore, we highlight potential pitfalls in 
analysing C. difficile genomic data without appropriate 
geographical context and an understanding of strain-
specific genetic diversity. These findings support the 
potential application of different prevention strategies 
depending on local molecular epidemiology of C. diffi-
cile infections, and raise interesting questions about the 
epidemiological and biological underpinnings of why 
some types of C. difficile seem to spread more in health-
care while others may spread more in the community.
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WGS and bioinformatic methods
The Nextera XT library preparation kit (Illumina, San Diego, 
CA, USA) was used to prepare sequencing libraries according 
to the manufacturer’s instructions. WGS was executed on an 
Illumina Hiseq platform with 150 base pair paired-end reads 
and a targeted read depth of >100×. Sequence data are avail-
able from the National Center for Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) under BioProjects 
PRJNA595724, PRJNA561087 and PRJNA594943. First, in 
silico multilocus sequence typing (MLST) was performed on 
the raw sequencing reads using ARIBA; only isolates that were 
identified as ST1 and ST2 were included in further analyses 
(82 sequences were excluded) [19–21]. The bioinformatics 
methods applied to the C. difficile sequences to identify single-
nucleotide variants (SNVs) and build phylogenetic trees were 
executed as previously described [22]. Briefly, raw sequencing 
reads were trimmed using Trimmomatic to remove low-
quality bases and adapter sequences [23]. Trimmed reads 
were then mapped to existing complete reference genomes 
within the same ST [R20291 for ST1 (GenBank accession 
number FN545816) and W0022a for ST2 (GenBank accession 
number CP025046)] with the Burrows–Wheeler short-read 
aligner [24–26]. PCR duplicates were discarded and vari-
ants were called using SAMtools mpileup and bcftools [27]. 
Gubbins was used to remove variant sites located in putative 
recombinant regions [28]. Maximum-likelihood phylogenies 
were built using IQ-TREE with a generalized time-reversible 
nucleotide substitution model; phylogenies were rooted using 
C. difficile 630 as an outgroup (GenBank accession number 
GCA_000009205.2) [29, 30]. Fluroquinolone resistance was 
inferred based on the presence of previously identified fluro-
quinolone resistance-associated gryA and gyrB alleles [31]. 
ST1 isolates were further classified into previously identified 
FQS, FQR1 and FQR2 lineages by examining how newly 
sequenced isolates clustered with publicly available FQR1 
and FQR2 isolates [32].

Evaluation of phylogenetic clustering
To compare the level of clustering by geographical collec-
tion site between newly sequenced ST1 and ST2 isolates, we 
overlaid geographical collection site onto the maximum-
likelihood whole-genome phylogenies and applied a previ-
ously described approach for formal clustering assessment 
[33]. First, we tabulated the number of isolates in a ‘pure’ 
subtree of each phylogeny – defined as a subtree made up 
of two or more isolates collected from a single geographical 
site that was found in >90 % of bootstrapped phylogenies. To 
determine whether this number was different than would 
be observed by chance given the phylogenetic topology 
and location frequency, we calculated an empirical P-value 
by randomizing geographical labels and recalculating this 
number 1000 times.

Evaluation of evidence of recent transmission
Evidence of recent transmission was assessed using pairwise 
SNV distance matrices and two analytic approaches. First, we 
compared the lower tail (fifth percentile) of the distribution 

of pairwise SNV distances of pairs of isolates collected from 
the same collection site to that same metric among pairs of 
isolates collected from different collection sites by calculating 
a fifth percentile SNV distance ratio (fifth percentile SNV 
distance within sites/fifth percentile SNV distance between 
sites). To assess whether this ratio indicated an enrichment 
of close linkages within collection sites greater than could be 
expected by chance, we randomly permuted collection sites 
and recalculated the ratio 10 000 times; an observed ratio 
below the 2.5 % percentile of the distribution of expected 
ratios was applied to support significant enrichment of close 
genetic linkages within study sites. Second, we classified 
genomic linkages using an SNV distance threshold of two 
SNVs and compared the proportion of genomically linked 
isolates (defined as being linked to at least one other isolate) 
among ST1 isolates compared to those among ST2 isolates 
using chi-squared tests. An SNV threshold of two SNVs is 
commonly used to identify pairs of C. difficile isolates that 
are likely related via direct transmission/acquisition from a 
common source; this threshold is based on evolutionary rates 
estimated from within-host evolution [4]. We then assessed 
the sensitivity of these results to larger thresholds of 5–10 
SNVs. We also compared the proportion of isolates genomi-
cally linked to at least one isolate collected from a different 
geographical collection site between ST1 and ST2 using chi-
squared tests. All analyses were completed in R v4.0.2 (R Core 
Team, 2020).

Estimation of evolutionary rates
We applied Bayesian timed phylogenomic analyses in order 
to estimate and compare evolutionary rates between ST1 and 
ST2 lineages using beast v1.10.4 [34]. To increase the power 
of timed phylogenomic analyses, existing ST1 and ST2 whole-
genome sequences were downloaded from the NCBI SRA; 
isolates were selected from a recent publication that compiled 
isolates from several previous C. difficile genome collections 
along with their ST and sampling date [35]. The combined 
collection of existing and new sequences was then pared 
down to facilitate running Bayesian phylogenomic analyses. 
First, in an effort to maximize genetic diversity, one randomly 
selected isolate from each pair of isolates within two SNVs of 
one another was removed. Second, isolates from overrepre-
sented geographical locations were randomly downsampled 
until the total number of isolates was <425. The final list of 
isolates that were included in these analyses can be found in 
Table S1 (available in the online version of this article).

We assessed the suitability of the data for timed phylogenomic 
analyses by examining temporal signal – or the relationship 
between genomic differences and sampling date – using two 
methods. First, we examined a regression of sampling time 
vs root-to-tip genetic distance using Tempest and BactDating 
[36, 37]. We then formally evaluated temporal signal using 
date randomization tests, randomly permuting the sampling 
dates 10 times and comparing the evolutionary rate estimates 
and their 95 % credible intervals for the random datasets to 
the estimates from the real data. We report both the more 
relaxed and the stricter criteria for temporal signal assessment 



4

Miles-Jay et al., Microbial Genomics 2021;7:000590

using this approach: with the more relaxed criteria being 
met if the estimated evolutionary rate was not included in 
the 95 % credible intervals of 10 date randomized datasets 
(CR1), and the stricter being met if the 95 % credible interval 
of the estimated evolutionary rate did not overlap any of the 
95 % credible intervals of the date randomized datasets (CR2) 
[38]. We proceeded with evolutionary rate estimates so long 
as the data met CR1.

To select beast model assumptions for both the date rand-
omization tests and the final evolutionary rate estimates, we 
started with a general time-reversible nucleotide substitu-
tion model with gamma distributed rate heterogeneity and 
the simplest clock and demographic model assumptions: a 
strict molecular clock and constant demographic prior. We 
then systematically examined the extent to which the data 
violated the strict clock and constant demographic model 
prior assumptions and thus the extent to which more complex 
models were warranted. To assess whether the data violated a 
strict clock assumption, we evaluated whether the coefficient 
of variation parameter in the models with an uncorrelated 
relaxed lognormal clock had a 95 % highest posterior density 
interval (HPD) that overlapped 0; if not, we used this as 
evidence of the assumptions of a strict clock being violated 
and applied an uncorrelated relaxed lognormal clock with 
a lognormal prior distribution with a mean of 5.0×10−7 and 
standard deviation of 8×10−7 based on previous evolutionary 
rate estimates (while still allowing for significant deviation) 
[32, 39]. To assess the extent to which the data violated a 
constant demographic model, we ran models with exponential 

growth demographic model prior, and evaluated whether the 
95 % credible interval of the exponential growth rate parameter 
overlapped 0. If the exponential growth rate parameter was 
substantially different from 0, we attempted running a more 
flexible but parameter-rich Gaussian Markov random field 
(GMRF) skyride model, which allows for periods of growth 
as well as periods of stasis [40]. For each model, a Markov 
chain Monte Carlo was run for 200 million generations and 
sampled every 10 000 iterations; a Tempest-rooted starting 
tree was included in all runs to accelerate convergence [36]. 
All ESS values were checked for being above 200 using Tracer 
after removing the first 10 % of steps as burn-in [41].

RESULTS
Three hundred and eighty-two new whole-genome sequences 
were generated from the 3 US study sites located in Michigan, 
Texas and New York; 199 ST1 and 183 ST2 (Fig. S1). The 
majority of ST1 isolates were FQR, relatively evenly distrib-
uted between the previously described FQR1 and FQR2 line-
ages, and the FQS isolates clustered together in one ancestral 
clade. Conversely, ST2 isolates were largely FQS, with FQR 
isolates occurring in a two small clusters as well as singletons 
scattered throughout the phylogeny (Fig. 1). ST1 sequences 
were less diverse than ST2 sequences: after quality and recom-
bination filtering, the ST1 alignment consisted of 1108 SNVs 
(median pairwise SNV distance 35, range 0–85), while the 
ST2 alignment consisted of 2119 SNVs (median pairwise 
SNV distance 52, range 1–156) (Fig. 2). The ST1 phylogeny 

Fig. 1. Maximum-likelihood phylogenetic trees of newly sequenced C. difficile isolates that are ST1 and ST2. Tips are coloured by 
fluroquinolone-resistant (FQR) vs fluroquinolone-sensitive (FQS) as determined by the presence of previously identified fluroquinolone-
resistance-associated gryA and gyrB alleles. Previously identified ST1 lineages (FQS, FQR1 and FQR2) are highlighted and collection site 
is included in an adjacent heatmap. Tree scales are in single-nucleotide changes per quality- and recombination-filtered site.
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displayed shorter terminal branches than the ST2 phylogeny, 
which is also consistent with more genetic similarity among 
sampled ST1 isolates compared to ST2 isolates.

ST1 exhibits stronger evidence of phylogenetic 
clustering by geography compared to ST2
To begin our comparison of ST1 and ST2 isolates, we 
first examined the association between phylogenetic and 
geographical structure by overlaying the geographical site 
each isolate was collected from onto strain-specific whole-
genome phylogenies. Visual examination of these phylogenies 
revealed a striking difference in geographical clustering, 
with ST1 displaying larger clusters and ST2 displaying more 
numerous, smaller clusters and more geographical mixing 
(Fig. 1). The exception to this observation was the FQS ST1 
clade, which appeared to be more geographically mixed than 
the FQR ST1 clades. While statistical assessments demon-
strated that both ST1 and ST2 displayed more evidence of 
geographical clustering than would be expected to occur 
by chance (empirical P-values both <0.001), clustering was 
more non-random for ST1 than ST2 (Fig. S2). This enhanced 
geographical clustering among ST1 isolates could reflect the 
fact that our healthcare-based study more completely sampled 
local transmission networks among ST1 isolates compared 
to ST2 isolates, or it could reflect ST1 spreading via more 
localized community or healthcare reservoirs with minimal 
long-distance transmission.

ST1 isolates display more evidence of recent 
transmission than ST2, while ST2 isolates are more 
likely to share intermediate genetic linkages across 
disparate geographical sites
To further investigate whether plausible healthcare-
associated transmission among ST1 isolates was driving the 
geographical clustering patterns we saw in the phylogenies, 
we next examined the prevalence and nature of close genetic 
linkages within each lineage as captured by pairwise SNV 
distances. Isolates linked by very small SNV distances are 
plausibly linked via recent transmission, and we would 
expect our healthcare-based study to more comprehensively 
sample healthcare-associated transmission than community-
associated transmission. When examining the SNV distance 
distributions between and within collection sites among ST1 
isolates, we observed more closely related pairs of isolates 
from the same geographical collection site (reflected by a 
heavier lower tail of the distribution) compared to pairs of 
isolates collected from different geographical collection sites 
(fifth percentile SNV distance within sites/fifth percentile 
SNV distance between sites=0.59, expected ratio 95 % interval 
0.93–1.00, Fig. 2). However, we did not observe this same 
pattern among ST2 isolates (fifth percentile SNV distance 
within sites/fifth percentile SNV distance between sites=1.00, 
expected ratio 95 % interval 0.93–1.00, Fig. 2). Application 
of SNV distance thresholds demonstrated that 88 (44 %) 
ST1 isolates were within 2 SNVs of another isolate from the 

Fig. 2. Pairwise single-nucleotide variant (SNV) distribution between pairs of isolates from the same collection site vs pairs of isolates 
from geographically distinct collection sites for both ST1 and ST2. The black diamond indicates fifth percentile SNV distances for each 
category.



6

Miles-Jay et al., Microbial Genomics 2021;7:000590

Fig. 3. (a) Bar plot showing the proportion of ST1 and ST2 isolates that are genomically linked to another isolate, either from the same 
collection site only (green) or from at least one different collection site (orange), at varying SNV thresholds. (b) Scatter plot of days 
between collection and pairwise SNV distance up to 10 SNVs, where each dot represents 1 pair of isolates. Points are coloured by 
whether they are collected from the same geographical collection site (green) or different geographical collection sites (orange). Points 
are jittered to improve clarity.
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same geographical collection site compared to 10 (5.5 %) 
ST2 isolates (P-value=<0.001). As the SNV threshold was 
increased to intermediate values of 5 and 10 SNVs, this trend 
was maintained (all P <0.001, Fig. 3a). Conversely, at the 5 and 
10 SNV thresholds, linked ST2 isolates were more likely to be 
linked to an isolate from a different geographical collection 
site compared to linked ST1 isolates (all P <0.001, Fig. 3a). 
These geographically discordant intermediate genomic link-
ages among ST2 were not associated with temporal linkages, 
with the days between sample collection ranging from 6 to 
2479 days (Fig. 3b). Among geographically discordant ST1 
isolate pairs, FQS isolates were overrepresented, with the only 
pair of geographically discordant ST1 isolates linked within 5 
SNVs being FQS and 14/31 (45.2 %) geographically discordant 
ST1 isolates linked within 10 SNVs being FQS, even though 
FQS isolates made up only 21/199 (10.6 %) of isolates overall. 
Together, these findings are consistent with evidence of recent 
healthcare transmission among ST1 isolates and transmis-
sion outside of the hospital among ST2 isolates, and also raise 
questions about the underlying reasons why ST2 isolates are 
more likely to be closely related across disparate geographical 
sites.

Timed phylogenomic analyses demonstrate 
evidence of evolutionary rate heterogeneity within 
and between ST1 and ST2 lineages
Our observation that ST2 is more likely to be genomically 
linked at intermediate SNV thresholds across disparate 
geographical sites compared to ST1 isolates led us to explore 
the potential mechanisms underlying this difference. Two 
factors we hypothesized might contribute to these findings are 
(1) increased transmission of ST2 via community-based reser-
voirs that facilitate more rapid spread over large geographical 
distances and/or (2) a slower average evolutionary rate among 
ST2 isolates resulting in fewer genetic changes over larger 
amounts of time and space. While examining the former 
hypothesis was beyond the scope of this study, we explored 
the plausibility of the latter hypothesis by estimating evolu-
tionary rates for ST1 and ST2 using beast Bayesian phylo-
genetic software [34]. Four hundred and eighteen ST1 and 
418 ST2 isolates were included in this analysis; sequences 
included a mix of newly sequenced and publicly available 
global genomes in order to maximize temporal and genetic 
diversity while maintaining a sample size manageable by 
beast software (Table S1). For ST1 isolate selection, we also 
opted to maintain all FQS ST1 isolates, given our observations 
that they may display distinct epidemiological patterns from 
FQR ST1 isolates.

Temporal signal analyses, while initiated as a necessary 
precursor to timed phylogenomic analyses in beast, revealed 
interesting differences between the clock-like nature of ST1 
and ST2 isolates. While root-to-tip regression analyses 
suggested similarly weak but sufficient temporal signal 
to proceed with timed phylogenomic analyses in beast 
(indicated by positive correlation coefficients, Fig. S3), the 
more rigorous hypothesis testing date randomization tests 
demonstrated more evidence of temporal signal among ST1 

isolates, which passed both the more relaxed CR1 and the 
more stringent CR2 criteria for temporal analyses, compared 
to ST2 isolates, which passed CR1 but not CR2 (Fig. S4). The 
root-to-tip regression also highlighted different temporal 
patterns among FQS-ST1 isolates compared to FQR-ST1 
isolates, which was observed again in date randomization 
tests on FQS-ST1 and FQR-ST1 isolates separately; the FQR-
ST1 isolates appeared to drive the temporal signal in the data, 
and when considered alone, FQS isolates were more like 
ST2 isolates, passing the more relaxed CR1 temporal signal 
criteria but not the more stringent CR2. This observation was 
consistent with our pairwise SNV distance findings of distinct 
patterns among FQS ST1 isolates, and motivated conducting 
further analyses both with all ST1 isolates together as well as 
with FQR ST1 isolates (n=359) and FQS ST1 isolates (n=59) 
considered separately.

All datasets demonstrated evidence of evolutionary rate 
heterogeneity throughout the phylogeny, resulting in the 
application of uncorrelated relaxed lognormal molecular 
clock models along with a constant demographic priors 
(see Figs S5 and S6 and File S1 for details). Overall, when 
considering all ST1 isolates together compared to all ST2 
isolates, evolutionary rate estimates were slightly higher for 
ST1 compared to ST2, although the 95 % credible intervals 
overlapped. However, ST1’s faster evolutionary rate was 
driven by FQR ST1 isolates; when separating out FQS and 
FQR ST1 isolates, the FQR ST1 evolutionary rate estimates 
emerged as significantly higher than those of ST2 isolates 
(with non-overlapping 95 % credible intervals), while FQS ST1 
isolates had similar evolutionary rate estimates to ST2 isolates 
(Fig. 4). These evolutionary rates translate to approximately 
1.36 (95 % credible interval 1.20–1.52) nucleotide changes 
per year for FQR ST1, 0.80 (95 % credible interval 0.51–1.08) 
nucleotide changes per year for FQS-ST1, and 0.89 (95 % cred-
ible interval 0.74–1.05) nucleotide changes per year for ST2. 
These results are consistent with the hypothesis that a slightly 
slower average evolutionary rate among ST2 and FQS ST1 
isolates compared to FQR ST1 isolates might contribute to our 
observed discordance between genomic and epidemiological 
linkages among those isolates.

DISCUSSION
In this study, we investigated the genomic epidemiology of 
two dominant C. difficile lineages, ST1 and ST2, across three 
geographically distinct US medical centres. We observed more 
genomic evidence of geographical clustering and recent trans-
mission among ST1 isolates compared to ST2 isolates, while 
also finding more linkages among ST2 isolates from disparate 
geographical collection sites at intermediate genomic linkage 
thresholds. Lastly, we estimated a slightly more rapid average 
evolutionary rate for FQR ST1 isolates compared to FQS ST1 
isolates and ST2 isolates using Bayesian timed phylogenomic 
methods on a combination of newly sequenced USA-based 
isolates and publicly available global isolates.

Previous studies have reported both more evidence of broad 
geographical clustering [8] and more evidence of recent 
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transmission within healthcare settings [6] among European 
ST1 C. difficile isolates compared to other types of C. difficile. 
To our knowledge, these are the first USA-based multisite data 
to support these findings. Our observations are consistent 
with ST1 being associated with hospital outbreaks [10, 11, 42], 
being the most predominant healthcare-associated C. diffi-
cile strain according to surveillance definitions based on 
time since hospitalization [13], and being more prevalent 
in hospital than community environmental sampling [43]. 
The factors contributing to increased spread of ST1 within 
healthcare are not well defined, but fluroquinolone resistance 
has been proposed as a driving feature. In support of this, 
Eyre et al. noted that other FQR C. difficile strains were also 
more likely to cluster by country compared to FQS C. difficile 
strains [13]. Our observations of distinct epidemiological and 
evolutionary patterns among FQS compared to FQR ST1 
isolates are also consistent with this hypothesis. If within-
healthcare transmission is the dominant mode of ST1 spread, 
infection control interventions and antimicrobial stewardship 
within healthcare should jointly reduce the incidence of CDI 
due to ST1. Such reductions have been reported in the UK 
after implementation of national infection prevention and 
antimicrobial stewardship policies [44].

Conversely, ST2 seems to have followed a different route to 
pathogenic success. RT014/ST2 has been reported as one of 
the most common strains in Europe [45], the USA [13, 46] 
and Australia [47] during the last decade. ST2 is commonly 
characterized in the literature as an endemic strain in the 
USA that has not been associated with hospital outbreaks 
[48]. However, it is also frequently classified as healthcare 

associated: the most recent data from the Centers for Disease 
Control and Prevention Emerging Infections Program 
reported that between 41 and 52 % of RT014 were considered 
healthcare-associated infections between 2012 and 2017 [13]. 
Despite this, evidence of transmission of RT014/ST2 within 
the hospital is sparse, as demonstrated by this study and 
others [6, 13]. One explanation for this discordance between 
genomic evidence of recent transmission and healthcare-
associated characterization via surveillance definitions is that 
ST2 is frequently acquired in the community, imported into 
the hospital and subsequently detected after hospitalization. 
If this is the case, antimicrobial and diagnostic stewardship 
interventions would be particularly important in settings 
where ST2 is common [7]. Environmental studies that have 
reported recovery of RT014 isolates in agriculture [49, 50], 
wastewater [51], and parks and homes [43] are also consistent 
with community circulation of RT014. Overall, this finding 
highlights the imperfect nature of relying on time since 
hospitalization as a proxy for acquisition. With the advent 
of more widespread pathogen WGS, genomic evidence of 
healthcare transmission and/or identification of known 
hospital-associated strains could be used as more reliable and 
actionable metrics to monitor and prevent hospital-acquired 
CDI.

We also observed a notable difference in concordance between 
genomic linkages (isolate related within small SNV distance 
thresholds) and epidemiological linkages (isolates collected 
from the same site within temporally proximate time periods) 
among ST1 and ST2 isolates. Specifically, ST2 isolates were 
more likely to have close genomic neighbours across disparate 
geographical sites and long time periods. Consistent with this, 
a pan-European surveillance study reported that the average 
most closely related strain to any given RT014 isolate was 
collected from hundreds of miles away [13]. The mechanisms 
behind this finding are not clear, but are consistent with reli-
ance on non-healthcare routes of spread. Practically speaking, 
this finding highlights the risks of broadly applying SNV 
thresholds to infer recent transmission, even to isolates of the 
same species. In particular, it emphasizes the importance of 
considering background genomic diversity and incorporating 
geographically and temporally diverse strains when inter-
preting genomic linkages. Without this context, one might 
mistakenly attribute a linkage to transmission when it in fact 
reflects broader genomic diversity patterns in a particular 
lineage. The importance of genomic context has been noted 
since the early days of bacterial genomic epidemiology [52], 
but in most cases sequencing is still not widespread enough 
to provide such context. As we continue to consider a future 
with routine genomic surveillance in hospital settings to iden-
tify outbreaks [53], it is crucial that assessment of genomic 
context remains part of the evidence required for inferring 
transmission from genomic data.

C. difficile’s spore-forming lifestyle may contribute to some 
of the results reported here. It has been posited that spore 
formation likely drags down average estimate evolutionary 
rates of bacteria [54]. Extending from that, if isolates 
belonging to particular lineages spend more time in spore 

Fig. 4. Posterior probability density of the evolutionary rates estimates 
for C. difficile ST1 and ST2 lineages, with ST1 isolates considered 
together as well as separated out into FQR-ST1 and FQS-ST1 isolates. 
Dark shaded areas of the density curves indicate the lower 2.5 % and 
upper 97.5 % of the distributions; light shaded areas indicate 95 % 
credible intervals. Evolutionary rates are considered significantly 
different from one another when the 95 % credible intervals of their 
posterior probability densities do not overlap.
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form than others, that lineage could be expected to have a 
lower average evolutionary rate, and thus fewer nucleotide 
differences accumulated over time. We speculate that the 
ST2 and FQS ST1 lineages may have spent, on average, more 
time in spore form than the epidemic and more recently 
emerged FQR ST1 lineages, resulting in more closely 
related isolates across larger amounts of time and space. 
Ecological niches may influence this; more selective pres-
sures and a higher density of susceptible hosts in healthcare 
settings could facilitate more time in the vegetative state, 
whereas strains that circulate primarily in the community 
may be more likely to stay dormant for longer periods of 
time. The results from our Bayesian timed phylogenomic 
analyses were consistent with this framework in two ways: 
(1) high evolutionary rate heterogeneity in both ST1 and 
ST2 isolates may reflect the effects of spore formation, with 
isolates emerging for a long-dormant spore being found 
on the tips of phylogenetic branches with a slow esti-
mated evolutionary rate and (2) less evidence of temporal 
signal and slightly lower estimated evolutionary rates for 
FQS-ST1 isolates and ST2 isolates compared to FQR-ST1 
isolates may reflect more time spent in spore form. While 
limited experimental work has demonstrated no differ-
ence in spore-forming characteristics between RT027 and 
RT014/020 strains in vitro, this does not preclude differ-
ences at a population level [55]. Whatever the biological 
and epidemiological underpinnings of the patterns we 
observed, this work highlights the challenges inherent to 
applying molecular clock-based methods to studying the 
epidemiology and evolution of a variably and relatively 
slowly evolving pathogen like C. difficile.

Our findings should be interpreted in the context of multiple 
limitations. First, the retrospective nature of the study 
resulted in some differences in sample collection between 
the three study sites: UM and TMC selected based on PCR 
ribotypes, which we then filtered down to only ST1 and ST2 
via in silico MLST, while MSKCC originally selected isolates 
based on ST as MLST is routine at that centre. However, 
all comparisons were made between ST1 and ST2 isolates 
and these differences were consistent within the ST1 and 
ST2 isolates at each site, so we would not expect them to 
significantly alter the results reported here. Second, limited 
epidemiological metadata were available for analysis, only 
study site and collection date, and thus we were not able 
to assess detailed epidemiological exposures or differences 
based on patient characteristics. Despite this, the inter-
esting patterns we observed between genomic linkages and 
geography emphasize the value of integrating genomic data 
with even limited epidemiological metadata. Finally, the 
evolutionary rate estimates presented here are subject to 
uncertainty, particularly given the observed instances of 
violated model assumptions and relatively limited temporal 
signal in the data. However, the overall trends remained 
stable with varying models, alleviating concerns that our 
findings are artefacts of model misspecification. This study 
also has several notable strengths, including the collection 
of isolates from three distinct geographical sites in the 

USA, the application of WGS for high-resolution typing 
and phylogenetic analyses, and the incorporation of global 
isolates for increased context and power in our timed 
phylogenomic analyses.

Conclusions
Examination of the genomic epidemiology of C. difficile ST1 
and ST2 across three geographically distinct US medical centres 
revealed divergent epidemiological and evolutionary patterns 
between these two common strains. Specifically, we observed 
more evidence of geographical clustering, recent healthcare 
transmission, and a slightly more rapid average evolutionary rate 
among FQR ST1 isolates compared to ST2 and FQS ST1 isolates. 
One implication of these findings is that an understanding of 
local molecular epidemiology may facilitate the development 
of effective strategies targeted at reducing the burden of CDI. 
These findings also highlight how methodological considera-
tions – including incorporating genomic context when infer-
ring transmission from genomic linkages and considering the 
potential effect of spore formation on the connection between 
genomic differences and epidemiology – need to be accounted 
for when applying genomic epidemiology methods for studying 
C. difficile transmission.
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