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Mosquito vectors of arboviruses in French Polynesia
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Abstract
The circulation of arthropod-borne viruses (arboviruses) throughout the Pacific is no exception in French Polynesia (FP). We review here the

mosquito vectors involved or potentially involved in the transmission of arboviruses in FP. We highlight Aedes aegypti and Aedes polynesiensis;

species that are widely distributed in FP and whose ability to transmit dengue, zika and chikungunya viruses is well known. In addition, we

discuss the contribution of those species and the abundant Culex annulirostris to the silent circulation of Ross River virus in FP. As these

mosquito species and others present in FP are known to be vectors of a large panel of arboviruses, there is a high risk for new emergences.

© 2019 The Authors. Published by Elsevier Ltd.
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French Polynesia (FP) is a French overseas territory located in
the south-east Pacific and consists in 80 inhabited islands
divided into five archipelagos: the Society, Tuamotu, Gambier,

Austral and Marquesas Islands. Several arthropod-borne viruses
(arboviruses) have been described in FP. Dengue virus (DENV)

has been circulating in FP since the nineteenth century with
clinical descriptions of epidemics mentioned in old written

works [1]. Zika virus (ZIKV) and chikungunya virus (CHIKV)
were introduced in 2013 and 2014, respectively, causing

massive outbreaks [2,3]. Furthermore, silent circulation of Ross
River virus (RRV) has been demonstrated [4]. Local trans-

mission leading to the spread of these arboviruses in FP is
inherent to the presence of competent mosquito vectors.

Vector-borne transmission of DENV, ZIKV
and CHIKV in FP
Two diurnal species belonging to the genus Aedes, sub-genus
Stegomyia, are incriminated in the transmission of DENV, ZIKV
This is an open access arti
and CHIKV in FP: the indigenous Aedes polynesiensis and the
worldwide distributed Aedes aegypti [5–11]. Aedes polynesiensis

Marks 1951, a member of the scutellaris group, probably derived
from anoriginal species that arrived togetherwith the first human

migrations in the Pacific a thousand years ago [12]. Aedes aegypti
Linnaeus 1762 (aegypti group), originally from African forests, is

one of the most primitive members of the sub-genus Stegomyia.
This species was introduced into the Pacific islands through
commercial trade with European and Asian countries in the late

nineteenth and early twentieth centuries [12,13]. Today,
A. aegypti and A. polynesiensis are found on all the inhabited islands

of FP. Breeding sites of A. aegypti are artificial containers associ-
ated with human habitations whereas A. polynesiensis is typical of

natural breeding niches specific to these island environments,
such as crab holes and open coconuts.

In laboratory experiments, A. aegypti populations have usu-
ally shown higher vector competence for arboviruses than
A. polynesiensis [5,6,11]. Nevertheless, A. polynesiensis may be a

good vector, able to sustain an epidemic by itself, as illustrated
by the occurrence of dengue outbreaks in the Marquesas

Islands several years before the appearance of A. aegypti in the
archipelago [1,12,14]. Heterogeneous susceptibility to arbovi-

ruses observed in FP between A. aegypti and A. polynesiensis, and
also observed between different A. aegypti populations [8], re-

sults from different genetic backgrounds [15,16] determined by
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several factors such as ecological characteristics of mosquito

habitats, human population density and intensity of insecticide
spraying [8,17]. Expansion of sea and air connections between

the islands of FP tends to increase the gene flow between
mosquito populations [16,18].

Differences in viral genotypes, such as the occurrence of
specific changes in the viral genome, can also result in the
heterogeneous ability for a given FP A. aegypti population to

transmit the virus [9,10,19]. For example, ZIKV isolates
collected from the explosive outbreaks that occurred from

2013 in FP and elsewhere were shown to have an alanine-to-
valine amino acid substitution in the non-structural protein 1

compared with previous isolates of the same lineage [19]. This
mutation was found to facilitate viral acquisition by A. aegypti

mosquitoes and subsequently to enhance viral prevalence in
mosquitoes [19]. This may have facilitated the spread of ZIKV
during the outbreak in FP.

There is worldwide disagreement about the potential ability
of the mosquito species Culex quinquefasciatus to transmit

DENV and ZIKV [20,21]. Although no investigation with any FP
population of C. quinquefasciatus has been conducted for DENV,

laboratory experiments found no evidence for FP populations
to be able to transmit ZIKV, in accordance with the majority of

published studies [22]. Nevertheless, the controversial results
found for the ability of Culex species from various countries to

transmit DENV or ZIKV, and the unexpected slowness of ZIKV
dissemination in experiments conducted in laboratory condi-
tions on Aedes populations, particularly A. polynesiensis, raised

questions about the possibility that field conditions may signif-
icantly impact the ability of these species to sustain viral

propagation [20,22–25].
Silent circulation of RRV in FP
Several mosquito species may have contributed to the silent

circulation of RRV in FP. One of the most probable vectors is
Culex annulirostris Skuse 1889 (sitiens group), known to be a

major vector of RRV in Australia where the virus is endemic
[26]. C. annulirostris was initially considered as having been

introduced into FP with the settlement of the first Polynesians,
but it may be a native species [12,27]. C. annulirostris is abundant
and distributed in most of the FP archipelagos, mostly in rural

areas. The larvae of this nocturnal species grow more partic-
ularly in marshes and river mouths [28]. Two other members

of the Culex genus were suspected of being potential vectors of
RRV in FP [4]. C. quinquefasciatus Say 1823, a member of the

pipiens group, was undoubtedly introduced through commerce
by Europeans in the nineteenth century. Suited to urban envi-

ronments, this species is now widely distributed in the five FP
© 2019 The Authors. Published by Elsevier Ltd, NMNI, 31, 100569
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archipelagos [12,27]. Culex sitiens Wiedemann 1828, a member

of the sitiens group, was described in the late twentieth century
in FP [27]. Wastewaters and brackish waters are preferred sites

for the larval development of C. quinquefasciatus and C. sitiens,
respectively [28]. After RRV was isolated from wild-caught

specimens, these two nocturnal species were suspected as
possible vectors of RRV [26]. However, experimental oral in-
fections of Australian and American populations of

C. quinquefasciatus found either poor susceptibility or refrac-
toriness to RRV infection [29,30]. In the same manner, C. sitiens

showed low susceptibility to RRV infection [31]. Nevertheless,
field conditions and particularly substantial densities of

mosquitoes may compensate for poor viral susceptibilities and
initiate an outbreak [20,25,32].

A. aegypti and more particularly A. polynesiensis may be effi-
cient vectors of RRV in FP. Vector competence for RRV has
been demonstrated for several populations of these two spe-

cies, including an FP population of A. polynesiensis [26,30,33]. An
additional argument for A. aegypti and A. polynesiensis to have

sustained RRV transmission in FP is the observation that among
all FP archipelagos, RRV antibody prevalence was higher for the

inhabitants of Austral-Gambier and Marquesas Islands [34],
despite C. annulirostris never having been indexed in the latter

archipelago [27].
A new potential vector introduced in FP
In recent decades, a new potential vector for arboviruses was

recorded for the first time in FP: Aedes vexans [35]. Aedes vexans
Meigen 1830, commonly known as A. nocturnus Theobald 1903

in the Pacific region, is a member of the vexans group belonging
to the genus Aedes, sub-genus Aedimorphus. This species lays its
eggs at the base of plants, on blades of grass or on the ground in

land subjected to periodic flooding such as floodplains, grassy
ponds and marshes, where they are frequently associated with

C. annulirostris [36]. Breeding sites may also be ditches along
roads, particularly those rich in leaves and twigs, which keep

the soil moist, but also in artificial containers and coconut shells
[36]. Aedes nocturnus was first described as a probable separate

species from A. vexans in the Pacific, although the differences
from typical vexans appeared very limited [12]. Due to the lack
of biological, behavioural and genetic data on the Pacific pop-

ulations of vexans, the species was formally synonymized with
A. vexans [37]. The distribution of this species in the Pacific in

the middle of the twentieth century suggested that it may have
been originally brought into the South Pacific by natives or

Europeans [12]. The presence of A. vexans in FP was discovered
in 2004 on the island of Moorea (Society Islands) during sam-

pling of mosquitoes [35]. Its introduction in FP has been
nses/by-nc-nd/4.0/).
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suggested as probably related to horticultural imports from

Hawaii, where the species has been described since 1962 and
with which regular commercial air flights operate [38].

A Tongan population of A. vexans was shown to be able to
transmit RRV despite poor susceptibility [39] and an Italian

population of the species was demonstrated to be susceptible
to CHIKV [40]. Recently, experimental infections in wild-caught
American mosquitoes showed moderate to high susceptibility

to ZIKV and low ability to transmit the virus [41,42]. The au-
thors also highlighted the importance of field factors, arguing

that high mosquito population densities may counterbalance
weak vector competence. In FP, the current distribution and

abundance of A. vexans are not known and its propagation is not
monitored. The role of A. vexans as a potential vector at risk for

arboviruses in FP is especially important because the adults are
known to be able to fly long distances [36,43].
Vector control in FP
There is currently no approved vaccine and no specific treat-
ment for the arboviruses circulating in FP, so vector control
remains essential. The population is strongly encouraged to

clear domestic mosquito-breeding sites. Perifocal insecticide
treatments are sprayed around initial cases of confirmed human

infections by newly introduced arboviruses to prevent
outbreaks.

Considerable research progress was made in recent years
for developing non-insecticidal vector control strategies [44].

Several of these strategies rest on the maternally inherited
endosymbiotic Wolbachia pipientis (commonly shortened to

Wolbachia), which is a common bacterium in a broad range of
arthropods, including many mosquito species. Wolbachia types
isolated from mosquitoes are divided into two supergroups

referred as A and B [45]. Experimental strains of mosquitoes
were developed by manipulating Wolbachia to induce infertility

between a Wolbachia-infected male mosquito and an uninfected
female mosquito or one having a natural Wolbachia from a

different supergroup, through an early arrest of mosquito
embryonic development by cytoplasmic incompatibility. Release

in the field of both male and female Wolbachia-modified
mosquitoes intends to replace the wild population with these
mosquitoes that are more resistant to arbovirus infections [45].

Indeed, transfer of Wolbachia into A. aegypti, which is naturally
uninfected with the bacteria, has been shown to limit the ability

of the mosquito to become infected and to transmit DENV,
CHIKV and ZIKV [44,46]. In the same manner, replacement in

A. polynesiensis of its natural Wolbachia type (A supergroup) by
an exogenous one (B supergroup) has been shown to reduce

the susceptibility of the vector for DENV infection [46].
This is an open access artic
Another strategy consists of releasing only Wolbachia-modified

male mosquitoes to reduce or suppress the wild mosquito
population, with the supplementary benefit of also suppressing

the nuisance of mosquito bites.
In FP, experimental field trials have been conducted with a

strain of A. polynesiensis called ‘CP’ strain, which is stably
modified with an alternate Wolbachia type (B supergroup)
originated from a closely related mosquito species, Aedes riversi.

Under semi-field cage conditions on Tahiti (Society Islands), CP
males were demonstrated to have a mating competitiveness

with wild females that was indistinguishable from that of wild
males [47]. An open release trial was performed on Toamaro,

an islet of Raiatea (Society Islands), selected for its small size, its
high density of A. polynesiensis and the absence of inhabitants.

Despite only relatively small numbers of CP males being
released over 30 weeks (compared with the large wild popu-
lation size on the islet), a significant decrease in the number of

wild females able to produce viable embryos was obtained [48].
Another pilot study started in 2015 on Onetahi, the main islet

of Tetiaroa (Society Islands), to evaluate the feasibility and
sustainability of releasing incompatible male A. polynesiensis on a

larger scale. The mass production of A. polynesiensis mosquitoes,
also modified with B-Wolbachia from A. riversi, enabled the

release of more than one million incompatible male mosquitoes
on the islet through repeated weekly releases [49,50]. As early

as 6 months after the project began, A. polynesiensis mosquitoes
were almost eradicated from the islet with a 100-fold drop in
the wild population [49,50]. The successful reduction of

A. polynesiensis on Onetahi is all the more promising because it
lasted over a year after the end of releases with the mosquito

population density remaining one-tenth of what it was before
the project [49].

The mosquito vectors described in this review are known to
be able to transmit several arboviruses that have never been

detected in FP. For example, C. annulirostris, C. sitiens and
C. quinquefasciatus may transmit Japanese encephalitis virus [51]
and, with A. vexans, West Nile virus [43,52]. Aedes aegypti is a

vector of yellow fever virus [53]. Consequently, these arbovi-
ruses are a risk for FP. Mosquitoes are vectors of infectious

diseases but the role of humans remains central in the intro-
duction of viruses to the region. Vector control remains

inseparable from increased surveillance of human transport
flows at the international points of entry of FP (i.e. port and

airport).
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