
70 World Journal of Nuclear Medicine/Vol 11/Issue 2/May 2012

Original Article

Address for correspondence: 
Dr. Jalil Pirayesh Islamian, Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.  
E-mail: pirayeshj@gmail.com

Introduction
In Single Photon Emission Computed Tomography 
(SPECT) cameras, the system spatial resolution mainly 
depends on the geometry of the collimation design.[1] 
Recent developments in pinhole SPECT imaging for 
small animal applications have reached a spatial 
resolution on the order of 0.6 mm.[2]

There are some approaches for scatter correction in 
SPECT,[3-8] but optimization of the collimator, as a prime 
order for scatter inhibition, could affect other image 
quality parameters and also accurate quantification 
in SPECT.[7-12] Monte Carlo techniques are becoming 
very popular for the development of nuclear medicine 
apparatus.[11,13] A study on characterization of scatter and 
penetration using Monte Carlo simulation has shown 
that in131I SPECT, object scatter as well as collimator 
scatter and penetration have a significant contribution 
on the image.[14]

The purpose of the current study was to evaluate the 
effects of the collimator thickness, fine tuning of a 
low-energy high-resolution (LEHR) collimator with 
a thickness of 4.05 cm, on the tomographic spatial 
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Abstract
In single photon emission computed tomography (SPECT), the collimator is a crucial element of the imaging chain and controls 
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Simulated planar images and reconstructed tomographic images were evaluated both qualitatively and quantitatively. According 
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analyses by structural similarity index (SSIM) algorithm and also by visual inspection showed suitable quality images obtained with a 
collimator thickness of 2.405 cm. There was a suitable quality and also performance parameters’ analysis results for the projections 
and reconstructed images prepared with a 2.405 cm LEHR collimator thickness compared with the other collimator thicknesses.
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resolution by image quality analysis by visual inspection 
and using structural similarity index (SSIM), a method 
for measuring the similarity between two images.[15] The 
SSIM index is a full reference metric, in other words, 
the measuring of image quality based on an initial 
uncompressed or distortion-free image as reference. 
SSIM is designed to improve on traditional methods 
like peak signal-to-noise ratio (PSNR) and mean squared 
error (MSE), which have proved to be inconsistent with 
human eye perception.[16]

Materials and Methods

Imaging system
A dual-headed variable angle scintillation gamma 
camera (Siemens Medical Solutions USA, Inc., USA), 
equipped with two rectangular detectors with a field of 
view (FOV) of 53.3 × 38.7 cm2 and 9.5-mm-thick NaI (Tl) 
crystals, was used in this study and also for the Monte 
Carlo simulations. The camera consists of two removable 
LEHR collimators. The parameters of LEHR collimator, 
used for low-energy sources such as 99mTc, for experiment 
and simulation are shown in Table 1. The NaI (Tl) crystal 
specifications are as follows: Planar, 9.5 mm in thickness, 
59.1 × 44.5 cm2 in area, light yield 40K photons/
MeV, and a peak emission spectrum at 415 nm.[17,18] 
Emitted scintillation light photons are collected by a 
matrix composed of 59 photomultiplier tubes (PMT), 
53 with a diameter of 7.6 cm and 6 with 5.1 cm. The 
photocathode is of the bialkali type with a quantum 
efficiency of approximately 30% for the wavelength of 
maximum NaI (Tl) emission.[19] A light guide ensures 
maximum collection of light and optical grease results 
in good optical coupling between the scintillating crystal 
and PMTs.

Monte carlo simulation
The SIMIND Monte Carlo program was used to simulate 
the SPECT camera and phantom studies.[20] When I-131 
is used, various structures attached to back of the crystal 
contribute in backscattering of the emitted photons, and 
also, this is true to some extent with 99mTc. To assess the 
effect of these parts, a single 6-cm slab of Pyrex[21] was 

substituted and simulated. For details on the gamma 
camera simulation, refer to Bahreyni Toossi et al.[22]

Phantoms
For this study, we have simulated a 99mTc point source 
of 37 MBq, an acrylic cylindrical Jaszczak Deluxe 
phantom,[23,24] with spherical inserts measuring 9.5, 12.7, 
15.9, 19.1, 25.4, and 31.0 mm in diameter and insert 
of rods measuring 4.8, 6.4, 7.9, 9.5, 11.1, and 12.7 mm 
in diameter, filled with water and 370 MBq activity 
of 99mTc; and also a four-dimensional (4-D) NURBS-
based cardiac-torso (NCAT) phantom[25] with normal 
organs and also with hot and cold lesions on liver, lung, 
and myocardium. As the SIMIND-simulated SPECT 
projections are noise free, for realization, we add noise 
according to the administered dose.

Image acquisition
In this work, we have studied the following parameters 
of collimator: (i) Energy resolution; (ii) spatial 
resolution; and (iii) image contrast as a function of 11 
different collimator thicknesses ranging from 2.400 to 
2.410 cm using the established and published quality 
control tests.[26-32] The specifications of the collimator, 
also used in simulation, are shown in Table 1. A 130–
151 keV energy window was centered on the 99mTc 
photo peak.[31] Spatial and energy resolutions were 
determined by placing the point source at the center of 
the FOV, at 10 and 25 cm from lower collimator surface, 
respectively, for both simulation and experiment. An 
energy pulse-height distribution was acquired for 107 
photons/projection with various thicknesses of the 
collimator. A study of the SPECT reconstructed spatial 
resolution was also carried out both experimentally and 
by SIMIND simulation. SPECT projections along the 
axis of rotation were acquired of the Jaszczak Deluxe 
Phantom,[33] which was positioned 15 cm from the 
collimator surface. Spatial resolution was obtained 
from viewing the smallest visible and recognizable 
rods. The images were reconstructed in matrices of 
128 × 128 pixels, with a pixel size of 0.39 mm. One 
hundred and twenty-eight SPECT projections of the 
NCAT phantom were simulated in a 360° clockwise 
rotation mode. The images were reconstructed 
and processed by Filtered Back Projection (FBP) 
reconstruction using a ramp combined with a 
Butterworth filter of order 5 and cut-off frequency 
0.45 cycles/cm.

Image evaluation
The images were evaluated qualitatively by two nuclear 
medicine specialists and quantitatively by SSIM. The 
SSIM metric was calculated on various windows of an 
image. The measure between two windows x and y of 
common size N × N was:

Table 1: Physical specifications of an SI-LEHR 
collimator

Hole shape Hexagonal
Number of holes (×1000) 148
Hole length (mm) 24.05
Septal thickness (mm) 0.16
Hole diameter (mm across the flats) 1.11
Sensitivity* (cpm/μCi) 202
Geometric resolution* (mm) 6.4
System resolution* (mm) 7.4
Septal penetration (%) 1.5
*At 10 cm.
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where
•	 µx is the average of x;
•	 µy is the average of y;
•	 σx

2 is the variance of x;
•	 σy

2 is the variance of y;
•	 σxy is the covariance of x and y;
•	 C1= (k1L)2, C2= (k2L)2 are two variables to stabilize the 

division with weak denominator;
•	 L is the dynamic range of the pixel values (L = 255 for 

8 bits/pixel gray scale images); and
•	 k1 = 0.01 and k2 = 0.03 by default.

Approximately, µx and σx can be viewed as estimates of 
the luminance and contrast of x, and σxy measures the 
tendency of x and y to vary together, thus an indication 
of structural similarity.[16]

Results

SPECT system and LEHR collimator
We simulated a dual-headed variable angle scintillation 
gamma camera (Siemens Medical Solutions USA, Inc.) 
and related LEHR collimator with SIMIND Monte 
Carlo program.[22] The effects of 11 different collimator 
thicknesses, 2.400–2.410 cm, on calculated detector 
parameters for a 99mTc point source, a Jaszczak phantom, 
and a 4D-NCAT phantom scanning with an SIMIND-
simulated SPECT are shown in Figure 1.

The results of the image quality obtained by 
visual inspection and on using the SSIM index of 
reconstructed images of the NCAT phantom SPECTs, 
respectively, showed improved quality, >0.75%, in 
lesion detectability for scanning with a 2.405 cm LEHR 
collimator thickness. For the reconstructed SPECT 
images of the Jaszczak phantom, the smallest cold 

sphere and rods observed were 12.7 and 9.5 mm in 
diameter, respectively.

Discussion
The effects of collimator thickness modifications on 
performance parameters like sensitivity and efficiency 
[Figure 1a and b], as well as the results of quantitative and 
qualitative analysis of the reconstructed SPECT images 
of the phantoms revealed that an LEHR collimator with 
a thickness of 2.405 cm can optimally diminish scattered 
radiation and collimate the rays carrying information 
about radioisotope distribution in the organ of target for 
detecting the lesions. Whereas there were no significant 
differences on the SSIM indexes for the images, few scan 
readers reported small improvement, >0.75%, on image 
quality with the collimator thickness of 2.405 cm.

Some studies on collimators and related hole diameters 
have shown that properties of a collimator play 
an essential role for constructing a detailed image 
from an organ,[34,35] and also improved the quality of 
pediatric 123I-MIBG images obtained with medium- energy 
collimator as compared with LEHR and Low-Energy 
Ultra-High-Resolution collimators for both SPECT and 
planar 123I images.[36] However, it is difficult to evaluate 
simultaneously the effect of the three parameters of the 
collimator, including the diameter of a hole, the length of 
the collimator, and the number of holes of the collimator.

Ishikava et al. proposed a statistically derived 
optimization criterion. They also suggested a role for 
the size of photomultiplier tubes.[37] Our results also 
showed in addition to the decreased frequency of 
photon interactions from different thicknesses of the 
collimator, decreased related photon frequencies, and 
decreased sensitivity and efficiency [Figure 1]. These are 
indeed needed to compromise between the parameters 
according to the energy of radioisotope and also the type 

Figure 1: Scatter curves for the effect of LEHR collimator thickness on (a) sensitivity and (b) efficiency of the gamma camera. The results from 
scanning of a 99mTc point source, a Jaszczak phantom, and an NCAT phantom in an SIMIND-simulated SPECT

ba
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of organs to be imaged; otherwise, the improvement of 
spatial resolution with increasing collimator thickness 
affects the sensitivity and ability for detection and also 
increases the radiation absorbed dose in the patients. 
Moore et al. have compared imaging performance 
parameters of a parallel hole collimator with those of a 
fan beam collimator for a suitable design of collimator, 
and proposed task-dependent treatments.[38] Our results 
confirm suitability of thickness of the Siemens produced 
SI-LEHR collimator.[39] On the other hand, the role for 
some scatter- and attenuation-correction methods must 
be considered for implementation of a collimator effect. 
There are some correction techniques that are commonly 
used for performing corrections. Collimator correction 
has been shown to improve the reconstructed resolution, 
but the correction can generate ringing artifacts, which 
lower image quality. Bayesian reconstruction methods, 
as an approach, could reduce these artifacts.[40]

Conclusion
Poor resolution of SPECT has impaired its use in clinical 
practice. It is well known that collimators with a high 
resolution improve the ability to visualize small lesions 
and structures in a lesion, and the detection ability of 
the SPECT system, provided that the count density is 
satisfactory. The results of our current study show that the 
LEHR collimator with a thickness of 2.405 cm offers the 
best resolution when compared with other thicknesses. 
These data may encourage other investigators and allow 
the users to have a better evaluation in comparison to 
other equipments commonly used in nuclear medicine.
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