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ABSTRACT: We compare established docking programs, AutoDock
Vina and Schrödinger’s Glide, to the recently published NNScore scoring
functions. As expected, the best protocol to use in a virtual-screening
project is highly dependent on the target receptor being studied.
However, the mean screening performance obtained when candidate
ligands are docked with Vina and rescored with NNScore 1.0 is not
statistically different than the mean performance obtained when docking
and scoring with Glide. We further demonstrate that the Vina and
NNScore docking scores both correlate with chemical properties like small-molecule size and polarizability. Compensating for
these potential biases leads to improvements in virtual screen performance. Composite NNScore-based scoring functions suited
to a specific receptor further improve performance. We are hopeful that the current study will prove useful for those interested in
computer-aided drug design.

■ INTRODUCTION

Because of the high cost and time requirements associated with
traditional high-throughput screens, many researchers now use
computational methods to prefilter candidate ligands prior to
experimental testing. A number of ligand-based computational
techniques for identifying likely binders have been utilized.
These include 2D screening with fingerprints,1−3 shape-based
screening,4,5 and pharmacophore matching,6 which identify
potential actives by comparing their atomic connectivities,
three-dimensional shapes, and three-dimensional pharmaco-
phores to those of known ligands, respectively.
When structural information about a macromolecular drug

target is known (e.g., from X-ray crystallography or NMR),
computer docking programs are often used to identify
candidate ligands. These programs position three-dimensional
models of small molecules into models of target binding
pockets; associated scoring functions subsequently predict the
binding affinities of these “posed” candidate ligands. While
certainly useful as an enrichment tool, docking has not yet
reached its full potential. In part, the inaccuracies inherent in
this technique stem from factors that are independent of the
scoring function itself. For example, most docking programs do
not account for full receptor flexibility, despite the fact that
flexibility plays a critical role in modern theories of small-
molecule binding (e.g., induced-fit7,8 and population-shift9−12

models). Indeed, efforts to account for receptor flexibility have
proven effective and have led to the identification of a number

of experimentally validated ligands.8,13,14 Similarly, most
docking programs do not account for binding-pocket water
molecules, which can in some cases play critical roles in
mediating receptor−ligand interactions.15 Even a “perfect”
docking program would fail to identify true ligands when
presented with sterically incompatible binding-pocket con-
formations and/or pockets devoid of crucial water molecules.
However, some of the inaccuracies associated with computer

docking are intrinsic to the scoring functions themselves. In
recent years, much work has been directed toward improving
these functions without sacrificing speed.16,17 Some of our own
recent efforts have focused on training neural networks to
rapidly predict the binding energies of protein−ligand
complexes leading to the creation of two neural-network-
based scoring functions, NNScore 1.018 and NNScore 2.0.19

Neural networks are computer models that mimic, albeit
inadequately, the microscopic architecture and organization of
the brain. Biological neurons and synapses are simulated in
silico as “neurodes” and “connections.” Data to be analyzed is
encoded on an input layer of neurodes, triggering a cascade of
signals that propagates through the network. Both the
organization and number of the neurodes as well as the
weights (i.e., strengths) assigned to each neurode−neurode
connection serve to modify the initial input signal during
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propagation. The cascade eventually reaches an output layer of
artificial neurons, where an analysis of the original input signal
is ultimately encoded.
In the NNScore implementations, the strengths of the

connections between neurodes were varied until the networks
could reliably predict binding affinity when given descriptors of
a ligand−receptor complex. For NNScore 1.0, these descriptors
included the number of protein−ligand close contacts,
categorized by AutoDock atom types; the electrostatic energy
of those close contacts; the number of ligand atoms of each
atom type; and the number of ligand rotatable bonds. For
NNScore 2.0, the input additionally included the descriptors
provided by the BINANA algorithm20 (counts of the number of
hydrophobic, π−π, hydrogen-bond, and salt-bridge interac-
tions), as well as the components of the Vina scoring function
(steric, hydrophobic, hydrogen-bond, and ligand-rotatable-
bond terms).21

While some efforts have been made to demonstrate the
favorable performance of these neural-network scoring
functions, these efforts focused on a limited number of
systems, and the neural-network functions were not directly
compared to top-tier proprietary docking programs like
Schrödinger’s Glide.22−25 In the current work, we use
AutoDock Vina21 and Glide26,27 to dock the diverse
compounds of the NCI diversity set III, a popular compound
library available through the National Cancer Institute (NCI),
into the 40 protein receptors of the Directory of Useful Decoys
(DUD).28 Additionally, Vina- and Glide-docked poses are
reevaluated using NNScore 1.0 and 2.0. The mean screening
performance obtained when candidate ligands are docked with
Vina and rescored with NNScore 1.0 is not statistically different
than the mean performance obtained when docking and scoring
with Glide. This is particularly noteworthy given that Glide,
while state of the art, is expensive and has a restrictive token
system. In contrast, AutoDock Vina and NNScore 1.0 are both
free and open source.
Additionally, we note a correlation between certain chemical

properties and the associated docking scores, suggesting
systematic bias. For both Vina and NNScore, docking scores
tended to correlate with small-molecule chemical properties
like size and polarizability, regardless of the target receptor.
Compensating in part for these potential biases improves
virtual-screen performance. Creating composite scoring func-
tions suited to a specific receptor can improve performance
further still.
Though the mean screening performances of Glide and

(Vina + NNScore 1.0) over all 40 DUD receptors are not
statistically different, our results do confirm what has been
found by others: the best scoring function to use for a specific
pharmacological target, be it Vina, NNScore, or Glide, is highly
system dependent.23,29−32 Positive controls (known inhibitors),
when available, should be included in virtual screens to ensure
that the docking protocol chosen is suited to the system at
hand. However, when positive controls are not available, we
recommend (Vina + NNScore 1.0) as a potential alternative to
proprietary docking programs like Schrödinger’s Glide.

■ MATERIALS AND METHODS
Receptor Preparation. The 40 protein receptors of the

DUD28 were downloaded from the DUD website (http://dud.
docking.org/). All ligands and water molecules were removed.
Hydrogen atoms were added to the protein structures (neutral
pH) and hydrogen bonds were optimized using Schrödinger

Maestro’s Protein Preparation Wizard.61 These processed
models were then converted to the AutoDock PDBQT format
with MGLTools 1.5.433 for use in the Vina and NNScore
screens.

Ligand Preparation. Models of ligands known to bind to
the 40 DUD receptors were likewise downloaded from the
DUD website. Additionally, the compounds of the NCI
diversity set III were obtained from the website of the NCI/
NIH Developmental Therapeutics program (http://dtp.nci.nih.
gov/). All these small molecules were processed with
Schrödinger’s LigPrep module to generate models with
appropriate tautomeric, isomeric, and ionization states for pH
values ranging from 5.0 to 9.0. These models were ultimately
converted to the PDBQT format using MGLTools 1.5.433 for
use in the Vina and NNScore screens, and to the SDF format
for use in the Glide screens. A few molecular models could not
be generated; 1560 NCI models were ultimately used in the
virtual screens.

Docking Parameters. For Vina docking, the default
parameters were used. All ligands were docked into regions
(boxes) centered on the respective receptor binding pockets.
The centers and dimensions of the boxes were taken from the
DUD. Edge lengths ranged from 35.9 to 50.0 Å, and box
volumes ranged from 56,365.8 to 88,845.5 Å3. Each Vina
docking generated multiple poses. For the Vina analysis, the
best-scoring pose as judged by the Vina docking score was used.
For the NNScore analysis, all Vina poses were reevaluated with
NNScore 1.018 and NNScore 2.0,19 and the best-scoring Vina
pose as judged by NNScore was considered for subsequent
analysis. In the case of NNScore 1.0, the original programmers
provided 24 neural networks that were particularly adept at
identifying potent ligands when given descriptors of crystallo-
graphic ligand−receptor complexes. The final NN1 scores for
each docking were derived by averaging the output of these 24
networks.
For Glide docking, parameters similar to the defaults were

likewise used. The docking grid was defined by two cubes
centered on the DUD-specified active sites. The inner cube,
with 14 Å edges, imposed restrictions on the location of the
ligand center, and the outer cube, with 45 Å edges, imposed
restrictions on the location of all ligand atoms. For each system,
both the positive controls and the compounds of the NCI
diversity set III were first docked with Glide HTVS. To test
more advanced Glide docking protocols, the top 50% of these
compounds were subsequently docked with Glide SP, and the
top 25% of the remaining compounds were docked with Glide
XP.34 Glide-HTVS- and Glide-XP-docked models were also
rescored with NNScore 1.0 and 2.0. The default parameters
were again used for both.
In all screens, where there were multiple models of a distinct

compound due to alternate tautomeric, stereoisomeric, or
protonation states, the best-scoring model was selected, and all
others were discarded.

Calculating Molecular Properties. Molecular properties
were calculated using Schrödinger’s Maestro suite. Compounds
were processed with LigPrep to optimize geometry and ensure
electrical neutrality. QikProp was then used to calculate
molecular properties.

Assessing the Performance of the Virtual Screens.
Receiver operating characteristic (ROC35) curves can be
generated when performing virtual screens of compound
libraries that include known binders. Following docking and
scoring, the compounds are ordered by their docking scores. A
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moving cutoff is then employed that sweeps from the best
predicted binder to the worst. At each cutoff, the list of
compounds is partitioned. The compounds above the cutoff are
tentatively considered to be binders, and the compounds below
are considered to be nonbinders. If all compounds not known
to be binders are considered decoys, true and false positive
rates can then be calculated for each partition. The ROC curve
is generated by plotting all (false positive rate, true positive
rate) points. ROC or partial ROC curves were calculated for all
screens. The trapezoidal rule was used to determine the areas
under these curves.
ROC curves assess the performance of a virtual screen from

the best predicted binder to the worst. In practice, however,
computational chemists are typically interested in the top-
ranked compounds. One useful way to assess the top-
performing ligands is to determine the true positive rate for a
given fixed false positive rate.36 In the current work, we identify
the true positive rate when the false positive rate is fixed at 5%.
When required to facilitate the optimization of this metric, the
ROC curve was smoothed using a linear interpolation as
implemented in NumPy/SciPy.37−41

The ROC curves generated using the multi-tiered (HTVS-
SP-XP) Glide protocol against dihydrofolate reductase and
epidermal growth factor receptor were not complete enough to
calculate the early-performance metric. To maintain equal
sample sizes for the ANOVA and t-test analyses, all screens
against these two receptors were discarded when appropriate,
regardless of the docking scoring protocol used. Mean and
median early-performance metrics over all 40 DUD receptors
were calculated using all available screen results.

■ RESULTS AND DISCUSSION
The purpose of the current study is two-fold. First, we perform
a systematic comparison of common AutoDock Vina,21

NNScore,18,19 and Glide protocols. In this study, a “protocol”
refers to the two-step process used to computationally identify
potential ligands. First, a compound model must be placed
within a model of the binding pocket. Second, the binding
affinity of that posed compound must be estimated. These two
steps are called docking and scoring, respectively, and are often
combined into a single algorithm. Vina and Glide, for example,
both dock and score potential ligands; NNScore 1.0 and 2.0
only score (or rescore).
We compare two neural-network docking scoring protocols,

Vina−NNScore-1.0 and Vina−NNScore-2.0 (henceforth ab-
breviated Vina-NN1 and Vina-NN2, respectively) and several
popular protocols that are based exclusively on either Vina or
Glide. We show that while the performance of these docking
schemes is highly receptor dependent, the mean screening
performances of the Vina-NN1 and Glide protocols are not
statistically different.22−25

Second, we demonstrate that there are biases in most of the
docking protocols studied, as has been demonstrated for other
scoring functions.23,29−32 Correcting for these biases improves
the performance of the Vina-NN1 protocol further.
Testing Docking Protocols: Receptor, Active, and

Decoy Selection. In order to compare multiple docking
protocols, it is useful to perform a series of “mock” virtual
screens that draw from compound libraries containing both
known ligands (“actives”) and presumed decoy molecules. As
the actives are known a priori, screen performance can be
assessed by examining the ability of a given docking protocol to
accurately separate out actives from decoys. The performance

of a given protocol is often receptor specific; consequently, it is
prudent to perform multiple screens into many diverse
receptors when attempting to assess global utility.
The Directory of Useful Decoys (DUD),28 an excellent

resource for facilitating these assessments, contains 40 diverse
protein receptors and 2950 known actives. For each active, the
DUD contains 36 topologically distinct presumed decoys that
are by design chemically similar to the known inhibitors, as
judged by metrics like molecular weight, cLogP, and the
number of hydrogen-bonding groups. In the current work, we
use the DUD receptors and known active compounds to assess
several docking protocols; however, rather than using the DUD
decoy molecules, we instead used 1560 models of compounds
from the NCI diversity set III (presumed decoys), a set of
publically available, diverse, drug-like molecules provided by the
National Cancer Institute free of charge.
Without wishing to in any way disparage the DUD decoy set,

which is certainly useful in many contexts, it is important to
understand why we opted to use the NCI compounds as
decoys instead. Factors that influence molecular binding can be
divided into two general categories: those that are ligand
specific (i.e., independent of the receptor) and those that are
binding specific (i.e., dependent on specific receptor−ligand
interactions). The number of ligand rotatable bonds is a good
example of a ligand-specific factor, as the immobility of highly
flexible ligands that generally occurs upon binding is thought to
be entropically unfavorable, independent of the receptor. In
contrast, receptor−ligand complementarity of hydrogen-bond
donors and acceptors is a good example of a binding-specific
factor, as it depends specifically on interactions between the
ligand and the receptor. In predicting ligand binding, it is
prudent to consider both ligand- and binding-specific factors.
The DUD decoys were specifically selected so as to be

chemically similar to known actives; they consequently may
lack the chemical heterogeneity that one would see in a set of
compounds selected with diversity in mind (e.g., the NCI
diversity set). On one hand, it is certainly possible that some
scoring functions may be inappropriately biased in their
assessment of ligand-specific factors. What if, for example, a
scoring function inappropriately assigns better docking scores
to compounds with larger dipole moments independent of the
receptor, and coincidentally, the actives being screened tend to
have larger dipole moments than the decoys? The idea of
controlling for this inappropriate bias by intentionally selecting
decoy molecules with dipole moments similar to those of the
actives certainly has its appeal.
On the other hand, insufficient chemical heterogeneity in the

decoys may unfairly bias the evaluation of scoring functions that
rely on valid assessments of ligand-specific factors. What if, for
example, a scoring function correctly considers the number of
ligand rotatable bonds in assessing the likelihood of binding but
the actives and decoys all have the same number of rotatable
bonds? Such a scoring function would be inappropriately
penalized because its ability to utilize information about ligand
rotatable bonds would be underexploited. Indeed, these types
of concerns have lead others to use modified versions of the
DUD decoy set.42,43 Of note, Vina includes one ligand-specific
term in its scoring function (number of rotatable bonds),21 and
the NNScore functions include additional ligand-specific terms
related to the number of ligand atom types.18,19 Consequently,
while we believe convincing arguments can be made in favor of
using the DUD decoys, in the current work, we opted to use
the NCI compounds as decoys instead.
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A separate issue related to decoy selection must also be
addressed. High-throughput screens typically have hit rates that
range from 0.1% to 1.0%;44−50 it is therefore reasonable to
assume that for each DUD protein, the NCI set contains
between 1 and 16 “decoys” that are in fact actives. A similar
assumption underlies the set of DUD decoys, which have
likewise not been explicitly tested to rule out binding. Possible
inaccuracies in comparison metrics introduced by these kinds of
assumptions are at least in part ameliorated by the fact that all
the docking scoring protocols being compared are subject to
the same assumption. Furthermore, the NCI set used in the
current project may well have fewer true binders than the
widely used DUD set, given that the DUD decoys were, as
mentioned above, carefully chosen to be chemically similar to
the DUD actives.
Comparing Docking Protocols: ROC Curves. Having

selected the receptors, actives, and decoys, we next turn to the
question of how best to evaluate virtual-screening performance.
Among the many methods that have been considered,36,51

receiver operating characteristic (ROC) curves are appealing
because they are independent of the ratio of actives vs inactives
and have desirable statistical properties. The area under the
ROC curve (ROC-AUC) is thought to correspond to the
probability that a known binder picked at random will rank
higher than a known nonbinder picked at random.
To compare docking scoring protocols using the ROC-AUC

metric, we docked NCI decoys and DUD actives into the 40
DUD receptors using AutoDock Vina28 and Glide HTVS, a
state of the art, fast docking algorithm designed specifically for
screening large libraries. The Vina-docked poses were then
rescored with NNScore 1.018 and NNScore 2.0.19

The more rigorous Glide SP and Glide XP docking protocols
were not used at this juncture because, while impressively
precise, they are not as well suited for use in high-throughput
virtual screens. Given that an average of 1634 compounds had
to be docked into each of the 40 DUD receptors (74 DUD
actives and 1560 NCI decoys), 65,350 individual dockings were
required to test each docking protocol. We note that others
have similarly eschewed an exclusive use of Glide SP/XP for
projects requiring comparable numbers of individual dock-
ings.52

As has been shown previously,19,23,29−32 our results
demonstrate that the ideal docking protocol for a given project
is highly system dependent. For example, when the screens
were assessed by the ROC-AUC metric, Vina−Vina performed
better than Vina−NN1, Vina−NN2, and HTVS−HTVS for
docking into the progesterone receptor and glycinamide
ribonucleotide transformylase. Vina−NN1 performed best for
docking into hydroxymethylglutaryl−CoA reductase and the
glucocorticoid receptor. Vina−NN2 performed best for
docking into epidermal growth factor receptor and platelet-
derived growth factor receptor kinase. HTVS−HTVS per-
formed best for docking into adenosine deaminase and AmpC
β-lactamase (Table 1).
Given that NN2 considers features of molecular binding that

NN1 neglects, it is curious that for many individual receptors
Vina−NN1 performs substantially better than Vina−NN2
(Table 2). One common criticism of neural networks is that,
unlike some other machine-learning techniques, they are
essentially “black boxes”; it is difficult to impossible to
determine precisely how they come to their ultimate
conclusions. Though speculative, we suspect two factors explain
the favorable performance of Vina−NN1. First, the additional

features of molecular binding that NN2 explicitly considers may
not provide additional information over what NN1 can infer
implicitly. For example, in estimating binding affinity, NN2
explicitly considers the number π−π stacking interactions;
however, NN1 might be able to implicitly infer π−π stacking by
considering the number of receptor and ligand aromatic carbon
atoms that are in close proximity. Second, NN1 and NN2
assess ligand potency very differently. NN1 is trained to return
a binary response: good binder or poor binder. In contrast,
NN2 is trained to return a range of scores roughly equivalent to
pKi or pIC50 values. It may be that binary classification is more

Table 1. Areas under ROC Curves (ROC-AUC)

receptor
Vina−
Vina

Vina−
NN1

Vina−
NN2

HTVS−
HTVS

angiotensin-converting enzyme 0.48 0.69 0.54 0.45
acetylcholinesterase 0.81 0.90 0.80 0.87
adenosine deaminase 0.29 0.48 0.60 0.74
aldose reductase 0.57 0.63 0.59 0.61
AmpC β-lactamase 0.62 0.45 0.66 0.86
androgen receptor 0.67 0.87 0.71 0.88
cyclin-dependent kinase 2 0.71 0.77 0.72 0.65
catechol O-methyltransferase 0.52 0.43 0.62 0.71
cyclooxygenase-1 0.58 0.61 0.62 0.69
cyclooxygenase-2 0.63 0.89 0.79 0.88
dihydrofolate reductase 0.78 0.88 0.85 0.71
epidermal growth factor receptor 0.71 0.76 0.83 0.68
estrogen receptor agonist 0.83 0.91 0.89 0.95
estrogen receptor antagonist 0.90 0.98 0.97 0.89
fibroblast growth factor receptor
kinase

0.84 0.92 0.83 0.40

factor Xa 0.93 0.95 0.93 0.76
glycinamide ribonucleotide
transformylase

0.93 0.88 0.85 0.51

glycogen phosphorylase β 0.38 0.26 0.25 0.68
glucocorticoid receptor 0.65 0.93 0.71 0.71
HIV protease 0.90 0.98 0.95 0.71
HIV reverse transcriptase 0.45 0.72 0.69 0.73
hydroxymethylglutaryl−CoA
reductase

0.55 0.86 0.68 0.30

human heat shock protein 90 0.62 0.90 0.81 0.78
enoyl ACP reductase 0.81 0.81 0.86 0.67
mineralocorticoid receptor 0.59 0.81 0.82 0.92
neuraminidase 0.55 0.56 0.68 0.91
P38 mitogen activated protein 0.87 0.90 0.92 0.79
poly(ADP-ribose) polymerase 0.77 0.73 0.53 0.95
phosphodiesterase 5 0.82 0.87 0.88 0.78
platelet-derived growth factor
receptor kinase

0.80 0.75 0.87 0.60

purine nucleoside phosphorylase 0.60 0.70 0.65 0.81
peroxisome proliferator activated
receptor γ

0.94 0.96 0.97 0.73

progesterone receptor 0.72 0.66 0.67 0.63
retinoic X receptor α 0.59 0.93 0.87 0.98
S-adenosyl-homocysteine
hydrolase

0.73 0.59 0.58 0.92

tyrosine kinase SRC 0.82 0.83 0.88 0.68
thrombin 0.92 0.95 0.93 0.84
thymidine kinase 0.46 0.63 0.60 0.53
trypsin 0.80 0.96 0.92 0.78
vascular endothelial growth factor
receptor

0.84 0.81 0.88 0.61

average 0.70 0.78 0.76 0.73
median 0.72 0.82 0.81 0.73
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effective than continuous classification in this case. Future
versions of NNScore currently in development will return to
the binary-classification paradigm.
Setting the specific details of virtual screens against individual

proteins aside, the best way of assessing the global utility of a
docking scoring function is to consider its performance over
multiple diverse receptors. When the average area under the
ROC curve calculated over all 40 DUD receptors was
considered, Vina−NN1 and Vina−NN2 outperformed Vina−
Vina and HTVS−HTVS. To determine whether or not this
difference was statistically significant, we used a technique

called analysis of variance (ANOVA).53 ANOVA asserts the
null hypothesis that the means of multiple samples are equal
(i.e., that multiple samples are drawn from populations with the
same mean). In this sense, ANOVA is similar to the t-test,
which is limited to two samples. When assessing multiple
samples, one might be tempted to simply perform multiple t-
tests between all sample pairs; however, each t-test carries with
it the risk of incorrectly rejecting the null hypothesis (i.e.,
committing a type I error by rejecting the conclusion that two
samples have statistically equal means when in fact they are
statistically equal). As more and more t-tests are performed, the

Table 2. True Positive Rates When the False Positive Rates Are Fixed at 5%

receptors
Vina−
Vina

Vina−
NN1

Vina−
NN2

HTVS−
HTVS

HTVS−
SP−XP

HTVS−SP−
XP−NN1

HTVS−SP−
XP−NN2

composite
(general)

composite
(independent)

angiotensin-converting enzyme 0.04 0.25 0.02 0.10 0.08 0.10 0.06 0.24 0.44
acetylcholinesterase 0.40 0.64 0.25 0.74 0.69 0.69 0.65 0.51 0.66
adenosine deaminase 0.01 0.05 0.08 0.43 0.57 0.39 0.30 0.34 0.72
aldose reductase 0.02 0.05 0.16 0.08 0.08 0.04 0.08 0.05 0.70
AmpC β-lactamase 0.02 0.01 0.06 0.24 0.24 0.29 0.29 0.04 0.76
androgen receptor 0.12 0.39 0.25 0.54 0.54 0.57 0.46 0.20 0.39
cyclin-dependent kinase 2 0.09 0.18 0.15 0.10 0.25 0.21 0.13 0.49 0.48
catechol O-methyltransferase 0.14 0.05 0.13 0.00 0.09 0.09 0.09 0.36 1.00
cyclooxygenase-1 0.03 0.07 0.03 0.06 0.20 0.24 0.24 0.05 0.30
cyclooxygenase-2 0.07 0.45 0.24 0.70 0.11 0.59 0.09 0.48
dihydrofolate reductase 0.08 0.31 0.27 0.00 0.88 0.88 0.83 0.59
epidermal growth factor receptor 0.01 0.09 0.27 0.15 0.28 0.28 0.26 0.27 0.53
estrogen receptor agonist 0.45 0.40 0.48 0.79 0.69 0.79 0.66 0.54 0.38
estrogen receptor antagonist 0.42 0.99 0.74 0.73 0.77 0.82 0.82 0.87 1.00
fibroblast growth factor receptor
kinase

0.17 0.49 0.23 0.06 0.08 0.09 0.11 0.69 0.71

factor Xa 0.77 0.74 0.55 0.38 0.58 0.57 0.57 0.78 0.79
glycinamide ribonucleotide
transformylase

0.50 0.48 0.04 0.00 0.86 0.86 0.81 1.00 1.00

glycogen phosphorylase β 0.02 0.02 0.01 0.11 0.17 0.06 0.00 0.39 0.75
glucocorticoid receptor 0.08 0.70 0.16 0.30 0.15 0.12 0.10 0.61 0.71
HIV protease 0.50 0.97 0.66 0.32 0.49 0.53 0.57 0.64 0.98
HIV reverse transcriptase 0.07 0.09 0.18 0.38 0.30 0.20 0.28 0.29 0.53
hydroxymethylglutaryl−CoA
reductase

0.06 0.22 0.02 0.00 0.03 0.03 0.00 0.33 0.83

human heat shock protein 90 0.01 0.24 0.23 0.13 0.17 0.13 0.21 0.85 0.73
enoyl ACP reductase 0.35 0.16 0.47 0.21 0.26 0.25 0.28 0.27 0.49
mineralocorticoid receptor 0.21 0.22 0.44 0.91 0.60 0.67 0.60 1.00 0.55
neuraminidase 0.02 0.05 0.03 0.81 0.90 0.69 0.65 0.47 0.95
P38 mitogen-activated protein 0.46 0.53 0.53 0.43 0.46 0.48 0.47 0.43 0.48
poly(ADP-ribose) polymerase 0.06 0.10 0.05 0.67 0.45 0.52 0.30 0.29 0.33
phosphodiesterase 5 0.26 0.42 0.46 0.32 0.31 0.39 0.35 0.55 0.64
platelet-derived growth factor
receptor kinase

0.20 0.18 0.46 0.09 0.08 0.10 0.11 0.32 0.40

purine nucleoside phosphorylase 0.06 0.17 0.16 0.56 0.48 0.40 0.40 0.33 0.88
peroxisome proliferator activated
receptor γ

0.82 0.81 0.87 0.41 0.62 0.58 0.57 0.78 0.97

progesterone receptor 0.10 0.31 0.14 0.05 0.00 0.04 0.00 0.16 0.35
retinoic X receptor α 0.20 0.74 0.42 0.80 0.50 0.45 0.45 1.00 1.00
S-adenosyl-homocysteine
hydrolase

0.03 0.05 0.02 0.73 0.48 0.09 0.42 0.44 0.82

tyrosine kinase SRC 0.11 0.30 0.25 0.33 0.48 0.44 0.50 0.44 0.60
thrombin 0.65 0.74 0.60 0.46 0.77 0.78 0.77 0.95 0.84
thymidine kinase 0.01 0.15 0.08 0.09 0.14 0.14 0.09 0.36 0.76
trypsin 0.48 0.88 0.46 0.45 0.80 0.77 0.80 0.73 1.00
vascular endothelial growth
factor receptor

0.24 0.25 0.50 0.27 0.27 0.27 0.33 0.33 0.66

average 0.21 0.35 0.28 0.35 0.39 0.38 0.38 0.48 0.68
median 0.10 0.25 0.24 0.32 0.38 0.34 0.34 0.43 0.70
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chances of committing this error increase. ANOVA avoids the
problem by considering multiple samples in conjunction rather
than pairwise.
Both ANOVA and the t-test allow one to assess the degree of

statistical significance via a p value. The p value in this case
represents the probability that the multiple samples could have
means that differ to the degree observed or greater, given that
the null hypothesis is true (i.e., given that the samples are
drawn from populations with equal means). If p < 0.05, the null
hypothesis is rejected.
ANOVA analysis suggested that the mean screening

performances of the Vina−NN1, Vina−NN2, Vina−Vina, and
HTVS−HTVS protocols were not statistically different (p =
0.16, not quite the 0.05 required to reject the null hypothesis).
Clearly, known inhibitors, when available, should be included in
a virtual screen and used to determine which docking scoring
protocol is best suited to the specific system at hand. In the
absence of any information about known binders, however, we
recommend docking with Vina and rescoring with NNScore
1.0, as that protocol did have the highest ROC-AUC mean and
median performances.
Comparing Docking Protocols: The Metric of Early

Performance. Though the ROC-AUC metric is frequently
used to evaluate virtual-screening performance, some have
criticized its use because it assesses that performance by
considering all screened compounds from the best predicted
binder to the worst.54 In practice, computational chemists are
most interested in the top-ranked compounds, the ones that
will be subsequently submitted for experimental validation. It is
therefore the initial portion of the ROC curve, some argue, that
ought to be of primary interest. A number of performance
metrics have been proposed to address this issue (e.g., the
BEDROC metric54 derived from a modified ROC curve that
weights top-ranked compounds). Additionally, Hawkins et al.36

recently suggested a simple approach using the “metric of early
performance based on the ROC curve.” In this scheme, one
analyzes a ROC curve to determine the true positive rate for a
fixed false positive rate (5% in the current work).
We used the metric of early performance to compare the

Vina-, NNScore-, and HTVS-based protocols to a common
multi-tiered Glide protocol (HTVS−SP−XP)34 that has been
used extensively in the literature (see, for example, refs 52, 55,
56, and 57). The top 50% best ligands as judged by the HTVS−
HTVS protocol were subsequently redocked with Glide SP.
The top 25% of the Glide-SP compounds were then redocked
with Glide XP. These XP-docked poses were additionally
rescored with NNScore 1.018 and NNScore 2.019 to facilitate
comparison.
We note that the multi-tiered HTVS−SP−XP approach is

best suited for docking large compound libraries. Admittedly,
the analysis herein described required that only 1634
compounds be docked into each DUD receptor on average,
suggesting that Glide-SP or -XP docking alone might have been
feasible. However, as mentioned above, because we considered
all 40 DUD receptors simultaneously, 65,350 dockings would
have ultimately been required had the multi-tiered approach
been abandoned. Others have similarly turned to multi-tiered
Glide protocols for projects requiring comparable numbers of
individual dockings.52

Many compounds were filtered out in the initial HTVS and
SP steps of the HTVS−SP−XP protocol and so were never
docked/scored using Glide XP. Consequently, it was not
possible to calculate a complete ROC curve for the HTVS−

SP−XP protocol. However, by assuming that compounds
filtered out in the preliminary HTVS and SP steps truly were
poor binders (the reasoning implicit in the multi-tiered
approach), it was possible to generate the arguably paramount
initial portion of the ROC curve.
While individual results were system dependent, Vina−NN1

and Vina−NN2 again performed better on average than Vina−
Vina as judged by the average early-performance metric (Table
2). Surprisingly, the mean performances of the HTVS−HTVS,
HTVS−SP−XP, and Vina−NN1 protocols were not statisti-
cally different (ANOVA, p = 0.72). In contrast, t-tests
comparing the mean performance of the HTVS−SP−XP
protocol to that of the Vina−Vina and Vina−NN2 protocols
led us to reject the null hypothesis of equivalence (t-test, p =
0.002 and 0.049, respectively). HTVS−SP−XP performed
better, on average, than Vina−Vina and Vina−NN2.
To further compare the Glide XP and NNScore scoring

functions, we reevaluated the HTVS−SP−XP poses with
NNScore 1.0 and 2.0. As expected, early performance was
highly system dependent. Nevertheless, ANOVA demonstrated
that the mean performances of the HTVS−SP−XP, HTVS−
SP−XP−NN1, and HTVS−SP−XP−NN2 protocols were not
statistically different (p = 0.88). The mean performances of
HTVS−SP−XP−NN1 and Vina−NN1 were likewise not
statistically different (t-test, p = 0.70).

Correlations between Molecular Properties and
Docking Scores: Artifactual or Physical? In hopes of
further improving virtual-screening accuracy, we next sought to
specifically characterize scoring-function biases. Schrödinger’s
QikProp program was used to analyze the screened compounds
(known inhibitors and putative decoys). A statistical correlation
between certain chemical properties and the average rank of
each compound across all 40 DUD receptors was noted. Vina−
Vina, Vina−NN1, and Vina−NN2 scores tended to correlate
with properties associated with molecular size (molecular
weight, total solvent accessible surface area, volume, number of
ring atoms, and number of heteroatoms) and polarizability
(Table 3). It is interesting that both Vina and the neural-
network scoring functions demonstrated similar trends, even
though they evaluate ligand binding using very different
methodologies. Others have identified similar biases in the
FlexX and Gold docking programs.58 The HTVS−HTVS and

Table 3. R2 (Goodness of Fit) Values Associated with
Correlations between Average Rank Over All 40 Receptors
and Selected NCI Small-Molecule Chemical Properties, As
Determined Using Schrödinger’s Qikpropa

Qikprop Property
Vina−
Vina

Vina−
NN1

Vina−
NN2

HTVS−
HTVS

HTVS−
SP−XP

molecular weight 0.45 0.42 0.48 0.03 0.20
solvent-accessible surface
area (Å2)

0.43 0.48 0.44 0.02 0.15

solvent-accessible volume
(Å3)

0.44 0.52 0.45 0.02 0.16

polarizability (Å3) 0.57 0.52 0.54 0.05 0.10
predicted hexadecane/gas
partition coefficient

0.56 0.41 0.51 0.06 0.24

number of atoms in rings 0.70 0.32 0.50 0.23 0.07
number of heteroatoms 0.57 0.50 0.49 0.05 0.21

aFor the HTVS−SP−XP protocol, only ligands that were scored using
Glide XP in at least 10 out of 40 receptors were considered. In the end,
this amounted to about 200 ligands.
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HTVS−SP−XP protocols did not exhibit these biases to the
same extent (Table 3). For the interested reader, we provide a
real-world example of how scoring-function biases can affect
screening results in the Supporting Information.
These potentially artifactual correlations between ligand

properties and docking scores may result in part from a general
neglect of penalty terms that ought to be associated with
binding (e.g., ligand desolvation, trapping binding-site waters,
etc.). We do not mean to imply that Vina and NNScore neglect
penalty terms entirely. The Vina scoring function, for example,
has three steric-interaction terms.21 Additionally, NNScore may
be able to implicitly account for some penalty terms as well;
information about energetically unfavorable buried polar
groups, for example, could potentially be extracted from the
pairwise receptor−ligand atom-type information that NNScore
considers. Nevertheless, both Vina and NNScore are likely
“blind” to many important penalty phenomena. Indeed, Glide-
based protocols may perform well relative to many other
scoring functions24 because they better account for these
penalties, as evidenced by the fact that HTVS and XP scores are
not strongly correlated with molecular weight (Table 3). Future
versions of NNScore currently being developed will consider
three-dimensional descriptions of ligand−receptor binding and
so may be even more effective than current implementations.
On the other hand, one must consider the possibility that at

least a portion of these scoring-function “biases” in fact
represent accurate characterizations of small-molecule binding.
To this end, we tested whether or not correlations exist
between the molecular properties and experimentally measured
binding affinities of known ligands independent of receptor. All
the binding data deposited in the Binding MOAD database as
of March 2013 was considered.59 In total, 2081 entries
representing 1598 unique compounds had both known
structures and precise or approximate Ki measurements (i.e.,
measurements described as “=” or “≈”). We were ultimately
able to calculate molecular properties for 1531 of these
compounds.
Interestingly, both molecular weight and polarizabiliy were

correlated with the experimentally measured pKi values; these
molecular properties are plotted as a function of average pKi
(independent of receptor) in Figure 1A and B, respectively.
Linear regression suggested that the relationship between
molecular weight and pKi was MW = 39.2710 (pKi) +
122.1835, with a R2 value of 0.23. A t-test on the slope
coefficient yielded a p-value of 0.0, leading us to reject the null
hypothesis that there is no true relationship between pKi and
molecular weight (i.e., that the true slope coefficient is 0).
Similarly, the regression equation describing the relationship
between polarizability and pKi was pol = 4.3326 (pKi) + 7.3163,
with a R2 value of 0.30. A t-test on the slope coefficient of this
regression similarly produced a p-value of 0.0; the hypothesis
that polarizability and pKi are not correlated was thus similarly
rejected.
Subjectively, the notion that ligand binding may be in part

dependent on factors that are entirely ligand centric has some
appeal. For example, while it is certainly true that in the absence
of ligand−binding-site complementarity bigger is not necessar-
ily better, larger molecules may well have more interacting
moieties on average that serve to enhance potency if
complementarity is assumed. On the other hand, it may be
that the noted correlations between molecular properties and
experimentally measured pKi values are more reflective of
traditional and perhaps flawed approaches to medicinal

chemistry than of actual physical phenomena. For example,
during the drug-optimization process, molecules do tend to
increase in size.60 Regardless, our goal ought to be to
compensate for true biases while maintaining correlations that
reflect actual physical phenomena.

Compensating for Bias: General-Purpose Scoring
Functions. To compensate for potential scoring-function
biases, we considered 15 relevant QikProp properties for each
NCI decoy and known DUD inhibitor: accptHB (estimated
number of hydrogen-bond acceptors), CIQPlogS (predicted
aqueous solubility), dipole (computed ligand dipole moment),
donorHB (estimated number of hydrogen-bond donors), SASA
(total solvent accessible surface area, Å2), FISA (hydrophilic
component of the SASA, Å2), FOSA (hydrophobic component
of the SASA, Å2), mol_MW (molecular weight, daltons),
nonHatm (number of heavy atoms), PISA (π component of the
SASA, Å2), QPlogPC16 (predicted hexadecane/gas partition
coefficient), QPlogPo/w (predicted octanol/water partition
coefficient), Qppolrz (predicted polarizability, Å3), rotor
(number of rotatable bonds), and volume (total solvent-
accessible volume, Å3). Composite scoring functions were
considered of the form

∑+ C PNN1
i

i i

where NN1 is the Vina−NN1 score, Pi is the ith chemical
property (listed above), and Ci is a coefficient associated with
that property.
A stepwise selection method was used to identify the

composite scoring functions that best improved screen
performance. First, training sets were generated for each
DUD receptor by randomly selecting 75% of the associated
known actives and merging them with the set of all NCI
decoys. Similar testing sets were generated using the remaining

Figure 1. Molecular properties vs average experimentally measured
pKi values independent of the receptor. Linear regression is shown as a
bolded line. (A) Molecular weight. (B) Polarizability.
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known actives. All 15 coefficients were initially set to 0.0 so that
the composite and Vina−NN1 scores were identical. The
downhill simplex algorithm (SciPy) was then used to adjust the
coefficients so as to maximize the average screen performance
over all 40 training sets. Once training was complete, the
resulting composite scoring function was then evaluated by
calculating the average early-performance metric over the 40
testing sets, now without adjusting the coefficients.
The above protocol was repeated; each time, a different

coefficient was fixed at 0.0 so that the associated chemical
property was essentially ignored. The single chemical property
that when discounted was associated with the smallest drop in
the average screen performance over the 40 testing sets was
identified. A new set of 14 chemical properties was generated
by excluding this chemical property. In total, this elimination
step was repeated 15 times until no additional chemical
properties remained (Figure 2A).

A general-purpose scoring function was identified by
considering the minimum number of chemical properties
required to maintain optimal early performance (Figure 2A).
Specifically, when the compounds were ranked by (NN1 +
0.1093 × donorHB + 0.0011 × FOSA + 0.0008 × PISA), the
average early-performance metric over all 40 receptors was
0.48, substantially improved over the 0.35 obtained with Vina−
NN1 alone. A t-test in fact required that we reject the notion
that the mean performances of these two screens were
statistically equal (p = 0.04) (Table 2, composite/general).
Given that we opted to use decoys that were not necessarily

chemically similar to the DUD actives, it was especially
important to ensure that the above general-purpose scoring
function was not overtrained. For example, consider the
hypothetical possibility that the decoys and DUD actives all
have fewer than three and more than four hydrogen-bond
donors, respectively. It would be possible to identify the actives
using ligand-specific factors alone, independent of any
important ligand−receptor interactions.
On the other hand, some ligand-specific factors (e.g., the

number of rotatable bonds) may well be legitimately useful for
distinguishing actives from decoys. It is not unreasonable to
expect some genuine enrichment when compounds are ranked
by a scoring function comprised exclusively of ligand-specific
terms; nevertheless, one would expect that screen performance
would improve further still when additional binding-specific
terms (e.g., the NNScore) are included.
To ensure that actives were not being identified based on

their chemical properties alone, we generated a second scoring
function of the same form (0.1093 × donorHB + 0.0603 ×
FOSA + 0.0458 × PISA), comprised exclusively of the ligand-
specific terms of the parent general-purpose function. The
average early-performance metric over all 40 receptors when
the ligands were ranked by this ligand-specific scoring function
was 0.22. A t-test required that we reject the null hypothesis
that the mean performances of the ligand-specific scoring
function and its parent function were statistically equivalent (p
= 0.00005), suggesting that the general-purpose function
achieved its enhanced performance by considering both
ligand-specific and binding-specific factors.

Compensating for Bias: Receptor-Specific Scoring
Functions. The implicit assumption behind the creation of
any general-purpose scoring function is that a single function
can perform optimally across any number of receptors;
however, given the demonstrated system dependence of scoring
functions in general, this supposition is not likely to be correct.
We therefore repeated the above scoring-function optimiza-
tions, now generating an independent composite scoring
function for each receptor (Figure 2B).
The average early-performance metric over the 40 receptors

was substantially improved when receptor-specific scoring
functions that included terms for FISA, mol_MW, and volume
were employed (0.68). A t-test required us to reject the null
hypothesis that the mean early-performance metrics of this
scoring function and the general-purpose scoring function
described above were statistically equivalent (p = 0.00073;
Table 2, composite/individual). An analogous scoring function
containing only ligand-specific terms was also generated, as
above. Again, we rejected the null hypothesis that the mean
performances of the ligand-specific scoring function and its
parent function with the additional NN1 term were statistically
equivalent (0.53 vs 0.68, p = 0.01).

Figure 2. Screen performance when composite scoring functions were
used. In each graph, the leftmost data point describes the average
performance over all 40 DUD receptors when a composite function
that incorporates the Vina−NN1 score together with 15 small-
molecule properties is used. Advancing rightward, composite functions
are used that progressively incorporate fewer chemical properties. The
rightmost data point shows screen performance when Vina−NN1
alone is used. (A) Single general-purpose function. (B) Independent
composite scoring functions generated for each receptor.
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It is not necessarily our purpose to provide specific
composite functions for others to use in their virtual screens;
rather, we wish to demonstrate the general utility of deriving
such functions when positive controls (known inhibitors) are
available. A composite scoring function tailored to a specific
receptor and designed to optimize the ranking of known
inhibitors can potentially enhance virtual-screening perform-
ance.

■ CONCLUSION
The performance of a docking scoring protocol is highly
dependent on the specific receptor being studied. When
possible, positive controls (known binders) should be included
in the screen so many different protocols can be tested.
However, in the absence of known ligands and when a free,
open source, general-purpose solution is sought, docking with
AutoDock Vina and rescoring with NNScore 1.0 is an excellent
option. We are hopeful that this work will help guide
computational chemists in their efforts to best utilize
computer-docking programs.
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