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We wished to construct a prognostic model based on ferroptosis-related genes and to si-
multaneously evaluate the performance of the prognostic model and analyze differences
between high-risk and low-risk groups at all levels. The gene-expression profiles and rel-
evant clinical data of patients with non-small-cell lung cancer (NSCLC) were downloaded
from public databases. Differentially expressed genes (DEGs) were obtained by analyzing
differences between cancer tissues and paracancerous tissues, and common genes be-
tween DEGs and ferroptosis-related genes were identified as candidate ferroptosis-related
genes. Next, a risk-score model was constructed using univariate Cox analysis and least ab-
solute shrinkage and selection operator (Lasso) analysis. According to the median risk score,
samples were divided into high-risk and low-risk groups, and a series of bioinformatics anal-
yses were conducted to verify the predictive ability of the model. Single-sample gene set
enrichment analysis (ssGSEA) was used to investigate differences in immune status between
high-risk and low-risk groups, and differences in gene mutations between the two groups
were investigated. A risk-score model was constructed based on 21 ferroptosis-related
genes. A Kaplan–Meier curve and receiver operating characteristic curve showed that the
model had good prediction ability. Univariate and multivariate Cox analyses revealed that
ferroptosis-related genes associated with the prognosis may be used as independent prog-
nostic factors for the overall survival time of NSCLC patients. The pathways enriched with
DEGs in low-risk and high-risk groups were analyzed, and the enriched pathways were cor-
related significantly with immunosuppressive status.

Introduction
‘Ferroptosis’ is a type of iron-dependent programmed cell death that differs from apoptosis, cell necrosis,
and autophagy. It is driven by cellular metabolism and iron-dependent lipid peroxidation. Ferroptosis is
associated with ischemic organ damage and cancer. The main mechanism of ferroptosis is to catalyze the
highly expressed unsaturated fatty acids on cell membranes under the action of divalent ferrous iron or
lipoxygenase, which results in lipid peroxidation and induces cell death [1]. Lipid peroxides are common
cellular metabolic byproducts, and phospholipid hydroperoxide glutathione peroxidase (GPX)4 is a cen-
tral regulator that protects cells by neutralizing lipid peroxides. Direct inhibition of GPX4 expression or
depletion of its substrates, such as glutathione and cysteine, can cause ferroptosis [2].

Lung cancer is one of the most common malignant tumor types worldwide. Morbidity and mortality
from lung cancer rank first in China, and non-small-cell lung cancer (NSCLC) accounts for ∼85% of lung
cancers [3]. Several reports have indicated that in NSCLC, ferroptosis can be inhibited by various mech-
anisms. For example, high expression of P53RRA can promote ferroptosis in lung cancer cells [4], and
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CDGSH iron sulfur domain 1 (CISD1) [5] and TP53 [6] have a negative regulatory effect on ferroptosis. However,
whether ferroptosis-related genes are related to the prognosis of NSCLC patients is not known.

In the present study, the expression data and clinical information of NSCLC patients were downloaded from
The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC) database
as the training set and validation set, respectively. Subsequently, differential analysis was undertaken to screen
ferroptosis-related genes associated with cancer prognosis. Next, a prognostic model was constructed based on
ferroptosis-related genes to predict the survival of patients. In addition, the performance of the prognostic model
was evaluated and validated. Functional enrichment analysis of differentially expressed genes (DEGs) in low-risk and
high-risk groups was conducted, and correlations between enriched pathways and immune status were studied.

Materials and methods
Data collection
The RNA sequencing (RNA-seq) data and corresponding clinical information of 1127 NSCLC patients were down-
loaded from the TCGA database (https://portal.gdc.cancer/) as the training set. From the ICGC database (https:
//dcc.icgc.org/releases/current/Projects/LUSC-US/), the data of 341 NSCLC patients were downloaded as the vali-
dation set. Simultaneously, the data of 1164 ferroptosis-related genes were downloaded from the National Center for
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (https://www.kegg.jp/kegg/) databases.

Construction and validation of a prognostic model based on
ferroptosis-related genes
R v3.6.0 (R Institute for Statistical Computing, Vienna, Austria) was used to conduct a rank-sum test on the train-
ing set to identify DEGs between cancer tissue and paired normal tissue. The screening condition was log FC ≥1,
and adjusted P<0.05. Subsequently, common genes between the DEGs identified and known ferroptosis-related
genes were identified as candidate ferroptosis-related genes. Ferroptosis-related genes with potential independent
prognostic value for the overall survival (OS) of NSCLC patients were screened by univariate Cox analysis us-
ing ‘survival’ and ‘survminer’ packages within R. Subsequently, the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database (https://string-db.org/) was used to construct a protein–protein interaction (PPI)
network for these potential ferroptosis-related genes associated with the prognosis, and correlation analysis between
genes was carried out. Subsequently, the ‘glmnet’ R package was used for least absolute shrinkage and selection oper-
ator (Lasso) regression analysis to undertake dimensionality reduction to remove highly correlated genes. Then, the
ferroptosis-related genes used for construction of the prognostic prediction model were screened out. The risk score
of each NSCLC patient was calculated using the following formula:

Risk score = β1 × Exp1 + β2 × Exp2 + βi × Expi

The regression coefficient (β) was obtained through Lasso regression analysis; Exp represents the expression
of each ferroptosis-related gene. The prognostic risk score model was constructed based on the expression of the
ferroptosis-related genes associated with the prognosis. To evaluate the predictive ability of this model, NSCLC pa-
tients in the TCGA database were divided into ‘high-risk’ and ‘low-risk’ groups according to the median risk score;
then Kaplan–Meier (KM) analysis was done to compare differences in OS between the two groups using the ‘survival’
and ‘survminer’ R packages. In addition, the ‘survivalROC’ R package was used to generate a receiver operating char-
acteristic (ROC) curve to evaluate the prediction accuracy of the model. In addition, principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE) analysis were undertaken using the ‘prcomp’ and
‘Rtsne’ packages of ‘stats’ in R software, respectively, to explore the distribution of patient survival in different groups.
Furthermore, univariate and multivariate Cox regression analyses were used to investigate whether a risk score was
an independent prognostic factor for OS in NSCLC patients.

Analyses of functional enrichment
‘Gene ontology’ focuses on the function of genes and gene products. The ‘clusterprofiler’ R package was used to
carry out this function using the Gene Ontology (GO) database. Functional-enrichment analyses on the DEGs in the
training set and validation set were done using the KEGG database. Analysis of gene ontology was further divided into
three domains: cellular component, molecular function, and biological process. Subsequently, the ‘GSVA’ R package
was used for single-sample gene set enrichment analysis (ssGSEA) to quantify differences in scores for infiltration
of immune cells and immune-related functions or pathways between high-risk and low-risk groups. Furthermore,
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Table 1 Clinical characteristics of NSCLC patients

TCGA cohort ICGC cohort

No. of patients 963 341

Gender

Male 579 (60.1%) 251 (73.6%)

Female 384 (39.9%) 90 (26.4%)

Age

≤65 NA 104 (30.5%)

>65 NA 237 (69.5%)

Pathologic-T

T1T2 811 (84.2%) NA

T3T4 152 (15.8%) NA

Pathologic-N

N0N1 834 (86.6%) NA

N2N3 129 (13.4%) NA

Pathologic-M

M0 722 (75.0%) NA

M1 241 (25.0%) NA

Pathologic-stage

Stage I/II 762 (79.1%) NA

Stage III/IV 201 (20.9%) NA

tumor immune dysfunction and exclusion (TIDE) (http://tide.dfci.harvard.edu/login/) analysis was undertaken in the
high-risk and low-risk groups to predict the immunotherapeutic effects in the two groups. Next, a single-nucleotide
polymorphism (SNP) file in the training set was analyzed to investigate differences in mutations between high-risk
and low-risk groups.

Statistical analyses
Statistical analyses were carried out using R v3.6.0. KM curves and the log-rank test were used to compare survival
differences between high-risk and low-risk groups. Analyses of ROC curves determined the predictive ability of the
model. Then, independent prognostic factors were determined using univariate and multivariate Cox regression anal-
yses. P<0.05 was considered significant.

Results
A flowchart of the present study is shown as Figure 1. The training set comprised 1127 NSCLC patients from the
TCGA database. The validation set was composed of 341 NSCLC patients from the ICGC database. The detailed
clinical characteristics of these patients are summarized in Table 1.

Identification of ferroptosis-related DEGs
The rank-sum test was used to compare DEGs between cancer tissue and paracancerous tissue in the training set
and resulted in 6497 DEGs. Volcano plots were drawn using the ‘ggplot2’ R package (Figure 2A). A total of 1164
ferroptosis-related genes were obtained from NCBI and KEGG databases and were intersected with DEGS obtained
previously. Finally, 283 candidate ferroptosis-related genes were obtained (Figure 2B), and they were used in a sub-
sequent factor analysis. Subsequently, we made a heatmap of the characteristics of 283 candidate ferroptosis-related
genes that showed the differential expression of ferroptosis-related genes between cancer tissues and adjacent tissues
(Figure 2C).

Identification of ferroptosis-related genes associated with NSCLC
prognosis using univariate cox regression analysis
A total of 283 candidate ferroptosis-related genes were screened by univariate Cox analysis, and 32 potential
ferroptosis-related genes significantly associated with the prognosis of patients were obtained (Figure 3A). The first
four genes were selected according to significance, and survival curves were constructed based on patient survival
(Supplementary Figure S1).
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Figure 1. Flowchart showing the collection and analyses of data

Construction of a PPI network based on ferroptosis-related genes
associated with the prognosis and correlation analysis
A PPI network of 32 genes was constructed using the STRING database. Protein interaction was strong and many
kinds of interactions were noted (Figure 3B). Correlation analysis between genes in the training set was done accord-
ing to gene expression (Figure 3C).
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Figure 2. Identification of ferroptosis-related DEGs

(A) Volcano plot of DEGs between cancer tissue and paracancerous tissue in NSCLC patients in the training set. Red represents

up-regulation, blue represents down-regulation, and yellow represents intermediate transition. (B) Venn diagram of the intersections

of DEGs and ferroptosis-related genes. (C) Expression distribution of 283 DEGs obtained in the training set.

Establishment of a prognostic risk model of NSCLC based on
ferroptosis-related genes
To reduce the high correlation between ferroptosis-related genes, Lasso regression analysis was undertaken for dimen-
sionality reduction on 32 genes (Figure 4A). Thus, 21 related genes were retained for construction of the prognostic
risk model (Figure 4B).

Performance evaluation of the prognostic risk model based on
ferroptosis-related genes in the training set
First, according to the median risk score, the samples in the training set were divided into the high-risk group (n=481
cases) and low-risk group (n=482 cases) (Figure 5A). A risk chart showed that patients in the high-risk group had
shorter survival times (Figure 5B). Analyses of KM curves showed that the survival time in the low-risk group was
significantly longer than that in the high-risk group (Figure 5C). In addition, analyses of ROC curves (AUC) = 0.679
(Figure 5D), PCA (Figure 5E), and t-SNE (Figure 5F) showed that the model had good prediction ability, and it could
distinguish between high-risk and low-risk groups.
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Figure 3. Ferroptosis-related genes associated with the prognosis

(A) Forest map of the results of univariate Cox analysis of 32 genes. (B) PPI network of 32 genes. (C) Correlation analysis of 32

genes. Blue represents positive correlation, and red represents negative correlation.

Performance evaluation of the prognostic risk model based on
ferroptosis-related genes in the validation set
To test the predictive ability of the model, the training set was used to evaluate the risk-prediction model. First, the
median risk score was calculated based on the formula of the risk score established using the training set, and then the
samples in the validation set were divided into the high-risk group (n=170 cases) and low-risk group (n=171 cases)
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(A)

(B)

Figure 4. Dimensionality reduction by Lasso analysis for gene selection

(A) Lasso analysis of 32 genes. (B) Twenty-one ferroptosis-related genes associated with the prognosis were obtained for con-

struction of a risk-prediction model.

(Figure 6A). The results were identical to those of the training set. The risk chart indicated that the patients in the
high-risk group had a worse prognosis (Figure 6B). The KM curve showed that the survival time in the low-risk group
was significantly longer than that in the high-risk group (Figure 6C). In addition, analyses of ROC curves (AUC =
0.618) (Figure 6D), PCA (Figure 6E), and t-SNE (Figure 6F) showed that the model had good prediction ability and
could distinguish between high-risk and low-risk groups.

Determination of the risk score as an independent prognostic factor for
NSCLC
Univariate and multivariate Cox analyses were undertaken to ascertain if the risk score was an independent prog-
nostic factor relative to other variables in the training set and validation set. In the univariate Cox analysis of the
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Figure 5. Construction of a risk-prediction model of the training set and analyses of model performance

(A and B) Risk chart of the training set. Distributions of risk scores and survival times of samples from the TCGA database. (C) A

KM curve was used to analyze differences in survival time between high-risk and low-risk groups, which were divided according

to the risk model constructed by the training set, P<0.0001. (D–F) ROC curves, PCA, and t-SNE visualization demonstrating the

performance of the risk model constructed using the training set.

training set (Figure 7A), the hazard ratio (HR) was 0.54 (95% confidence interval (CI): 0.43–0.66, P=7.5 × 10−9),
and the tumor–node–metastasis (TNM) stages were also prognostic factors for NSCLC patients. In the multivari-
ate Cox analysis (Figure 7B), the risk score remained a significant independent prognostic factor, the HR was 0.52
(95%CI: 0.42–0.65, P=4.11 × 10−9), and the TNM stages were also prognostic factors for NSCLC patients. In the
validation set, in the univariate Cox analysis (Figure 7C), the HR was 0.62 (95%CI: 0.43–0.89, P=0.01), and in the
multivariate Cox analysis (Figure 7D), the HR was 0.63 (95%CI: 0.44–0.91, P=0.01). Therefore, compared with other
traditional prognostic factors for NSCLC patients, the risk score could be used as an independent prognostic factor
for NSCLC patients.
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Figure 6. Construction of a risk-prediction model of the validation set and analyses of model performance

(A and B) Risk chart of the validation set. Distributions of risk scores and survival times of samples from the ICGC database. (C) A

KM curve was used to analyze differences in survival time between high-risk and low-risk groups, which were divided according

to the risk model constructed using the validation set, P<0.0095. (D–F) ROC curves, PCA, and t-SNE visualization demonstrating

the performance of the risk model constructed using the validation set.

Functional-enrichment analysis of DEGs between high-risk and low-risk
groups
Functional-enrichment analysis of DEGs between high-risk and low-risk groups was undertaken in the training set
and validation set. Analyses of functional enrichment using the GO and KEGG databases were undertaken to ex-
plore differences in biological functions, and a false discovery rate (FDR) <0.05 was the significance threshold. In
enrichment analysis using the GO database (Figure 8A,C), DEGs were significantly enriched in BPs associated with
iron ions in the training set (‘ion transport’, ‘transmembrane transport’, and ‘ion transmembrane transport’) and in
the validation set (‘iron ion binding’). In enrichment analysis using the KEGG database (Figure 8B,D), DEGs were
enriched in immune-related pathways in the training set (‘complement and coagulation cascades’ and ‘hematopoietic
cell lineage’) and in the validation set (‘hematopoietic cell lineage’).

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Univariate analysis

Risk_class (High vs Low)
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Stage (Stage I & II 
 vs Stage III & IV)

Estimates (95% CI)

0.54[0.43−0.66]

1.2[0.94−1.4]

1.2[0.95−1.5]

1.8[1.3−2.3]
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p value

7.5e−09
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Multivariate analysis

Risk_class (High vs Low)

Gender (male vs female)

M (M0 vs M1)

N (N0N1 vs N2N3)

Stage (Stage I & II 
 vs Stage III & IV)

T (T1T2 vs T3T4)

Estimates (95% CI)

0.5248[0.4233−0.6506]

1.0968[0.8864−1.3572]

1.3106[1.0232−1.6786]

1.3773[0.9523−1.9921]

1.4306[1.011−2.0242]

1.4723[1.094−1.9812]

p value

4.11178107348542e−09

0.395034506228919

0.03222627488735

0.0891009921553261

0.043212936682795

0.0106747310012726
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Univariate analysis

Risk_class (High vs Low)

Age (≤65 vs >65)

Gender (male vs female)

Estimates (95% CI)

0.62[0.43−0.89]

1.1[0.76−1.7]

1.3[0.84−2]

p value

0.01

0.54

0.24
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Multivariate analysis

Risk_class (High vs Low)

Age (≤65 vs >65)

Gender (male vs female)

Estimates (95% CI)

0.6337[0.4395−0.9136]

1.1151[0.7478−1.6627]
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p value
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Figure 7. Risk score as an independent prognostic factor

(A and B) Univariate and multivariate Cox analyses of the training set. (C and D) Univariate and multivariate Cox analyses of the

validation set.

Correlation analysis for infiltration of immune cells
We wished to study further the correlation between the risk score and immune status. ssGSEA was used to quantify
scores for immune cells and immune-related pathways. Activated dendritic cells (aDCs), B cells, immature dendritic
cells (iDCs), mast cells, neutrophils, plasmacytoid dendritic cells (pDCs), T helper (Th) cells, T follicular helper (Tfh)
cells, tumor-infiltrating lymphocytes (TILs), T regulatory cells (Tregs), C-C chemokine receptors (CCRs), checkpoints,
human leukocyte antigen (HLA), major histocompatibility complex (MHC) class I, T-cell costimulation, the type-I
interferon (IFN) response, and type-II IFN response (Figure 9A,B) were significantly different between the two groups
in the training set, whereas B cells, mast cells, Tfh cells, and T-cell costimulation were significantly different between
the two groups in the validation set (Figure 9C,D).

Prediction of immunotherapy efficacy
TIDE prediction was carried out on the two groups in the training set and validation set. Results showed that im-
munotherapy might have higher efficacy in the low-risk group than in the high-risk group (Figure 10A).

Mutation analysis of ferroptosis-related genes associated with the
prognosis
The SNP file of the training set was used to visualize mutations of the 21 ferroptosis-related genes in high-risk and
low-risk groups. The frequency of gene mutation in these two groups was not high, and significant differences were
not found between the two groups. Therefore, the effect of the 21 ferroptosis-related genes on the sample risk score
was not strongly correlated with gene mutation (Figure 10B,C).
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Figure 8. Functional-enrichment analysis of DEGs

(A and B) Functional-enrichment analyses of the training set using the GO and KEGG databases. (C and D) Functional-enrichment

analyses of the validation set using the GO and KEGG databases.

Discussion
As a recently identified iron-dependent programmed process for cell death, ferroptosis has a unique mechanism
of occurrence and resistance, and its importance in tumor therapy has been demonstrated. An increasing number
of therapies targeting ferroptosis are under study, and the inhibition of ferroptosis in tumor cells has also attracted
widespread attention, but specific studies investigating the mechanism are lacking. We focused on correlations be-
tween ferroptosis-related genes and the prognosis of NSCLC patients.

We systematically studied expression of 1164 ferroptosis-related genes in tumor tissues in people with NSCLC
and their relationships with the OS of patients. We used univariate Cox and Lasso regression analyses to identify 21
ferroptosis-related genes associated with the prognosis and constructed a prediction model. Based on the median
risk score, we employed KM curves, ROC curves, a risk-score chart, and heatmaps to evaluate the predictive ability
of this model. Univariate and multivariate Cox regression analyses were also undertaken to determine if the risk
score calculated by the prognostic model was an independent prognostic factor for the OS of NSCLC patients. In
addition, differences in gene-set enrichment, immune-cell infiltration, and somatic mutations between the high-risk
and low-risk groups were studied.

Multiple genes used in the present study to construct the prognostic model were closely related to the oc-
currence and development of NSCLC. Specifically, overexpression of caveolin 1 (CAV1) can activate the signal
transducer and activator of transcription-3 (STAT3) pathway to induce the growth, proliferation, migration, and
epithelial–mesenchymal transition (EMT) of NSCLC cells [7]. Cell division cycle 25C (CDC25C) can inhibit apopto-
sis in various tumor types, including NSCLC, through regulation of the G2/M-phase transition and FAS pathway [8].
Studies have shown that checkpoint kinase 2 (CHEK2) has a critical role in repairing DNA damage, and that CHEK2
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Figure 9. Analysis of ferroptosis-related genes associated with immune-related functions in high-risk and low-risk groups

(A and B) Analysis of differences in immune cells and immune-related pathways between the high-risk and low-risk groups in the

training set. (C and D) Analysis of differences in immune cells and immune-related pathways between the high-risk and low-risk

groups in the validation set.

overexpression is closely related to the occurrence of lung cancer [9]. Dickkopf1 (DKK1) protein regulates the pro-
liferation and invasion of cells. In in vitro experiments, up-regulation of DKK1 expression in the SBC-3 lung cancer
cell line enhanced the proliferation, migration, and invasion of cells, and colony formation; in in vivo experiments,
up-regulation of DKK1 expression promoted the metastasis of lung cancer cells to bone [10]. Studies have shown
that inhibition of E2F transcription factor 7 (E2F7) expression can inhibit the viability of lung cancer cells, inhibit
the formation, migration, and invasion of tumor colonies, and promote tumor-cell apoptosis [11]. E2F transcription
factor 8 (E2F8) is a key transcription factor involved in several biological processes and is a direct target gene of
microRNA (miR)-223-5p. Overexpression of miR-223-5p can significantly reduce expression of the messenger RNA
(mRNA) and protein of E2F8 in NSCLC cells, thus inhibiting the proliferation, migration, and invasion of lung cancer
cells [12]. Interleukin (IL)-33 is a member of the IL-1 superfamily and is produced by Th2-related cytokines. IL-33
up-regulates glucose transporter 1 (GLUT1) expression in NSCLC through activation of the ST2 pathway, thereby
enhancing glucose uptake and glycolysis and promoting the growth and metastasis of lung cancer cells [13]. Studies
have shown that nuclear factor IX (NFIX) plays a major regulatory part in multiple genes involved in migration and
invasion pathways. Silencing of NFIX expression can inhibit the proliferation, migration, and invasion of lung cancer
cell lines [14]. Studies have shown that activation of peroxisome proliferator-activated receptor-gamma (PPARGγ)
may inhibit the progression of lung squamous cell carcinoma (LSCC) through the regulation of upstream and down-
stream marker genes of LSCC, and these genes are involved in tumor-cell proliferation and protein polyubiquiti-
nation/ubiquitination [15]. Inositol 1,4,5-trisphosphate 3-kinase (ITPKA), a member of the inositol polyphosphate
kinase (IPK) family, regulates the level of inositol polyphosphate, which is critical for transduction of cell signals.
Studies have shown that transcription factor AP-2 alpha (TFAP2α) promotes the proliferation, invasion, and metas-
tasis of lung adenocarcinoma cells through ITPKA overexpression, which is induced by an interaction with Drebrin
1 (associated with cancer metastasis) and activation of EMT [16]. Thrombospondin 1 (THBS1) has antiangiogenic
effects. Studies have shown that THBS1 has a tumor-suppressive role in lung adenocarcinoma, and THBS1 is usually
insufficiently expressed in lung cancer tissues [17]. Targeting protein for Xklp2 (TPX2) is positively correlated with
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Figure 10. Predictive analysis of immunotherapy and analysis of mutations of ferroptosis-related genes associated with

the prognosis

(A) Proportions of samples with effective immune therapy in the high-risk samples and low-risk samples in the TIDE prediction

results. (B) Mutations in 21 ferroptosis-related genes in high-risk samples. (C) Mutations in 21 ferroptosis-related genes in low-risk

samples.

the metastasis and growth of tumor cells as well as the clinical stage in NSCLC. Overexpression of TPX2 indicates a
poor prognosis for patients. In vitro experiments have shown that up-regulation of TPX2 expression activates EMT
and promotes the expression and activity of matrix metalloproteinase-2 (MMP2) and MMP9, thereby increasing the
migration and invasiveness of NSCLC cells [18]. Studies have demonstrated that the interaction between tribbles ho-
molog 3 (TRIB3) and β-catenin increases the recruitment of β-catenin to the promoter region of Wnt regulatory
genes, thereby promoting the migration, invasion, and EMT of lung cancer cells [19]. Studies have shown that us-
ing small interfering RNAs to knock down thioredoxin reductase 1 (TXNRD1) expression increases the basal level
of reactive oxygen species and increases the sensitivity of lung cancer cells to radiotherapy [20]. In NSCLC tissues,
the transcription and expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
(YWHAZ) are increased significantly. YWHAZ overexpression is associated with clinical stage as well as lymph-node
and distant metastasis in NSCLC patients. In vitro experiments have shown that silencing of YWHAZ expression can
inhibit the migration and invasion of NSCLC cells [21].

Although ferroptosis in tumor cells has been a ‘hot topic’ in recent years, few studies on the potential regulatory
mechanism between tumor immunity and ferroptosis are available. Therefore, we undertook functional-enrichment
analyses using GO and KEGG databases on DEGs between two risk groups. We showed that immune-related pathways
were enriched. Next, quantification (scoring) of immune-cell infiltration and immune-related pathways or functions
using ssGSEA showed that the levels of mast cells and Tfh cells in the high-risk group in the training set and validation
set were low, and that T-cell costimulatory pathways were inhibited. Studies have shown that mast cells exhibit weak
phagocytosis and can cause lysis and destruction of tumor cells upon contact with lung cancer cells [22], and that Tfh
cells (as a T-cell subset) participate in antitumor immunity [23]. In addition, activation of T-cell costimulatory path-
ways plays an important part in the activation of antitumor cluster of differentiation (CD)4+ T cells and CD8+ T cells
[24]. We hypothesized that this result may be due to the release of different signals by cells that had undergone fer-
roptosis, such as lipid mediators, which inhibit mast cells, Tfh cells, and related immune pathways/functions, thereby
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promoting tumor progression. This result is consistent with the TIDE prediction, and the efficacy of immunother-
apy may have been poor in the high-risk group. In addition, based on the SNP file, mutations of ferroptosis-related
genes associated with the prognosis in the high-risk and low-risk groups were analyzed: no significant differences in
gene mutations between the two groups were documented. Therefore, the effect of these 21 genes on the risk score
was not strongly correlated with gene mutation. For example, YWHAZ had only one mutation in all samples, and its
regulatory effect on the risk score was therefore believed to not be correlated with gene mutation, which excludes one
direction of analysis for further in-depth studies. In addition, other possible factors warranting investigation include
choroidal neovascularization (CNV) factor and binding of target genes influencing RNA and proteases.

Conclusions
A risk-prediction model was constructed using ferroptosis-related genes. This model had relatively good predictive
ability in the training set and validation set and could facilitate traditional TNM staging in prognosis prediction. In
addition, the risk score based on ferroptosis-related genes could better differentiate the immune status of patients and
predict differences in immunotherapeutic efficacy, thereby providing a new concept for immunotherapy in NSCLC
patients. This result suggests that the correlation between ferroptosis-related genes and NSCLC prognosis may involve
tumor immunity, which requires further study. We believe that, with exploration of the mechanism of ferroptosis in
tumor cells, targeted ferroptosis in tumor cells may become a treatment option for NSCLC patients.
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