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Introduction
Throughout history, infectious diseases have caused high mortality and morbidity [1]. 
Despite medical advances and prevention efforts in the last 100 years, infectious diseases 
remain a significant threat to humanity [2]. Since the 1970s, at least 26 major emerg-
ing and reemerging infectious diseases of a bacterial origin have been reported, where 
most of them originated from the environment [3]. As globalization and environmental 
changes increase human exposure to diverse bacteria, in the upcoming years we expect 
to discover new pathogenic bacterial strains, species, or even genera [3].

Recent advances in next-generation-sequencing (NGS) technologies have made bacte-
rial genome sequencing fast and accessible [4]. As a result, public databases contain large 
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numbers of whole genome sequences of diverse bacterial genomes [4], usually along 
with information that can be used as a proxy to automatically label a genome as patho-
genic or non-pathogenic. This information can be then utilized within machine-learning 
frameworks to predict the pathogenicity of bacterial genomes. Moreover, a systematic 
genomic comparative analysis across different bacterial genera and phyla can advance 
our understanding of bacterial pathogenicity mechanisms on a global level.

Bacteria that colonize the human body can be separated into three groups according to 
their lifestyle: exclusive pathogens, opportunistic pathogens, and commensal non-path-
ogenic bacteria [5]. A diverse community of trillions of commensal bacteria, many of 
which are essential for our health, inhabit the human body [6]. By contrast, exclusive or 
opportunistic pathogens have the ability to invade their hosts and cause disease. Oppor-
tunistic pathogens are normally present in the environment or as part of the commensal 
bacterial population of a host, but may cause a disease following a medical perturbation 
to the host [7]. Due to the complexity of differentiating exclusive pathogens from oppor-
tunistic bacteria in datasets of clinical samples, in this study any strain isolated from an 
infection is considered to be a pathogen.

With the development of molecular biological techniques, it has become possible to 
identify genes that contribute to bacterial pathogenesis, denoted as virulence genes [8]. 
However, virulence genes can also be identified in non-pathogenic strains [5, 9]; thus, a 
simple possession of some virulence genes does not necessarily indicate that a strain is 
pathogenic. In addition, relying on known virulence genes for pathogenicity classifica-
tion can be limiting. A more general approach is to consider all available genes, associ-
ated with pathogenic as well as non-pathogenic bacteria, in a given dataset of bacterial 
genomes.

In recent years, several models were proposed for the classification of a bacterial 
genome as pathogenic to humans (HP) or non-pathogenic to humans (NHP) [10–15]. 
These models can help predict the pathogenicity of novel bacterial species, and addi-
tionally contribute to our general understanding of the pathogenic lifestyle by analys-
ing important classification features. Previous computational methods for pathogenicity 
classification can be divided into two main categories: Read-based methods [14–16] 
and protein-content-based methods [10–13] (reviewed in detail under Additional file 1: 
Section S1). In a nutshell, read-based classification approaches use short genomic reads 
as input, while protein-content-based methods characterize a bacterial genome by the 
presence or absence of protein family members. The advantage of read-based classifi-
cation approaches over protein content-based ones is that assembly and annotation 
of reads to protein-coding sequences are not required; thus, they may provide a faster 
analysis of metagenomic samples. However, read-based methods are more difficult to 
interpret than protein-content-based methods since they consider only short local pat-
terns as features, disregarding a wider genomic context. In contrast to read-based meth-
ods, protein-content-based methods can help in the identification of proteins associated 
with a pathogenic phenotype [10–13]. Furthermore, some of these methods can even 
discover novel unannotated proteins related to pathogenicity [12, 13].

In this work, we propose a protein-content-based method for classifying a bacterial 
genome as pathogenic to humans or not. Our method does not rely on prior knowledge 
of the taxonomic association of the genome to be classified. In order to avoid the species 
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distribution bias experienced by previous protein-content-based works (Additional 
file 1: Section S1) and increase the generalization of the model to new species, the clas-
sifier is trained on a balanced dataset that includes one strain per species. Additionally, 
to overcome the runtime bottleneck imposed by clustering proteins into protein families 
(Additional file 1: Section S1), we propose to harness a feature set composed of Global 
Protein Families (PGFams) [17], which are available through the PATRIC database [18]. 
In contrast to Iraola et  al. [11], which relied on previously annotated virulence genes, 
we consider hundreds of thousands of PGFams regardless of their function. The pro-
posed approach, denoted Wide Scope Pathogen Classifier (WSPC), applies a Random 
Forest (RF) classifier to a dataset of bacterial genomes that belong to a wide range of 
taxa. Finally, in order to avoid overfitting [19] and enable the generalization of the model 
to unseen genomes, we apply a feature selection stage that reduces the number of fea-
tures from ∼400,000 to 250 widely spread protein families (“Feature selection of WSPC” 
Section).

The resulting WSPC classifier is highly accurate. A comparative analysis on a bench-
mark dataset shows that WSPC outperforms existing protein-content-based and 
read-based classifiers, achieving a higher balanced accuracy (BACC) value (“Predic-
tion performance comparison on the BacPaCS test set” section). Furthermore, WSPC 
achieves highly accurate classification results on a large novel test set that consists of 
a wide range of genera and species, including a subset of genomes belonging to spe-
cies that were not part of the training set (“Prediction evaluation on the WSPC test set” 
Section).

An interesting result of our analysis is that our method reveals widely spread protein 
families associated with pathogenicity. The application of a feature selection procedure 
that selects highly distributed protein families in combination with a phylogenetically 
diverse training set, exposes genes involved in the processes of respiration and energy 
production, DNA repair, metabolism, and stress tolerance. Thus, a unique property 
of our model is that the most discriminative features consist of genes that allow quick 
adjustment and survival of the pathogens under challenging conditions, such as during 
infection, rather than “classical virulence genes” that are directly involved in causing a 
disease.

Methods
Dataset

An overview of the pre-processing steps we performed to create the WSPC dataset is 
shown in Fig. 1.

Collection and pre‑processing of the data

The data used in this study was extracted from the PAThosystems Resource Integration 
Center (PATRIC) [18]. PATRIC collects microbial genomes from GenBank [20] and 
other sources, and consistently annotates them using the RAST pipeline [21]. In addi-
tion, PATRIC provides Global Protein Family (PGFam) annotations [17] that enable 
comparison between genes across different genomes. Whole-genome sequences (WGS), 
including both chromosomes and plasmids, of 86,864 human-colonizing bacterial 
genomes, identified by the phrase “Human, Homo sapiens” or “Homo sapiens” in the 
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field “Host Name”, were downloaded from PATRIC on July 9, 2020. Genomes with “Date 
Inserted” earlier than November 1, 2019, were used for training, and the rest were used 
as a held-out test set.

In order to identify human pathogen (HP) and non-human pathogen (NHP) bacte-
ria in our dataset we followed the annotation-based pathogenicity classification method 
described by Barash et al. [13] with a few modifications we made to improve the anno-
tation. Briefly, this method detects relevant keywords in the metadata fields associated 
with each genome. We labeled a genome as HP if it was isolated from an infection, and 
as NHP if it was isolated from a healthy individual or a probiotic supplement (the anno-
tation method is described in detail in Additional file 1: Section S2.1). In addition, we 
filtered out all genomes with “poor” quality in the “Genome Quality” field.

The labeling and filtering procedure resulted in 35,860 genomes in the training set 
and 3,660 genomes in the test set that were labeled as HP or NHP, while the remaining 
genomes were annotated as inconclusive and were therefore removed. The number of 
genomes per species in our dataset varies greatly: between one to thousands of genomes 
per species. An over-representation of a single species can cause a sample selection 
bias and prevent the model from generalizing to new species that were not present in 
the training set. In addition, the evaluation of a classifier on an unevenly sampled set 
could be misleading. Therefore, the training and test sets were randomly sub-sampled 
to include exactly one genome per species, as was previously done by Bartoszewicz et al. 
[15]. The species of each genome was determined using the NCBI taxonomy database 
[22]. Note that some genomes are unclassified at the species level, and are typically clas-
sified at the genus or at a higher taxonomic level. As these genomes could potentially 
represent novel species, they were grouped according to their lowest shared taxonomic 
group instead.

Training set

Initially, the training set consisted of 35,860 genomes, where 32,908 ( ∼92%) were labeled 
as HP and 2952 ( ∼8%) were labeled as NHP. To increase the chances of the classifier to 
uncover highly pathogenic or highly non-pathogenic genomic properties, we aimed to 
select from each species a genome that represents the tendency of this specific species 
to be HP or NHP. In addition, we included only species that were mostly pathogenic 

70,380 WGS
bacterial
genomes

PATRIC Database

Training
Data

35,860 genomes
(32,908 HPs,
2,952 NHPs)

Labeling

641 genomes
(428 HPs,
213 NHPs)

Species Representatives

16,484 WGS
bacterial
genomes

Test
Data

3,660 genomes
(2,941 HPs,
719 NHPs)

204 genomes
(102 HPs,
102 NHPs)

Fig. 1  Dataset pre-processing overview. We report the number of genomes in the WSPC training and test 
data, after each pre-processing step (“Dataset” section). Note that genomes that could not be labeled were 
removed. WGS: Whole-genome sequences
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or non-pathogenic, according to the labels of the genomes belonging to these species. 
For each species, we defined its label ratio as the number of genomes annotated with 
the minority label divided by the number of genomes annotated with the majority label, 
where all the genomes across the training and test sets were considered for the label ratio 
computation. 38 species with a label ratio larger or equal to 0.1 likely represent oppor-
tunistic bacteria and were therefore removed from the training set. This group included 
known opportunistic bacterial species, such as Bacillus cereus [23], Bacteroides fragilis 
[24], and Staphylococcus epidermidis [25]. For 29 out of the remaining 536 species in 
the training set, the label ratio was between 0 and 0.1. For these species, the minority 
labeled genomes were removed from the training set. Additional 105 taxonomic groups 
in the training set represent genomes that are unclassified at the species level, thus the 
label ratio is irrelevant for these groups. Finally, we randomly selected one genome from 
each species in the remaining training set (or from each taxonomic group in the case 
where the species was not classified). This resulted in training set that contains 213 NHP 
genomes and 428 HP genomes belonging to 641 different taxonomic groups.

WSPC test set

Initially, the test set consisted of 3660 genomes, where 2941 were labeled as HP and 
719 were labeled as NHP. First, we grouped the genomes according to their species or 
according to a higher taxonomic level in cases where the species was unclassified. Then, 
one genome from each taxonomic group was randomly selected. This resulted in a set 
of 206 genomes, where 170 of these genomes belong to classified species. Next, all the 
genomes in the test set were inspected manually to ensure that their labels are cor-
rect by reviewing the associated PATRIC metadata. A genome was verified as HP if the 
isolation source was a diseased individual, and verified as NHP if the isolation source 
was a healthy individual or a probiotic supplement. Additionally, a literature curation 
was performed to confirm the corresponding label. Two strains were mislabeled by the 
automatic annotation and therefore their labels were corrected manually, and two other 
strains, that could not be validated as HP or NHP, were removed from the test set (fur-
ther details can be found in Additional file 1: Section S2.2). This process resulted in a 
non-redundant final test set consisting of 102 HP bacterial genomes and 102 NHP bac-
terial genomes, belonging altogether to 93 genera (Additional file 1: Table S3). To get a 
better estimation of model performance on novel species, we created a subset of the test 
set, which consists only of species that were not part of the training set and hence are 
new to the classifier. This subset includes only genomes that were classified to known 
species, resulting in a set of 32 HP genomes and 31 NHP genomes.

BacPaCS test set

We manually curated the 100 genomes included in the BacPaCS test set using the 
metadata associated with each genome and the literature. We verified the genome 
label as HP if it was isolated from a diseased host (based on the PARTIC database 
entry), and if there was also evidence in the literature that the corresponding species 
or strain is pathogenic. We verified a genome label as NHP if it was isolated from 
a healthy host, and if the corresponding species or strain was also described in the 
literature as commensal or probiotic. We changed the labels of 18 strains from NHP 



Page 6 of 18Naor‑Hoffmann et al. BMC Bioinformatics          (2022) 23:253 

to HP, as these strains were isolated from clinical samples or described in the liter-
ature as well-known pathogenic strains. We could not verify the labels of six other 
strains as HP or NHP. Therefore, these strains were removed from the test set. Fur-
ther details on the relevant strains and the verification process are described in Addi-
tional file 1: Section S2.3. In total, we derived two benchmark test sets: 

1	 Benchmark Test 1 The process described above resulted in a set of 94 genomes (78 
HP and 16 NHP) whose pathogenicity label we could manually verify.

2	 Benchmark Test 2 To create a species-wise balanced test set, we randomly selected 
one genome per species from the 94 genomes of Benchmark Test 1. This process 
resulted in a new balanced subset, which consists of 40 manually labeled genomes 
(25 HP and 15 NHP). 

A list of all the genomes included in the original BacPaCS test set along with their 
verified labels, references to relevant studies, as well as an indication of whether each 
genome was included in Benchmark Test 2, is given in Additional file 1: Table S2.

Comparative analysis with extant classifiers

The following test sets were used for comparative analysis with extant classifiers.
BacPaCS test set The binary predictions of the classifiers BacPaCS, PathogenFinder, 

and PaPrBaG on the original BacPaCS test set were provided in the supplementary mate-
rials of Barash et al. [13]. We used the relevant predictions according to the genomes in 
Benchmark Test 1 and Benchmark Test 2. We computed the predictions of DeePaC’s two 
published models, sensitive LSTM and rapid CNN, according to the description in their 
paper using simulated read pairs of the BacPaCS test set genomes (published as part 
of the supplementary materials of DeePaC [15]). As DeePaC predicts a value between 
0 and 1 for each read, the prediction is averaged for each read pair, and then averaged 
again over all read pair predictions for each input genome. A genome with a prediction 
value greater than 0.5 was predicted as HP, otherwise it was predicted as NHP. Although 
the models of DeePaC gave different raw prediction values (the mean prediction value 
of sensitive LSTM was 0.84 while the mean prediction value of rapid CNN was 0.65), 
the binary predictions of the two models produced the same sensitivity and specificity 
scores. PaPrBaG [14] provides 5 models created in 5-fold cross validation, therefore we 
averaged the results (specificity, sensitivity, and BACC) of the 5 models.

WSPC test set We obtained the binary predictions of BacPaCS and PathogenFinder 
[12] using their published trained models, which take as input a set of proteins for 
each of the corresponding genomes. We used the whole-data model, which was 
trained on all the bacteria in their training set, for PathogenFinder.

Training procedure

An overview of the workflow of our training procedure and classification approach is 
illustrated in Fig. 2.
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Extracting PGFam features

We represent each genome in our dataset as a sequence of PGFam identifiers [17]. 
PGFams in the PATRIC database were defined by first binning the proteins encoded by 
the respective genes according to their function, then clustering the proteins in each bin 
into local genus-level families, and finally by clustering local genus-level families into 
global families. The PATRIC database provides PGFam annotations for the genes of each 
bacterial genome in it, and an annotation service for a new genome uploaded by the 
user. Therefore, each genome in our dataset is represented by a binary feature vector, 
where each element  in the vector corresponds to a PGFam that appears in the train-
ing set genomes. An element is set to 1 if the corresponding PGFam is present in the 
genome, and 0 otherwise.

Generating and evaluating a classification model

The RF machine-learning method is widely used for data analysis in bioinformatics [26, 
27], as it provides a combination of high prediction performance and model interpreta-
bility [28]. RF-based methods construct prediction rules for a classification problem and 
provide feature importance measures that are automatically computed for each input 
feature. In this work, we used the RF classifier in the feature selection process (“Feature 
selection of WSPC” Section) and as the final model. The final RF classifier was trained 
using feature vectors that contain 250 binary features, each appearing in at least 35 of 

Genomes from
training dataset

New genome

Extract PGFam
features

Extract PGFam
annotations

Two-step fea-
ture selection

Selected
PGFam features

Train RF model
Apply the trained

RF classifier

Pred. > 0.5 : HP
Pred. ≤ 0.5 : NHP

Fig. 2  An overview of the classification workflow. Rectangles with dashed lines represent training steps, 
and rectangles with continuous lines represent prediction steps. Input and output cells are colored in white. 
PGFam: PATRIC Global Protein Family, RF: Random Forest, Pred.: Predicted Probability
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the 641 genomes of the training set (“Training set” section), where each genome has a 
binary label of 0 (NHP) or 1 (HP). The RF training procedure was implemented through 
python module sklearn.ensemble.RandomForestClassifier (n_estimators = 
100, min_samples_split = 2, criterion = “gini”) [29].

For classification evaluation, we used Sensitivity (true positive rate), Specificity (true 
negative rate), and Balanced Accuracy (BACC), which is the mean of the sensitivity and 
specificity [30]. For ranking evaluation of WSPC, we used the areas under the preci-
sion recall (AUPR) [31], and the receiver operation characteristic (AUROC) [32] curves. 
AUROC was also used for the feature selection parameter tuning (further details can be 
found in Additional file 1: Section S3.1).

Feature selection of WSPC

There are 393,042 PGFam features in our training set (“Training set” section), many 
of them appearing in only one or a few genomes. Using all available PGFams as fea-
tures may cause overfitting [19] and prevent the generalization of the model to unseen 
genomes. In order to select the most discriminative features that appear in a wide range 
of taxa and that are highly correlated with the target label, we performed a feature selec-
tion process using a validation set.

First, the training set genomes (“Training set” section) were sorted by their insertion 
date to PATRIC. The first 80% of the genomes were assigned to the training set, and the 
last 20% of the genomes were assigned to the validation set, which consisted of 89 HP 
genomes and 39 NHP genomes. The partition according to the date of insertion simu-
lates the application in the real-world by training the classifier on genomes that are avail-
able in public databases at a certain time point, and then using the classifier to classify 
newly sequenced genomes. In addition, as the genomes in the training and validation 
sets belong to different species, this reduces the chance of overfitting, as it enables the 
assessment of classifier performance on species that are not part of the training set.

The feature selection process consists of two consecutive steps, which are detailed 
below. First, the k most discriminative features are selected according to the Chi-square 
( χ2 ) score [33] between each feature and the target labels (HP and NHP). Second, fea-
tures are clustered according to their pairwise correlations, and the most discriminative 
feature is chosen from each cluster.

Selecting the Most Discriminative Features. The χ2 score is commonly applied for the 
selection of the most discriminative features of a classification problem [34–36]. This 
score is used to determine if there is any association between a categorical feature and 
the categorical target variable, in our case between a presence or absence of a PGFam 
and a binary pathogenicity label. A large χ2 value indicates a greater probability for 
dependency between the occurrence of the feature and the pathogenicity label. The k 
most discriminative features were selected based on the top χ2 scores between each fea-
ture and the target labels (HP and NHP) of the training set genomes. The selection of 
the k features with the highest χ2 scores was performed using the class sklearn.fea-
ture_selection.SelectKBest of the scikit-learn library [29], where the χ2 score 
function was used.

We tested multiple values of k for WSPC, starting from k = 50 and increasing by 50 
until the training set size is reached. For each value of k, we trained an RF classifier on 
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the training set and evaluated it on the validation set. The final value of k = 450 was 
selected according to the maximum AUROC score achieved by the classifier on the 
validation set (Additional file 1: Fig. S1.A).

Removing Correlated Features. Functionally related bacterial genes are often organ-
ized in gene clusters [37] or operate in other forms of co-regulated genes [38], which 
leads to a correlation between PGFam features. If a PGFam is part of a gene cluster 
and achieves a high χ2 score, there is a high probability that other PGFams from the 
same gene cluster will also achieve high χ2 scores. Indeed, computation of pairwise 
correlation scores between the k = 450 features, which were selected from the train-
ing set (excluding the validation set), revealed many correlated pairs (Fig. 3A).

Fig. 3  Prediction performance before and after removing highly correlated features from the training set 
(excluding the validation set). A The percentage of pairs of features that have a correlation within a specific 
range, for different ranges. The labels on the ’x’ axis represent the middle of the relevant range, where each 
range width is 0.1. B Validation set results of the RF classifier trained using the 450 features selected in the 
first step, and the RF classifier trained using the set of 244 features obtained after removing highly correlated 
features in the second feature selection step
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Although an RF-based model can deal successfully with highly correlated features, 
such correlations can reduce the stability of the model, and may induce a biased variable 
importance ranking [39]. One way to deal with this issue is to remove highly correlated 
and redundant features as a part of the feature selection process by clustering correlated 
features and selecting a representative from each cluster [40–42]. We applied a hierar-
chical clustering based on a correlation measure between all pairs of features, and then 
selected from each cluster a feature that has the highest association with the labels of the 
training set genomes according to the feature’s χ2 score (similar to the method used in 
[42]). The correlation between each pair of features was calculated using the Phi coef-
ficient, a measure of association of two binary variables that range from 0 to 1 [43]. The 
correlation values were then converted to distance values by subtracting each value from 
1. The clustering was performed using the package scipy.cluster.hierarchy of 
the SciPy library [44], where we chose “average” linkage method.

We selected the number of clusters using parameter t, which represents the maxi-
mum allowed inter-cluster distance. For each value of t, we trained an RF classifier on 
the training set, and evaluated it on the validation set. Multiple t values were examined, 
starting from t = 0 (representing 450 clusters with a single feature in each cluster) to 
t = 0.84 (representing one cluster that includes all features), increasing by increments 
of 0.06. We selected the final value t = 0.18 according to the maximum AUROC score 
achieved by the classifier (0.903), which was equal to the AUROC score before removing 
correlated features (Additional file 1: Fig. S1.B). This process resulted in a subset of 244 
features with lower correlations between each pair of features (Fig. 3A).

In summary, the corresponding RF classifier, which uses a set of 244 features that were 
selected from the training set (excluding the validation set) according to parameters 
k = 450 and t = 0.18 , achieved sensitivity and specificity values of 0.85, an AUPR  value 
of 0.94, and an AUROC value of 0.9 on the validation set (Fig. 3B). As the genomes in the 
training set and the validation set belong to distinct species, the obtained classification 
results may be a good approximation of the expected performance of the classifier on 
novel species that were not seen during the training process, given that the novel species 
are not entirely different from the training species.

Note that these validation results are on par with the results achieved by the classi-
fier before removing highly correlated features (Fig. 3B). Therefore, to reduce the risk of 
overfitting, the smaller set of features is preferred. Applying the feature selection process 
on the entire training set (training and validation sets combined) using the selected k 
value (450) and the selected t value (0.18) resulted in a final set of 250 features.

Computing the mean decrease impurity for feature importance

During the construction of an RF tree, a subset of features is examined in each split, and 
the feature that induces the largest decrease of impurity is chosen. In this work, we used 
the Gini impurity measure for the WSPC RF tree construction, and the Mean Decrease 
Impurity (MDI) importance measure [27, 45] for computing the importance of each 
feature (the MDI measure is described in detail in Additional file  1: Section S3.3). To 
evaluate the feature importance of each PGFam feature in the final set of features, we 
computed its average MDI value using 100 RF classifiers with different random seeds 
(seeds 0–99) trained on the combined training and validation sets. The MDI importance 
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measure of a feature of interest was computed through the Scikit-learn python package 
[29].

Results
Prediction performance comparison on the BacPaCS test set

The BacPaCS test set [13], which was used in the two most recent studies [13, 15], is 
currently the commonly used benchmark for comparing bacterial pathogenicity clas-
sifiers. However, our manual inspection of the pathogenicity labels of the genomes in 
the BacPaCS test set revealed that some of the labels were incorrect, while other labels 
could not be verified. Therefore, we constructed a correctly labeled BacPaCS test set, 
which includes 94 genomes (78 HP and 16 NHP) with manually verified labels, denoted 
Benchmark Test 1 (“BacPaCS test set” Section). Another drawback of the BacPaCS test 
set, which was observed by Bartoszewicz et al. [15], is that the number of genomes per 
species is imbalanced. Performance comparison on an imbalanced test set is unfair, since 
it gives an advantage to a classifier that correctly predicts the labels of species that are 
over-represented in the test set. For example, 22 out of 78 HP genomes in the BacPaCS 
test set belong to the species Bordetella pertussis. As a consequence, the genomes of this 
species affect 28% of the sensitivity score. Hence, in order to reduce species redundancy, 
we generated a balanced version of Benchmark Test 1, denoted Benchmark Test 2, which 
consists of exactly one randomly selected genome per species (25 HP and 15 NHP, “Bac-
PaCS test set” Section). Both Benchmark Test 2 and Benchmark Test 1 were used for the 
performance comparison. We compared the predictions of WSPC with the predictions 
of the following extant pathogenicity classifiers: the protein-content-based classifiers 
PathogenFinder [12] and BacPaCS [13], and the read-based classifiers PaPrBaG [14] and 
DeePaC [15]. The binary predictions of all classifiers were compared using the meas-
ures of sensitivity, specificity, and BACC (see “Generating and evaluating a classification 
model” Section).

WSPC outperformed extant classifiers on both Benchmark Test 1 (Additional file 1: 
Fig. S2) and Benchmark Test 2 (Fig. 4), achieving a greater BACC value than any of the 
other classifiers. As Benchmark Test 2 contains almost all NHP genomes from Bench-
mark Test 1, and only 25 out of 78 HP genomes, it is mainly the sensitivity scores that 

Fig. 4  Classification performance comparison between WSPC and extant classifiers on a subset of the 
BacPaCS test set, containing one genome per species (Benchmark Test 2)
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were expected to differ between the two benchmark test sets. For these benchmarks, 
the main differences were obtained for BacPaCS and PathogenFinder, where BacPaCS 
achieved greater sensitivity than PathogenFinder on Benchmark Test 1, and vice versa 
on Benchmark Test 2. The sensitivity scores of the other classifiers, including WSPC, 
were similar across the two benchmarks. The BACC obtained by WSPC on Benchmark 
Test 1 was 8% higher than the BACC achieved by the second-ranked classifier Bac-
PaCS, and the BACC obtained by WSPC on Benchmark Test 2 was 12% higher than 
the BACC achieved by the second-ranked classifier PathogenFinder. Observing the 
results on Benchmark Test 2, we note that while all classifiers obtained high sensitiv-
ity scores ( ≥ 0.84), which represent correctly classified HPs, on this data, their specific-
ity scores, which represent correctly classified NHPs, were at least 10% lower than their 
sensitivity scores. This difference could be due to the imbalance between the HP and 
NHP genomes in the training sets of some of these classifiers (BacPaCS—5:1, PaPrBaG 
and DeePaC—7:1). In particular, the read-based classifiers achieved perfect sensitivity 
scores, but very low specificity scores, on this benchmark.

Prediction evaluation on the WSPC test set

Following the training procedure, WSPC was evaluated on a test set consisting of 
genomes that were inserted into the PATRIC database later than the training set 
genomes (“WSPC test set” Section). The test set is relatively large. It includes 204 
genomes (102 HP and 102 NHP) from 93 genera, where each genome (strain) belongs 
to a different species. Some of the strains belong to species that are also included in the 
training set, while other strains belong to species with no representative in the training 
set, denoted novel species. To estimate the results of the classifier on novel species, we 
also evaluated the classifier on a subset of the test set that includes 63 bacterial genomes 
(32 HP and 31 NHP) that belong to novel species. Note that since the phylogenetic 
dependency between species is not completely reduced, we expect improved prediction 
performance on novel species that are more closely related to the species present in the 
training set, rather than on more distant novel species.

WSPC achieved high scores for each of the evaluated metrics on the entire test set, 
correctly predicting the pathogenicity label of 96 out of 102 HP bacteria, and 81 out of 
102 NHP bacteria (Fig.  5). As expected, the evaluation results of the classifier on the 

Fig. 5  WSPC classification performance on the entire test set and on a subset of it containing only novel 
species
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novel species subset were lower than on the entire test, implying that it is more difficult 
to predict the pathogenicity of novel species (Fig. 5). Nevertheless, WSPC correctly pre-
dicted 77% of the HPs and 81% of the NHPs in this subset of novel species. In addition, 
we evaluated the performance of WSPC and two extant protein-content-based classifi-
ers, PathogenFinder and BacPaCS, on the WSPC test set (Fig. 6). WSPC achieved higher 
sensitivity and specificity scores, which further validates the ability of the WSPC classi-
fier to correctly predict the pathogenicity of a large and diverse group of genomes.

WSPC model interpretation

We assessed the importance of the 250 PGFams that serve as features in WSPC using the 
MDI importance measure (“Computing the mean decrease impurity for feature impor-
tance” Section). The MDI measure is widely used for assessing the ability of an RF input 
feature to predict the target variable [27, 45]. The higher the MDI of a PGFam feature, 
the higher the importance of this PGFam in splitting the training set into the different 
pathogenicity classes.

PGFams related to pathogenic bacteria

Table  1 presents the top 15 PGFams, which are more abundant in HP versus NHP 
genomes (HP PGFams), sorted according to their average MDI ranks. These PGFams, 
which represent widely spread genes that are common to many pathogenic species and 
genera, probably serve as important features in our model for the following two reasons. 
First, PGFams that are present in a large number of HP genomes and in a small num-
ber of NHP genomes have high χ2 association values with the pathogenicity label and 
therefore are more likely to be selected in the first step of the feature selection process 
(“Feature selection of the WSPC classifier” section). The 450 PGFams with the highest 
χ
2 scores, which were selected in the first step of the feature selection process, had very 

high χ2 values ( ≥ 68.4, corresponding to χ2 test p values ≤ 10
−16 ), where selected HP 

PGFams appear in at least 139 of 428 HP genomes. Second, PGFams that are present 
in a large number of HP genomes and in a small number of NHP genomes yield a high 
decrease of Gini impurity when selected for a tree node in the RF classifier. Thus, their 
importance in separating the training set into the two different pathogenicity classes is 
high (“Computing the mean decrease impurity for feature importance” Section).

Fig. 6  Classification performance comparison of WSPC, BacPaCS, and PathogenFinder 
(protein-content-based classifiers) on the WSPC test set
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Looking into the functions of the PGFams in Table 1 revealed that most of them repre-
sent genes that allow the bacterial pathogen to survive and grow during infection, rather 
than genes that are directly involved in causing host damage. This finding suggests that 
virulence genes are probably common among pathogens that infect similar tissues and 
environmental niches and much less among pathogens in general. For example, various 
pathogens that infect the lungs would likely utilize similar virulence genes to colonize 
this niche; however, these will differ from the virulence genes required for intestinal 
pathogens. Therefore, in our dataset, which contains one representative per species, the 
genes that had the highest potential to separate between HPs and NHPs were related to 

Table 1  The top HP PGFams that serve as features of WSPC according to their average MDI rank, 
along with the number of HP and NHP genomes in the training set that contain the respective 
PGFams

The average MDI rank of a PGFam is the average value of the feature’s MDI values computed using 100 random forest 
classifiers with different random seeds trained on the training set. 1Standard Deviation. 2The ratio between the proportion 
of HPs with the corresponding PGFam and the proportion of NHPs with the corresponding PGFam. To avoid zero division, 
add-one smoothing was performed. 3 The number of different genera to which the genomes that contain the respective 
PGFams belong. PDC: Pyruvate dehydrogenase complex

PGFam ID Gene function General function MDI (SD1) HPs NHPs P-ratio2 # Genera3

1 04139053 Uroporphyrinogen 
III decarboxylase

Energy production 0.038 (0.012) 362 27 6.47 109

2 01915472 Dihydrolipoamide 
acetyltransferase 
component of PDC∗

Aerobic respiration 0.035 (0.01) 385 48 3.93 120

3 07629184 Cytosol aminopepti‑
dase PepA

Regulation 0.03 (0.009) 366 39 4.58 115

4 07157721 Heme O synthase, 
protoheme IX 
farnesyltransferase, 
COX10-CtaB

Aerobic respiration 0.022 (0.007) 312 14 10.41 89

5 00022550 Molybdopterin 
synthase catalytic 
subunit MoaE

Respiration, energy 
conversion

0.013 (0.005) 303 17 8.42 89

6 01033770 Class 2 Dihydrooro‑
tate dehydrogenase 
(DHODase)

Amino acid biosyn‑
thesis

0.011 (0.005) 333 35 4.63 99

7 00006100 tRNA-modifying 
protein YgfZ

Synthesis and repair 0.011 (0.006) 305 17 8.48 93

8 07941512 23S rRNA methyl‑
transferase

Methylation 0.01 (0.003) 324 37 4.27 89

9 00405499 YpfJ protein, zinc 
metalloprotease 
superfamily

Protein cleavage 0.009 (0.003) 273 13 9.76 87

10 06757295 Threonine dehy‑
dratase

Amino acid biosyn‑
thesis

0.008 (0.004) 323 34 4.62 95

11 08199696 Glutathione reduc‑
tase

Stress tolerance 0.008 (0.002) 220 12 8.48 66

12 03081665 Cell division integral 
membrane protein, 
YggT

Stress tolerance 0.007 (0.003) 352 56 3.09 109

13 07854425 Superoxide 
dismutase [Cu–Zn] 
precursor

Stress tolerance 0.006 (0.001) 252 21 5.74 75

14 01668012 Sulfur carrier protein 
FdhD

Stress tolerance 0.006 (0.003) 300 26 5.56 98

15 01147190 Deoxyribodipyrimi‑
dine photolyase

DNA repair 0.006 (0.003) 281 17 7.82 88
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rapid metabolism and tolerance to stress conditions. These genes are required for the 
pathogenic lifestyle of bacteria, in general, as they supply nutrients during colonization, 
improve competition with other microbes, and provide a proper micro-environment [5], 
and therefore their relative weight in the model is high. More specifically, all PGFams in 
Table 1 are involved in the processes of respiration and energy production, DNA repair, 
amino acid metabolism, heme biosynthesis, and stress tolerance. A detailed description 
of each of the PGFams in Table 1 can be found in Additional file 1: Section S5.1.

Interestingly, 4 out of the 15 PGFams in Table 1 (PGFams 1, 2, 4, and 5) have a role in 
bacterial respiration and energy production. Many important human pathogens are fac-
ultative anaerobes, i.e., bacteria that can grow in both the presence or absence of oxygen, 
and therefore can adapt to a vast array of oxygen concentrations [46]. These facultative 
anaerobes include all major pathogens of the human lower gastrointestinal tract (enter-
opathogens). These pathogens are exposed to fluctuating oxygen conditions, and mul-
tiple respiratory pathways contribute to their survival in the intestine [46]. Moreover, 
several enteropathogens induce intestinal inflammation through their virulence genes. 
The inflamed intestine has a higher concentration of oxygen due to high blood flow and 
hemoglobin levels [47]. This aerobic environment gives an advantage to bacteria that 
can utilize oxygen for growth, including pathogens such as Salmonella, Escherichia coli, 
Klebsiella, and Shigella. In contrast, the resident microbiota rely mainly on anaerobic 
fermentation of carbohydrates [48].

A critical factor for bacterial survival in any environment is their ability to sense and 
respond properly to stress factors. In particular, human pathogens must survive under 
two entirely different conditions: the environment, and within their hosts [49]. This may 
explain the high percentage (4 out of 15 PGFams in Table 1—PGFams 12–14) of genes 
that are involved in conferring tolerance to different environmental stresses: oxida-
tive, osmostic, UV, and low pH, which the bacterium can get exposed to during its host 
colonization.

PGFams related to non‑pathogenic bacteria

Additional file 1: Table S1 shows the top 15 PGFams, which are enriched in NHP ver-
sus HP genomes (NHP PGFams), sorted according to their average MDI ranks. These 
PGFams represent proteins participating in processes such as nucleotide metabolism, 
RNA processing, fermentation of L-glutamate, and carbon metabolism. These PGFams 
may be common to NHP genomes due their prevalence in commensal gut bacteria. For 
example, the intestinal microbiome is dominated by anaerobes [50], and therefore it is 
not surprising that the electron transport complex protein RnfB can be found in the top 
NHP PGFams, as this protein is usually found in anaerobic bacteria [51]. Another exam-
ple is found in two of the PGFams in Additional file 1: Table S1 that encode rubrerythrin 
variants, a protein with an unknown physiological role that was found to be abundant in 
gut bacteria [52].

Conclusions
In this work, we developed WSPC, a novel machine-learning-based approach for clas-
sifying a bacterial genome as pathogenic or non-pathogenic to humans based on its 
protein content and without prior knowledge of its taxonomic association. WSPC uses 
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protein families as features, and it overcomes the running time overhead of clustering 
genes into protein families by using the readily available PATRIC PGFams. The result-
ing classifier is highly accurate, outperforming existing read-based and protein-con-
tent-based classifiers on a benchmark test containing 40 species of 30 genera.

WSPC is publicly available and can be used for the pathogenicity prediction of existing 
or novel bacterial species. Furthermore, the analysis of genes that are highest ranking in 
terms of their importance for the classification by WSPC suggests that when examining 
a broad range of pathogens, the most important genes are linked to rapid metabolism 
and high tolerance to various stress conditions, rather than to classical virulence genes. 
These results propose that future interpretation of the results of a pathogenicity classi-
fier should be done in consideration of the tissue or the infected organ. Such an inter-
pretation is likely to highlight specific virulence genes, which are essential for pathogens 
that colonize a specific niche/environment.

For future works targeting the specific objective of seeking virulence genes, rather 
than a general pathogenicity classifier, one could consider narrowing the width of the 
bacterial genome sampling to niche-specific or taxa-specific datasets. In addition, the 
two-step feature selection approach we utilized in our model, which leads to selecting 
the most discriminative features and then removing correlated features, may suffer from 
low robustness. Therefore, for future work, we suggest testing other feature selection 
approaches, such as Boruta [53].

In this study, the bias due to the phylogenetic dependency between genomes was 
removed by selecting one genome per species. Evidently, this method yielded a com-
petitive pathogenicity classifier where the top-ranking features are gene families that are 
common to many bacterial genera. However, although this selection process removes 
redundancy, it also removes a large amount of the training data. Therefore, future works 
should consider using more sophisticated methods for redundancy removal. For exam-
ple, redundancy may be removed by adjusting the weight of each sampled genome in the 
training set by calculating its phylogenetic similarity to other samples in the set.

We hope to see our proposed method applied to the prediction of other bacterial 
phenotypes. For example, predicting the environmental niche from which the bacterial 
strain was collected (e.g., host type, soil, water). Analyzing the features of the resulting 
models may reveal protein families involved in bacterial adaptation to these niches.
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