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Abstract Cholera, an acute waterborne diarrheal disease, remains a major global health challenge. Despite
being curable and preventable, it can be fatal if left untreated, especially for children. Bangladesh, a cholera‐
endemic country with a high disease burden, experiences two peaks annually, during the dry pre‐monsoon
spring and the wet post‐monsoon fall seasons. An early warning system for disseminating cholera risk, which
has potential to reduce the disease burden, currently does not exist in Bangladesh. Such systems can raise timely
awareness and allow households in rural, riverine areas like Matlab to make behavioral adjustments with water
usage and around water resources to reduce contracting and transmitting cholera. Current dissemination
approaches typically target local government and public health organizations; however, the vulnerable rural
populations largely remain outside the information chain. Here, we develop and evaluate the accuracy of an
early warning system—CholeraMap that uses high‐resolution earth observations to forecast cholera risk and
disseminate geocoded risk maps directly to Matlab's population via a mobile smartphone application. Instead of
relying on difficult to obtain station‐based environmental and hydroclimatological data, this study offers a new
opportunity to use remote sensing data sets for designing and operating a disease early warning system.
CholeraMap delivers monthly, color‐coded geospatial maps (1 km × 1 km spatial resolution) with household
and community cholera risk information. Our results demonstrate that the satellite‐derived local‐scale risk
model satisfactorily captured the seasonal cholera pattern for the Matlab region, and a detailed high‐resolution
picture of the spatial progression of at‐risk areas during outbreak months.

Plain Language Summary Cholera, an acute waterborne diarrheal disease, remains a major public
health challenge in developing nations. An early warning system for disseminating cholera risk has the potential
to reduce the disease burden in rural, riverine, and endemic countries like Bangladesh. Current dissemination
approaches typically target local government and public health organizations but largely overlook the
vulnerable rural populations. We develop and evaluate the accuracy of an early warning system—CholeraMap
that uses satellite remote sensing data to forecast cholera risk and disseminate geocoded risk maps directly to the
remote population of Matlab, Bangladesh via a mobile smartphone application. CholeraMap delivers monthly,
color‐coded risk maps to provide users with household and community cholera risk information along with
associated explanations of the risks. Our results satisfactorily captured the spatiotemporal progression of at‐risk
areas during high outbreak months and were disseminated to the vulnerable population of Matlab via this novel
smartphone application.

1. Introduction
Cholera is an acute waterborne diarrheal disease, contracted by ingesting the bacterium Vibrio cholerae that
causes rapid dehydration and electrolyte imbalance (Baker‐Austin et al., 2018; Farmer et al., 2011; Hiremath
et al., 2015; Sack et al., 2004). There is a 50% case‐fatality rate if people are left untreated for more than 24 hr
(Farmer et al., 2011; Sack et al., 2004). The major transmission path is the fecal‐oral route—where consumption
of food or water is contaminated with the feces of an infected person (Abdulrahim & Adesola, 2022; Sit
et al., 2022). The World Health Organization (WHO) defines a cholera‐endemic country as one with a history of
local cholera transmission in the last 3 years rather than importing cholera from other locations (Craig, 2018;
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Gabutti et al., 2020; WHO, 2022). In the 69 countries in which cholera is endemic, approximately 1.3 billion
people are at risk of the disease, and there are approximately 2.86 million annual cases (Ali et al., 2015). In the
cholera‐endemic Ganges Delta region, Bangladesh is one of the countries with the highest number of people at
risk for cholera, resulting in over 100,000 cases and 1,000 fatalities annually (Ali et al., 2015; Sack et al., 2021).

Recent studies found both water abundance (flooding) and shortage (drought) contribute to cholera outbreaks
(Levy et al., 2016). In water supply and sanitation‐deprived regions in Africa, both high and low rainfall events in
dry areas are associated with higher cholera incidence; however, in wetter areas, high rainfall is associated with
lower cholera incidence (Moore et al., 2017). Rainfall impacts cholera transmission in two ways: (a) low rainfall
increases pathogen concentration in waterbodies; and (b) high rainfall worsens sanitation conditions due to high
rainfall generated runoff, which increases the pathogen load in water bodies (e.g., spillover of pit latrines,
washouts of open defecation places) (Gaudart et al., 2013; Lloyd et al., 2007; Moors et al., 2013; Ruiz‐Moreno
et al., 2007; Singh et al., 2001). In areas with compromised water, sanitation, and hygiene (WASH) infrastructure,
high‐intensity rainfall increases the risk of cholera transmission contaminating drinking water systems with
sewage, leading to higher cholera cases that begin about a month after the start of the rainy season (Rinaldo
et al., 2012; Taneja et al., 2020). In Zanzibar, which has a tropical monsoon climate, an increase of 200 mm of
rainfall was associated with a 1.6‐fold rise in cholera cases, following a 2‐month lag (Reyburn et al., 2011).
However, another WASH‐deprived country, Yemen, which has an arid subtropic climate, experienced a positive
association between weekly rainfall and a shorter lag period for cholera—about 10 days (Camacho et al., 2018).
Low rainfall increases the concentration of harmful pathogens and wastewater elements in water sources, which
reduces the water quality and increases the risk of human contact with pathogens (Levy et al., 2016; Moors
et al., 2013; Moran et al., 1997; Shehane et al., 2005). Although, a study for the Matlab region in Bangladesh
found no influence of rainfall on cholera occurrence between 1988 and 2001 (Ali et al., 2013). In Bangladesh,
rainfall and cholera cases are found to be negatively correlated during spring, given high cholera transmission
during the dry spring season (Akanda et al., 2009; Koelle et al., 2005).

Temperature ranges between 28 and 34°C (31 ± 3°C) facilitate the development and reproduction of pathogens,
leading to higher cholera occurrence (Alam et al., 2007; Asadgol et al., 2019; Batabyal et al., 2014; Saha
et al., 2019; Silva & Benitez, 2016). Moreover, an increase in temperature causes higher evaporation, resulting in
lower water levels in water bodies. As pathogen concentration increases with water scarcity, cholera outbreaks
may increase as well (Jutla et al., 2013). Approximately 50% of all cholera outbreaks occur when the temperature
is greater than 31°C (Asadgol et al., 2020; Jutla et al., 2013). For example, a study in north India found a 1‐month
lag between having a high temperature (greater than 30°C during the summer months) and higher cholera cases
(Taneja et al., 2020). Another study for epidemic regions found a higher likelihood of cholera outbreaks when air
temperature stays higher than the climatological average for 2 months or more, followed by heavy rainfall (Jutla
et al., 2013). A time series analysis for Matlab, Bangladesh (1988–2001) found a 6% increase in cholera cases
concurrent with a 1°C increase in minimum temperature (Ali et al., 2013). Other studies of the Matlab region also
find higher cholera cases during periods of increased temperatures (Ali et al., 2013; Emch et al., 2008; Islam
et al., 2009). During such times, the water temperature of shallow waterbodies can easily increase with the rising
Land Surface Temperature (LST), generating a suitable environment for the growth of V. cholerae (Khan
et al., 2019; Pascual et al., 2000). LST was found to be an important contributor to cholera outbreaks in New
Delhi, India (Elnemr, 2014). A study for coastal India found that monthly LST in the month of a cholera outbreak
plays an important role as a predictor of that outbreak (Campbell et al., 2020; Jutla et al., 2013).

Elevation is an additional factor in determining cholera risk as low‐elevation areas are more flood‐prone, which
increases the chances of contact between people and water contaminated with the vibrio (Smirnova et al., 2020;
Xu et al., 2016). Lower elevation areas near rivers are usually flooded by high discharge flow volumes during the
rainy season. After heavy rainfall or floods, low‐lying lands that lack proper drainage or sewer systems experience
water stagnation, hampering the sanitation system, and accelerating cholera outbreaks (Luque Fernandez
et al., 2012; Zarocostas, 2009). In Zimbabwe, a 30% decrease in cholera risk was observed with every 100 m
increase in elevation (Luque Fernandez et al., 2012). In lower elevations, people without adequate water supply
and sewage disposal systems rely on unprotected shallow wells, which can easily be contaminated with sewage,
putting more people at disease risk (Luque Fernandez et al., 2012; Mason, 2009). In addition, sea level rise can
cause saline water intrusion in low‐lying areas, which increases the likelihood of waterborne pathogen trans-
mission (Christaki et al., 2020; Costello et al., 2009; Dvorak et al., 2018). The increasing salinity also allows a
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more hospitable environment for the growth of V. cholerae (Huq et al., 1984, 2005; Jutla et al., 2013; Louis
et al., 2003; Tamplin et al., 1990).

Population density is an important risk factor in the transmission of cholera (Griffith et al., 2006; Siddique
et al., 1992). High population density puts extra pressure on existing water, sanitation, and health, generating a
suitable environment for waterborne diarrheal disease outbreaks and transmission (Ali et al., 2002; Finger
et al., 2016; Root, 1997; Siddique et al., 1992). Positive correlations among population density, poor sanitation
facilities, and cholera incidence rates have been observed across many developing regions (Ali et al., 2002).
People living in densely populated developing or underdeveloped regions typically lack clean water supply and
sanitation systems and often rely on unimproved sanitation options such as shared facilities and open defecation
(Finger et al., 2016).

In an endemic setting, cholera outbreaks are observed in a recurrent manner in both space and time
(Codeço, 2001). The risk of cholera cannot be fully eradicated as the causative agent (V. cholerae) is native to
aquatic settings in many tropical regions (Jutla et al., 2013, 2015). It can survive in aquatic environments in a
viable but non‐culturable (VBNC) form, which can cause an outbreak after finding a suitable environment
(Chamanrokh et al., 2022; Codeço, 2001; Colwell et al., 1996). In Bangladesh, cholera occurs around the year but
exhibits distinct seasonal outbreaks, a smaller outbreak in the spring (March–May) season and a larger one in the
post‐monsoon (October–November) season (Akanda et al., 2009, 2013; Alam et al., 2011; Hashizume et al., 2010;
Lobitz et al., 2000). The spring cholera peak is associated with low rainfall and water scarcity whereas, the post‐
monsoon cholera peak is associated with high rainfall and flood inundation (Hashizume et al., 2010). Dry season
flows in the Ganges and Brahmaputra Rivers are inversely associated with increased cholera cases during the
spring season, while monsoon‐induced flows and flood inundation lead to increased cholera during the post‐
monsoon season (Akanda et al., 2009).

Early warning systems can help reduce the disease burden even if it cannot be completely eradicated. Such a
system provides notification of a possible disease outbreak in a location to the local population and public health
officials well in advance of the threat to allow time for preventative behaviors and proactive response options
(Council, 2001). Such an early warning system may also have the capacity to regularly monitor catalysts
impacting disease outbreaks and predictively model the risk of outbreaks (Hussain‐Alkhateeb et al., 2021; Nusrat,
Haque, et al., 2022; Nusrat, Khan, et al., 2022). Instead of using one model for a large geographic location (e.g.,
country), the model's scale needs to be local or regional to incorporate native features in those models for better
representation (Constantin deMagny et al., 2008). Location‐specific early warning systems are typically robust as
they incorporate the influence of local environmental and social features on disease outbreaks for better pre-
vention and management (Chou et al., 2010). Moreover, these early warning systems can aid in the targeted
dispersion of public health resources and the design of public health policies (Chou et al., 2010; Constantin de
Magny et al., 2008).

In this study, we developed and deployed a cholera early warning system for the Matlab subdistrict region in
Bangladesh, which did not employ any such system previously. We employed a geospatial cholera risk model that
uses satellite‐derived observations including rainfall, temperature, population density, and elevation. We used the
outputs of this model to populate a smartphone application that communicates these risk predictions and other
cholera‐related information directly to the stakeholder population. This study is a novel attempt to combine the
powers of satellite remote sensing data sets and dissemination via smartphones for waterborne diarrheal diseases
or water‐related health applications. The primary objectives of this study are to: (a) develop a modeling
framework for a high‐resolution (1 km × 1 km) cholera early warning system using geospatial data and remote
sensing earth observations for the area ofMatlab; and (b) disseminate geographically personalized and temporally
dynamic cholera risk predictions including preventive measures directly to local populations in a simple and user‐
friendly smartphone application.

2. Methodology
2.1. Study Area

This study focuses on Matlab, a cholera‐endemic rural upazila (sub‐district) in the Chandpur district of
Bangladesh that is situated 250 km upstream from coastal regions and 50 km south‐east of Dhaka, the capital
(Alam et al., 2011, 2017). The population in a 484 square kilometer (km) region (22 km × 22 km) of this upazila
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was chosen for the dissemination of the early warning system through the smartphone application (Figure 1). The
study area is situated north of the confluence of the Padma (combined flow of the Ganges and the Brahmaputra)
and Meghna rivers (Carrel et al., 2010). The region is mostly flat, with an elevation below 7 m above sea level
across most of the study region, and between 7 and 11 m in eastern parts of Matlab. During the monsoon months,
this location floods regularly (Akanda et al., 2013; Alam et al., 2017).

The issue of floods is critical for Bangladesh due to its devastating impacts on waterborne diseases (Palash
et al., 2018). The post‐monsoon cholera peak is directly influenced by floods in many areas of Bangladesh
(Akanda et al., 2009, 2011). However, the population living in Matlab is largely protected by flood control
embankments constructed in 1988 (Carrel et al., 2010). In addition, due to its advantageous location north of the
confluence of the big rivers, the floods in the Matlab area are typically of smaller nature, and more induced by
local heavy rainfall than river flooding from upstream flows (Manandhar et al., 2020).

There are three dominant seasons—winter (November–February), spring (March–May), and monsoon (June–
September) (Alam et al., 2017; Anjumand, 2011). Monthly rainfall varies from 0 to 540 mm with a monthly
average of 138 mm, and air temperature varies between 20 and 34°C with a monthly average of 27°C (Call
et al., 2017). Dual cholera peaks are observed in Matlab; a smaller peak occurs during spring (March–May) and a
larger peak occurs during post‐monsoon months (September–December) (Akanda et al., 2013; Ali et al., 2013;
Emch et al., 2010; Longini Jr et al., 2002). Figure 2 shows the monthly climatology of rainfall and Land Surface
Temperature (LST) patterns in Matlab based on 20 years of observations (2000–2020).

The International Center for Diarrheal Disease Research, Bangladesh (icddr,b) operates two health facilities in
Matlab—Health and Demographic Surveillance System (HDSS) andMatlab Hospital (Brooks et al., 2021). There
are 7 administrative blocks for Matlab (icddr,b service blocks—A, B, C, D, and government services blocks—E,
F, G) (Haq et al., 2018; Pakhtigian et al., 2022). Our study area falls within the northern part of Matlab upazila,
which consists of government service blocks E, F, and G (Pakhtigian et al., 2022). As of 2022, Matlab has a total

Figure 1. Study area (Matlab, Bangladesh).
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population of approximately 247,000 people and the population density ranges between 1,200 and 1,800 persons
per km2.

2.2. Data Sources

Remote sensing data sets from multiple satellite missions and gridded land surface and demographic data sets
from global depositories are used in this study. To predict cholera risk index for any month, we bring together data
on population density, elevation, previous month's rainfall, and LST anomaly, previous month's average cholera
prevalence (2016–2019), and forecasted rainfall and temperature of that month. Population density and elevation
data were collected from Socioeconomic Data and Applications Center (SEDAC) and USGS respectively.
Monthly rainfall and LST anomalies (difference between monthly value and the average of the long‐term value
for the same period) were calculated using the Integrated Multi‐satellitE Retrievals for GPM (IMERG) and
Moderate Resolution Imaging Spectroradiometer (MODIS) data respectively. Rainfall and temperature fore-
casted data were collected from NOAA's North American Multi‐Model Ensemble (NMME) project's Community
Climate System Model (CCSM). NMME is a forecasting system with 10 ensembles that provides real‐time
seasonal forecasts up to 180 days in advance (Kirtman et al., 2014). These multi‐model ensembles were used
in this study as they deliver more advanced quality forecasting than any single‐model ensemble (Doblas‐Reyes
et al., 2005; Hagedorn et al., 2005; Kirtman & Min, 2009; Slater et al., 2017). We used recent cholera prevalence
data (ratio of cholera patients and total diarrheal patients in a hospital) from 2016 to 2019 for model building, and
we used publicly available data sets from 1998 to 2007 for validation (Akanda et al., 2011; IEDCR, 2022) to see
how the timing and magnitude of recent cholera peaks match historical cholera patterns. The details of data
sources and types, spatial resolutions, and the weightage of each variable used in this model are given in Table 1.

2.3. Geospatial Risk Model

We developed a weighted sum geospatial model to determine the cholera risk index using environmental and
socioeconomic variables. A weighted summodel is typically used for evaluating a number of alternative scenarios
with assigned weights for each. In this geospatial version, the model was set over a 22 km × 22 km region with
each cell (1 km × 1 km) representing the combined risk values of that location based on the environmental
variables and their assigned weights. We first examined the impact of each environmental variable on monthly
cholera risk using a lag correlation analysis (Table S1 in Supporting Information S1). The static variables
(elevation and population density) were not included in this analysis. The risk model was then prepared using the
predictors, with each variable assigned a specific weightage (Table 1).

We put equal weightage at the start of the selected set of hydroclimatic, land surface, and socioeconomic vari-
ables. We then used a trial‐and‐error approach to capture the influence of each variable and correlate with past
cholera data to ensure that our model can capture the seasonal cholera risk patterns. We further diversified the

Figure 2. Climatology of Rainfall (IMERG) and Land Surface Temperature (MODIS) of Matlab (2000–2020).
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weightage based on literature evidence and our understanding of the model's performance improvement and
matched it with past cholera data (Akanda et al., 2009, 2011, 2013; Nusrat, Haque, et al., 2022; Nusrat, Khan,
et al., 2022).

First, each variable was classified as different risk layers (risk 0 to risk 4) according to its values. Then the risk
values for each variable were summed into one single raster risk layer and included in the weighted sum model.
The final output of the weighted sum model was then rescaled between 0 and 1 by normalizing all risk values (0–
4) with respect to the highest risk value (4). The rescaled risk values were divided into three groups: low (0.00–
0.30), medium (0.31–0.60), and high (0.61–1.00). Low, medium, and high risks were represented with green,
yellow, and red colors, respectively, in the risk maps generated for the early warning system for easier inter-
pretation of cholera risk intensity. Figure 3 shows the conceptual structure and the flowchart of the monthly
cholera risk model.

Our study aims to utilize the most readily available satellite earth observations data sets to create a cholera risk
forecasting model that can help local people in decision‐making. However, while selecting the spatial scale of the
model, we need to strike a balance between the advantages of the community scale and the much larger synoptic
scales of hydroclimatic variables and processes. Past modeling efforts in this region have focused on hydro-
climatic influences on cholera outbreaks at 0.1–0.5° scales, roughly 10–50 km (Akanda et al., 2011; Jutla
et al., 2013; Khan et al., 2017). Recent studies focusing on Yemen and Malawi have provided cholera risk at
1 km × 1 km resolution (Jutla et al., 2023; Usmani et al., 2023). Our effort is built for a rural area where major
water sources (ponds, rivers, canals, tubewells, etc.) could be similar within near distances (<1 km) and the
hydroclimatic drivers do not show much variability at those scales. In addition, the target communities live in
households that are clustered in villages typically situated a few kilometers apart from each other. Therefore, we
selected a 1 km × 1 km scale for this model.

Rainfall, which is a major contributor to cholera outbreaks, was used as a proxy for water availability and was
assigned the highest importance as a risk factor in the model (Ali et al., 2013). Temperature was another important
variable for cholera in Matlab. Rainfall and LST anomalies (the difference between monthly value and the
average of the long‐term value for the same period) are used in this study, where positive anomaly means wetter
(rainfall) or warmer (temperature) months than climatology and vice versa (Hussain‐Alkhateeb et al., 2021;

Table 1
Data Types, Sources, Spatial Resolutions, and Variable Weightage in the Model

Types Variables Sources Spatial resolution

Variable
weightage

(%)

Social Population Density (2020) Socioeconomic Data and Applications Center
(SEDAC)a

1 km × 1 km 20

Topographic Elevation USGS HydroSHEDSb 1 km × 1 km 10

Environmental
(Preceding)

Monthly rainfall anomaly Integrated Multi‐satellitE Retrievals for GPM
(IMERG)c

∼10 km × 10 km 15

Monthly LST anomaly Moderate Resolution Imaging
Spectroradiometer (MODIS)d,e

∼1 km × 1 km 10

Epidemiological
(Preceding)

Monthly Average Cholera Prevalence Institute of Epidemiology, Disease Control and
Research (IEDCR), Dhaka, Bangladeshf

Surveillance data from 22
Hospitals were converted to

1 km × 1 km layers

20

Environmental
(Forecasting)

Monthly total Rainfall of upcoming month North American Multi‐Model Ensemble
(NMME) Community Climate System Model

(CCSM4)g

∼50 km × 50 km 15

Monthly average Temperature of upcoming month 10

aCIESIN (Center for International Earth Science Information Network)—Columbia University (2018). “Gridded Population of the World, Version 4 (GPWv4):
Population Density, Revision 11.” bLehner et al. (2008). “New Global Hydrography Derived from Spaceborne Elevation Data.” cHuffman et al. (2019) “GPM IMERG
Late Precipitation L3 1 Day 0.1 Degree × 0.1 Degree V06, Edited by Andrey Savtchenko.” dWan et al. (2015). “MOD11C3 MODIS/Terra Land Surface Temperature/
Emissivity Monthly L3 Global 0.05Deg CMG V006 [Data Set].” eWan et al. (2021). “MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN
Grid V061 [Data Set].” fIEDCR (Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh) (2022). Ongoing Surveillance. (https://old.iedcr.gov.bd/
index.php/surveillance). gKirtman et al. (2014). “The North American Multi‐Model Ensemble (NMME): Phase‐1 seasonal to interannual prediction; Phase‐2 toward
developing intra‐seasonal prediction.”
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Nusrat, Haque, et al., 2022; Nusrat, Khan, et al., 2022). A 1‐month lag is used as it typically takes approximately
1 month for an outbreak to erupt after humans are exposed to the pathogen (Khan et al., 2017). For forecasting
cholera using a multi‐variable model, environmental variables with a 1‐month lag produced the best results and
had the lowest Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) error rates (Daisy
et al., 2020).

More detailed explanation of the role of each variable such as elevation, and population density are provided in
Section 1. Our strategy for cholera risk prediction was not only using the lag effect of variables but also addressing
the plausible impact of the upcoming month. For this reason, we used both lagged and forecasted rainfall and
temperatures to incorporate the influence of the future rainfall and temperatures on cholera risk for the upcoming
month. From hydrological changes to cholera cases in humans, no one data layer alone can explain the complex
process, as each data layer has its own contribution to determining cholera risk. Therefore, all environmental
variable layers along with population density, elevation, and past cholera prevalence are used in the weighted sum
model to identify the combined effect of all data layers together to determine the next month's cholera risk.

As direct measurement of water availability is difficult, rainfall was used as a proxy for water availability (Ali
et al., 2013). As both water abundance and shortage have been established as important drivers related to cholera
outbreaks (Levy et al., 2016), the highest weightage (30%) was assigned to rainfall among the environmental
variables (15% for the concurrent month and 15% for the previous month). Studies show both lagged and con-
current positive correlation between temperature and cholera outbreaks as temperature has a strong influence on
the growth and replication of pathogens in water (Alam et al., 2007; Asadgol et al., 2019; Batabyal et al., 2014;
Saha et al., 2019; Silva & Benitez, 2016). A lower weightage value (20%: 10% for concurrent month and 10% for
previous month) was assigned to temperature compared to rainfall.

The past month's cholera prevalence is also known to have an influence on the current month's cholera risk as the
baselineWASH conditions do not typically change within a month, unless due to natural disasters. It was assigned
20% weightage in the model as the past cholera prevalence itself has the capacity to pose a significant risk in

Figure 3. Flowchart of the monthly cholera risk model.
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creating a suitable environment for cholera outbreaks. Elevation was assigned a 10% weightage as it is a static
layer and more of an indirect measure of flood influence on cholera outbreaks. Finally, a 20% weightage was
assigned to population density as higher density can increase vulnerability for waterborne diarrheal disease
outbreaks and transmission by adding extra pressure on existing WASH systems (Ali et al., 2002; Finger
et al., 2016; Root, 1997; Siddique et al., 1992). Results obtained with the above weightage factors were adjusted
using a trial‐and‐error method based on past climatological cholera evidence for the Matlab region.

2.4. Smartphone Application

As part of this study, we developed a smartphone application named “CholeraMap” to deliver the outputs of the
geospatial cholera risk model to the project stakeholders—households in Matlab region, Bangladesh. The
Android operating system was chosen for the application (https://developer.android.com/studio) as iOS or iPhone
penetration is significantly low in Bangladesh. Most smartphones in rural Bangladesh are built on the Android
system, are of Chinese origin hardware with limited specifications, and cost less than $100 US. We procured
several local handsets to facilitate app testing and quality checks.

The application was built with three main objectives in mind. They were (a) to directly provide high‐level
technical content to non‐technical users in a simple and user‐friendly manner; (b) to communicate and explain
the geospatial nature of cholera outbreaks to the app users with respect to their locations and the varying risk
levels each month; and (c) to provide important preventative water usage information and safety precautions to
strengthen the awareness of the app users against cholera transmission.

The technical content of the application is comprised of a color‐coded geospatial cholera risk map for the focus
region, the central character of the app (a South Asian village girl), the location of the user's household and
necessary map legends with explanations of the color codes. The risk map covered a 484 km2 region, consisting of
geocoded 1 km × 1 km pixels that show the monthly cholera risk category. The map also highlights the location of
the user's household with a house icon—placed using the coordinates of the phone's last known location—that
draws attention to the cholera risk level in the household's immediate and surrounding locations (Figure 4).
The dynamic color‐coded map is updated each month with the forecasted cholera risks for that month.

3. Results and Discussion
3.1. Geospatial Cholera Risk Maps

The geospatial cholera risk map outputs for 2021 and 2022 are shown in Figures 5 and 6, respectively. The colors
green, yellow, and red refer to low, medium, and high cholera risk respectively, each guided by a range of risk
calculated by the model. Thus, the colors shown in a map represent the spatial variation of cholera risk across the
484 cells (each representing an area of 1 km × 1 km). The organization of the colored geocoded pixels can also be
used to understand the spatial extent of risk and location of the users in the context of high‐risk areas.

A strong pattern observed in our monthly risk maps is the biannual or dual peak nature of cholera outbreaks seen
in the Bengal Delta region (Akanda et al., 2009; Sack et al., 2003). The Matlab region is situated close to the
confluence and along the floodplain corridor of the Ganges‐Brahmaputra‐Meghna (GBM) river systems, areas
that are particularly known to exhibit the dual peak seasonal cholera pattern of the Bengal Delta (Akanda
et al., 2013). The peak months of these outbreaks are clearly visible in the high number of red pixels (high‐risk
areas) seen in May and October in both years. The gradual rise and fall of the high‐risk areas as well as the spatial
progression is visible in the spring (March‐April‐May) and post‐monsoon or Fall (October–November) months.

In this study, we analyzed the results and the outputs of the geospatial cholera risk model for a 2‐year period from
January 2021 to December 2022. The cholera risk maps show considerable spatiotemporal variation across the
landscape over these 2 years. The spatial variation in the cholera risk map for different months is due to monthly
and seasonal variations in rainfall, temperature, and cholera prevalence, forecasted hydroclimatic variables as the
same elevation and population density layers were used for every month. Generally, from December to May each
year, low rainfall‐induced water scarcity is associated with higher cholera risk in this region (Akanda et al., 2011;
Nusrat & Akanda, 2019; Nusrat, Haque, et al., 2022; Nusrat, Khan, et al., 2022). The previous month's rainfall
anomaly from December 2020 to February 2021 was generally high, positive values with some exceptions,
indicating improved water supply situations compared to average conditions. Therefore, low cholera risks were
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observed during the spring 2021 season (March‐April‐May). The eastern side of the study area predominantly
received less rainfall than the western side, which led to higher cholera risk predictions in the east.

For both years of 2021 and 2022, low values of forecasted rainfall were observed from November to March. As a
result, high cholera risk values were observed during the subsequent dry months of April through June (Figure 5).
If both past and present months have low rainfall, it implies increased odds of having high cholera risk as low
rainfall increases pathogen intensity in waterbodies and also creates water scarcity, where people have to
compromise their hygiene practices (Akanda et al., 2009; Koelle et al., 2005; Levy et al., 2016; Moors et al., 2013;
Moran et al., 1997; Shehane et al., 2005). Low rainfall in the previous month or season increases pathogen
concentration in waterbodies; the current month's high rainfall‐induced runoff can then increase pathogen loads in
waterbodies by washing out open defecation places, which is associated with cholera risk (Gaudart et al., 2013;
Lloyd et al., 2007; Moors et al., 2013; Ruiz‐Moreno et al., 2007; Singh et al., 2001). On the other hand, high
forecasted rainfall values were seen between April and September leading to high cholera risk across the Matlab
region for the post‐monsoon period (October–November) in both years (Figures 5 and 6). Except for August
2021, considerable spatial variation of rainfall‐induced cholera risk was observed during the study period. During
the rainy period, higher rainfall is associated with higher cholera risk due to the potential for flooding and cross‐
contamination.

The temperature in the Matlab region shows a dual peak pattern similar to that of cholera risk. A positive tem-
perature anomaly (higher temperature than the long‐term mean) was observed during April and May. The
temperature anomaly dropped between June to August and then increased starting in September. The temperature
anomaly is high in spring and post‐monsoon seasons and drops during the monsoon period due to high rainfall.
The eastern side of the Matlab region experienced a positive temperature anomaly during April–May, which
impacted the high cholera risk predictions found for May–June by causing higher evaporation, leading to less

Figure 4. Example of monthly cholera risk map with detailed description.
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available water and also increasing the density of pathogens in few available waterbodies (Jutla et al., 2013).
Despite experiencing a positive temperature anomaly, the western side showed only medium cholera risk, due to a
lower population density. Similar to the rainfall forecasts, the spatial variation of the temperature forecasts is
limited across the study area due to the spatial data resolution. However, an overall increase in temperature during
the spring and post‐monsoon months is observed and is associated with higher cholera risk.

The past month's cholera prevalence pattern is included in the risk analysis as cholera can have consecutive peaks
in endemic settings (Codeço, 2001). The past month's average cholera prevalence also impacts the cholera risk

Figure 5. Monthly Cholera Risk for Matlab region, Bangladesh in 2021.
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when it is considered along with other environmental variables. FromMarch to May, cholera prevalence was high
and that impacts the high cholera risk from April to June. Cholera prevalence drops from June to August during
peak monsoon and fewer areas with high cholera risk are observed from July to September. This phenomenon has
also been observed in previous studies on Bengal Delta cholera (Akanda et al., 2011; Huq et al., 2005; Sack
et al., 2003). September and October months have high cholera prevalence, which is reflected in the cholera risk
patterns seen for October and November months in both years (Figures 5 and 6).

Figure 6. Monthly Cholera Risk for Matlab region, Bangladesh in 2022.
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3.2. Model Validation and Limitations

We evaluated the performance and the application of a geospatial cholera risk model as part of a cholera early
warning system for Matlab, Bangladesh. There are several elements of cholera risk estimation in this study that
require evaluation and validation of its analysis and accuracy. This model has been developed to simulate and
forecast the varying risks and the temporal nature of cholera incidence in this historically endemic region. Amajor
goal is to evaluate the spatial distribution and progression of risk in the study region, with the aim of identifying
cholera hotspots or high‐risk locations.

Another technical objective of this study is to investigate if high‐resolution satellite‐derived environmental data
sets can be used to develop local‐scale (upazilla or sub‐district level) early warning models that can capture the
spatiotemporal dynamics of waterborne disease risk in resource‐constrained regions. Figures 5 and 6 show that
the model successfully captures the spatial progression of cholera risk across the 22 km × 22 km region through
the dry and wet seasons. The maps clearly show the seasonal progression of cholera risk through various parts of
the region modulated by hydroclimatic drivers.

The presence of high‐risk areas shown within these maps (such as cholera outbreak in Matlab Bazar in July and
December 2021, and in the northeast quadrant in July 2021 and April 2022) shows the utility of such local‐scale
maps in identifying hotspot areas. To the best of our knowledge, this is the first combined instance of using earth
observations data sets for cholera early warning at 1 km × 1 km resolution and delivered to users using a
smartphone application. Due to the novel and recent nature of this study, there are no established data sets or
health surveillance data sets that can be directly used for validation. However, our team was on the ground in
Matlab Bazar during the ongoing cholera outbreak in December 2021. Although the month of December does not
typically experience cholera in Matlab or elsewhere in Bangladesh, the field presence of our team in Matlab
verified the occurrence of the increased cholera incidence in Matlab Upazilla hospital and corroborated the
findings of our model, which successfully captures a cholera hotspot around the Matlab Bazar area in that unusual
month. In addition, past publications on the regional incidence of cholera and other diarrheal diseases in the
Matlab region strongly confirm a similar spatial pattern of outbreaks observed in the southwest (Matlab Bazar)
and the northeast quadrant of the study region (Ali et al., 2002; Emch et al., 2008; Huq et al., 1984; Islam
et al., 2009).

We also observed the effects of static information such as elevation and population density on cholera risk
predictions for the four different quadrants of the study area. The eastern side mostly has a higher cholera risk than
the western side due to higher population density. Overall, the highest cholera risks were observed in the northeast
and the lowest risks were observed in the southwest (Figure S1 in Supporting Information S1). The northeast has
high population density and low elevation, both of which contribute to high cholera risk predictions. The
southwest, on the other hand, has lower population density and lower elevation (with some exceptions), leading to
overall lower cholera risk predictions. However, the southwest had occasional outbreaks of strong magnitudes
and these hotspots were captured by the model (Figures 5 and 6) and corroborated by past publications on flood
vulnerability and cholera outbreaks in the region (Ali et al., 2002; Carrel et al., 2010; Emch et al., 2008).

An observed limitation of this model is that it seems to capture the high‐risk areas more successfully than the low‐
risk areas. As a result, the model overestimates the risk in low cholera months. TheMatlab region is long known to
exhibit dual cholera peaks based on its historical surveillance records (Emch et al., 2008; Islam et al., 2009). Our
results capture and illustrate both the spring and post‐monsoon peaks and the increased intensity as well as the
geographical spread of the outbreaks in the study region (Figure 7). As explained in Section 2.3, we adjusted
model variables and their risk classification using a trial‐and‐error method to reflect on monthly patterns and
capture the seasonal risk more accurately. The model captured high cholera risk from March to June, lower
cholera risk during the monsoon, and increased risk again in September, peaking from October to November
(Figure S2 in Supporting Information S1). These patterns successfully corroborated past publications on the
spatiotemporal patterns of cholera in Matlab and its seasonal nature with respect to the hydroclimatic and
environmental controls (Akanda et al., 2011, 2013; Carrel et al., 2010; Emch et al., 2010).

Figure 8 shows the monthly average of the calculated cholera risk index in comparison with historical Matlab
cholera incidence data with a very similar shape in cholera progression through both seasons. The figure,
however, shows the simulated peaks occurring about a month earlier, a signature of a shifting seasonality of
cholera outbreaks. This phenomenon has been reported in recent publications as shifting hydrological as well as
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epidemiological signatures of cholera in Bangladesh (Akanda et al., 2011; Chou et al., 2010; Daisy et al., 2020). A
longer study period and accompanying cholera surveillance data sets would be required to confirm such changes
in the environmental signals and potential effects on cholera signatures. This study thus supports the need for and
contributes to producing spatially and temporally current information that varies during and by year versus
comparison using long‐term averages.

4. Conclusions
In this study, we developed a high‐resolution geospatial model that used satellite remote sensing observations of
environmental and hydroclimatic processes to calculate cholera transmission risk due to seasonal changes in the
environment, natural hazards, and subsequent effects on water access and usage. In addition, we developed a
mobile smartphone application to disseminate this information in the form of cholera risk maps to rural pop-
ulations in a cholera‐endemic region in South Asia—the Matlab region of Bangladesh.

The model captures the seasonal cholera pattern for the Matlab region satisfactorily. The outputs also provide a
high‐resolution understanding of the local‐scale changes in cholera risk frommonth to month and within different
parts of Matlab. Instead of fully relying on station‐based hydroclimatological data, this study offers a new op-
portunity to use remote sensing data for designing and operating an early warning disease system. As cholera can
spread very fast, creating an early warning system that can predict weekly cholera risk would provide even better
management of the situation. Such high‐resolution and spatial representation of cholera risk can readily help
health workers in identifying at‐risk regions and finding ways to allocate resources for recovery operations.

The cholera risk predictions were displayed in a geospatial and geocoded manner so that users could identify their
own locations (pixel) on the map and understand the spatial nature of their surroundings' risks. The dynamic maps
are updated each month to show the temporal change in cholera risk in each location as a function of seasonal
environmental changes and regional weather influences. The smartphone application also provided further ex-
planations about the risk of community transmission of cholera and different ways to prevent it and develop
resilience against cholera by using safe water practices, adopting WASH protocols, and cleanliness in food
preparation.

To the best of our knowledge, this study is the first attempt to combine the powers of satellites and smartphones
for waterborne diarrheal diseases or water‐related health applications. We have developed high‐level, satellite‐

Figure 7. Monthly variation of cholera risk index in Matlab region for year 2021 and 2022.
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derived, technical content and delivered it directly to non‐technical, grassroots‐level users, who otherwise have no
access to technical water or personalized health risk information, using a smartphone application. This study is
also the first attempt to change the traditional top‐down technical information chain and directly empower
vulnerable remote populations to make day‐to‐day decisions with an improved understanding of their water usage
choices.

Early warning systems offer lead time to provide necessary interventions—for example, vaccination campaigns
and providing water, sanitation and hygiene (WASH) facilities (Akanda et al., 2012, 2014). There are many ways
to disseminate warnings including websites, mobile apps, television, radio, newspaper, and microphone an-
nouncements (remote areas with less access to technology)—thus, the dissemination process needs to be selected
based on the targeted population and their accessibility to information. Despite disseminating the alert early, such
a system may still fail due to a lack of coordination or proper decision‐making protocols among public health
officials (Council, 2001). Access to new technologies such as smartphones and accurate risk maps could
potentially help provide clear instructions and strengthen policies toward effective information dissemination and
management of responsibilities.
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tation (IMERG) and temperature (MODIS) data used in this article are available in Huffman et al. (2019) andWan
et al. (2015, 2021), respectively. Rainfall and temperature forecasts are available from NOAA's North American
Multi‐Model Ensemble (NMME) project (Kirtman et al., 2014). Elevation data have been collected from the
USGS HydroSHEDS project (Lehner et al., 2008). Population density data are available at SEDAC (CIE-
SEN, 2018). Cholera data were obtained from the Ongoing Surveillance project at the Institute of Epidemiology,
Disease Control and Research, Dhaka, Bangladesh (IEDCR, 2022). Software: The cholera risk model was
developed using the ModelBuilder application of ArcGIS Desktop 10.7.1 (ESRI). The model and plotting codes
are publicly available for download at Github (https://github.com/asakanda/CholeraMap.git). Canva, a graphic
design platform, was used for creating Figure 3 (https://www.canva.com/).

Figure 8. Comparison of recent monthly average cholera risk index (2021–2022) with past monthly average cholera
incidence (%) (1998–2007) Data Source (Akanda et al., 2011).
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