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Abstract: Molecular dynamics simulations have emerged as a powerful tool to study biological
systems at varied length and timescales. The conventional all-atom molecular dynamics simulations
are being used by the wider scientific community in routine to capture the conformational dynamics
and local motions. In addition, recent developments in coarse-grained models have opened the way
to study the macromolecular complexes for time scales up to milliseconds. In this review, we have
discussed the principle, applicability and recent development in coarse-grained models for biological
systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art
examples of protein folding and structure prediction, self-assembly of complexes, membrane systems
and carbohydrates fiber models. The multiscale simulation approaches have also been discussed
in the context of their emerging role in unravelling hierarchical level information of biosystems.
We conclude this review with the future scope of coarse-grained simulations as a constantly evolving
tool to capture the dynamics of biosystems.
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1. Introduction

Biological systems are now seen as molecular machines consisting of hundreds up to thousands of
atoms. Molecular dynamics simulation is the biophysical microscope to study this complex molecular
machinery. In the 1970s, Martin Karplus, Michael Levitt and Arieh Warshel laid down the foundation for
the development of multiscale models for complex chemical systems. For their significant contribution,
they were awarded the Nobel Prize in chemistry in the year 2013. Their well-recognized work included
the coarse-grained modeling of proteins. They introduced the concept of simplification of biomolecular
complexes for longer simulations at biological relevant time scales [1]. Based upon the concept of
simpler representation, many coarse-grained models have been proposed and are being extensively
used to explore biomolecular complexes [2–4].

The numerous static snapshots when put together can narrate the story very well in the form of
a movie. Similar is the case for biological processes, in that when the static information of biomolecules is
combined with dynamic studies it can unravel the varied aspects of complex biomolecular mechanisms.
The biological system is hierarchical in nature and, therefore, multiscale approaches have been
developed to address the study of biological processes [5]. The chemical reactions and their mechanisms
are treated with quantum chemical calculations [6]. However, the high computational cost of quantum
calculations limits its use up to fewer atoms and short time scales. In the next level, classical all-atom
molecular dynamics (MD) simulations are in regular practice to gain insight into the conformational
dynamicity of proteins and their interactions with nucleic acids, ligands and other proteins [7–9].
However, some biological processes such as protein folding, aggregation and biological assembly occur
in longer time scales beyond the scope of all-atom simulations. Therefore, processes involving large-size
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biological systems and longer time scale dynamics are approached by coarse-grained simulations.
The simulation methods used at various time and length scales are shown in Figure 1.

The all-atom simulations and coarse-grained model-based simulations are closely interwoven
with each other. Thus, we will provide an overview of all-atom molecular dynamics and applications
followed by a discussion on the necessity of coarse-grained methods. In the next section we will
discuss the recent developments in coarse-grained methods for proteins and carbohydrates and
their applications. In the third section the most recent applications of coarse-grained methods for
biomolecular complexes has been reviewed while the discussion on multiscale models is given in the
fourth section. In the fifth section, a brief discussion on the challenges in coarse graining of biomolecular
systems is also given. Finally, a short conclusion has been made portraying coarse-grained methods as
a promising one for the studies of biological systems. Due to the limited space, many important topics
such as details of fundamental principles used to construct coarse-grained models, their applications to
nucleic acids, water and lipids are not mentioned. For the reason not to be exhaustive we have focused
on the most recent applications of coarse-grained methods published in the last five years.
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1.1. All-Atom Molecular Dynamics Simulations

At present, the protein databank consists of more than 152,500 entries for protein and nucleic acid
structures [10]. This enormous structural wealth and the study of its dynamicity can lead us to the
next level of understanding of the complex biological phenomena. The availability of experimental
data, enhanced computational power and improved algorithms has made the molecular dynamics
simulation technique a popular choice to study the biological processes [7].

All-atom MD simulations can be done to capture the motion of atoms to study conformational
changes, the process of ligand binding, protein–protein interactions, and the protein nucleic acid
interaction effect of perturbations such as mutation, protonation and phosphorylation. In silico
perturbations can be implied to study the biomolecular system, such as removal of bound ligand from
the reported experimental structure and then study its effect on protein conformation [11,12]. All-atom
MD simulations can also be used to study the post translational modification, such as the effect of
phosphorylated amino acid residue [13].

Accuracy and transferability are crucial aspects for the successful application of all-atom force
fields in biomolecular simulations. Although recent years have witnessed substantial improvement
in the all-atom forcefields [14–19], they are still imperfect, and the resulted uncertainty should be
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considered carefully for the interpretation of simulation results. For in-depth discussions on their
strength and drawbacks, we direct the reader to several excellent reviews [20–22].

Another important aspect of relevant MD simulation in studying biological processes is the length
of the simulation run. The biological processes occur in the time scale of nanoseconds or microseconds
(loop closing—10 ns; α-helix formation—200 ns; and mini protein folding—1 to 10 µs). Keeping in view
the numerical stability of a system, the time step is usually set in range of femtoseconds during the
MD run. Therefore, simulation of an inherently large biological system at a biologically relevant time
scale has very high computational cost. To address this issue, nowadays graphics processing unit
(GPU)-enabled simulations are being run at less cost in terms of time [23]. For instance, the DHFR
system consisting of 23,558 atoms when simulated over a single NVIDIA GTX-TITAN GPU card
achieved a maximum speed of 110.65 ns/day [24].

1.2. Enhanced Sampling Methods: An Effort to Understand the Larger Picture of Biological Processes

In recent years, the availability of experimental structures has helped MD simulation to flourish
and address the protein structural and functional studies through conventional all-atom MD simulation.
However, it is still a challenging task to study the thermodynamic properties of the protein-ligand
system or protein folding process. To combat this issue, enhanced sampling methods have been
developed to calculate the free-energy landscapes. The binding strength is quantified through the
difference in energy between the free and the bound state of a system. Various methods, such as
umbrella sampling, parallel tempering and multi canonical MD simulation, have been reviewed
in detail by Jinzen Ikebe et al. [25]. Apart from these, Replica Exchange Molecular Dynamics (REMD)
is an enhanced sampling technique, used frequently for studying the folding thermodynamics of
disordered proteins [26]. The main idea of REMD simulations is to perform concurrent simulations for
n different replicas under different condition to liberate the structure from local minima. Several parallel
simulations will also allow the study of transition states to be precisely understood. Alpha-synuclein
has been well studied for its association with neurodegenerative diseases. The missense mutation
A53T is known for causing misfolding of the protein. Coskuner et al. [27] has studied the effect of this
mutation with the help of REMD simulations. They have calculated the secondary structure conversion
and Gibbs free energies for the A53T mutant and native α-synuclein. This study helped to propose the
role of amino acid residues involved in the aggregation process as well as guidance for the design of
specific inhibitors. Markov state models have emerged as an advanced and statistically sound method
to track the entire dynamics of a system existing in thermodynamic equilibrium. The Markov state
models are represented by a transition probability matrix which encloses all the metastable states in the
configurational space of the system. The Markov state model methods and their applicability have
been reviewed in detail by Brooke E. Husic [28].

1.3. Coarse-Grained Modeling and Necessity

Given the various available simulation methods and computational power in recent time one can
simulate systems consisting of 107 atoms in up to one microsecond [3]. The simulation of large-size
systems is computationally expensive. For example, with an increase in the length of a membrane
system the computational cost increases substantially due to the required computational power for
the equilibration step [29]. Moreover, biological processes can occur in the range of microseconds to
seconds and beyond. Therefore, in order to capture the events close to a biological relevant time scale,
coarse-grained models seem to be a viable method. The study of the mesoscopic properties of a system
through several microscopic events can create a lot of noisy data. Alternatively, coarse-grained models
are suitable to study the mesoscopic properties of the system [30]. They offer the platform to bridge the
gap between all-atom based simulation studies and the macroscopic behavior of biological mechanisms.
The coarse-grained (CG) models are well suited for the study of large scale biological complexes such
as ribosomes, cytoskeletal filaments and membrane protein systems. Coarse-grained models have
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evolved as a powerful tool for the study of biological systems for a long range of time scales up to
milliseconds [31].

2. Coarse-Grained Simulation: Basic Principle

Coarse-grained models are a reduced representation of all-atom models that retains the essential
molecular aspects for the system of interest. The reduced representation of atoms allows the simulation
of large-scale biological systems. The coarse-grained models enable faster sampling due to reduced
degrees of freedom. Consequently, simulations can be done at longer time scales. Coarse-grained
simulations provide access to the in-depth knowledge of dynamics of macromolecules which is beyond
the scope of all-atom simulations. In this section we will summarize the principles of CG simulations,
the popular coarse-grained models, and the recent progress and application of coarse-grained models
citing the work done for various macromolecular complexes.

In principle, development of CG models requires (a) defining of pseudoatoms sites which
represent the group of multiple atoms; (b) derivation of the energy function UCG for the models which
defines the interaction between pseudoatoms. It should reproduce the thermodynamic properties
of the system referred; and (c) defining dynamical equations to study the time-based evolution
of the CG system. The derivation of energy function to effectively define the interaction between
the reduced coarse-grained sites has gained much attention and has been broadly classified into
structure-based, knowledge-based and physics-based methods [4]. The structure-based approaches
utilize experimental data of native conformation to define CG site, usually based upon the position of
the Cα atom. The energetics of these models can be defined by network models [32] and (off-lattice)
Gō models [33]. These models do not deviate much from the native state, therefore they are not able to
track large conformational changes. To address this, variants of these models have been developed.
For example, the self-organizing polymer model (SOP), a variant of Gō models, has been successfully
applied to proteins and nucleic acids [34,35]. The knowledge-based approach includes the CG model
parametrization based upon solved experimental structural data [36]. They possess a higher degree
of transferability and can be applied to any system of interest. These models are primarily used
for protein structure prediction [37]. In contrary to the above-mentioned approaches, physics-based
methods utilize statistical data from all-atom MD simulations to derive a CG mapping scheme through
systematic algorithms [38,39]. Here we present in brief about the widely used coarse-grained models
with an emphasis on protein and carbohydrate models and their successful applications to biological
complexes. Table 1 gives an overview of the recent progress made in the coarse-grained models and
their applications.

Table 1. Overview of recent progress in coarse-grained models and their applications.

Coarse-Grained
Models

Granularity of
the Model Recent Advances, Example Application and Additional Information

Proteins

MARTINI
Up to five beads
per amino
acid residue

mechanism of allostery [40], peptide binding to GPCRs [41],
Parameters developed for ATP molecule [42]
MERMAID (webserver for simulation of membrane proteins
(http://molsim.sci.univr.it/mangesh/index.php) [43]

UNRES Two beads
per residue

Steered molecular dynamics integrated to UNRES [44], deep
feed-forward neural network-based re-optimization of UNRES for
ranking of protein structure models [45], freely accessible server
launched (http://unres-server.chem.ug.edu.pl.) [46], parameters
developed for phosphorylated residues [47]

CABS Four beads
per residue

CABS-dock (webserver for flexible docking of peptides) [48]
CABS-flex standalone package [49],

http://molsim.sci.univr.it/mangesh/index.php
http://unres-server.chem.ug.edu.pl
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Table 1. Cont.

Coarse-Grained
Models

Granularity of
the Model Recent Advances, Example Application and Additional Information

PRIMO Three to eight
beads per residue Provides high resolution and transferability [50]

OPEP Up to six beads
per residue

Replica Exchange MD and OPEP [51], protein–protein docking [52],
OPEP 6 (Constant-pH Molecular Dynamics Simulation Scheme) [53];

PRIME Four beads
per residue

Effect of inhibitors on Aβ fibril formation [54]; co-aggregation of
Aβ40 and Aβ16–22 peptides cross seeding in fibrillation of prion
protein peptides [55]

Bereau and Deserno Four beads
per residue

Refined model for thermodynamics of unfolding process of
peptides [56] cross parameterization of two models to study
peptide-membrane [57]

Kim and Hummer
Single bead
centered at
cα atom.

Study of multi-domain cellulosomes [58,59]; coupled with SAXS to
study highly flexible protein complexes [60,61]; phase behavior of
intrinsically disordered proteins [62].

Carbohydrates

M3B Three beads per
monosaccharide Pioneer model for CG methods of carbohydrates [63]

Bellesia model Five beads per
monosaccharide

Developed to study the structural transition from
cellulose Iβ to cellulose III(I) [64]

MARTINI Three beads per
monosaccharide

physicochemical properties of cellulose Iβ [65]; Chitosan and
solution behavior [66]; self-assembly of polysaccharide [67]

Srinivas model Single bead per
monosaccharide

Solvent free coarse-grained model [68]; study
of cellulose fibrils [69]

REACH Single bead per
monosaccharide

Developed to study the elastic properties
of the cellulose fibril [70]

2.1. Coarse-Grained Models for Proteins

Coarse-grained models have been extensively used for studying the protein folding mechanism,
structure prediction, protein-membrane systems and aggregation. The coarse-grained protein model
development is consistently evolving, and their applications are widely used. There is an excellent
review on details of coarse-grained models of proteins by Kmiecik et al. [2]. In this section we have
reviewed the most recent progress in popular coarse-grained models for proteins and their applications.

2.1.1. MARTINI Model

The popular coarse-grained model for studying membrane proteins is MARTINI [71]. It was
initially proposed for lipids and later extended for protein systems. The MARTINI model follows
one-to-four mapping in which four heavy atoms and hydrogen associated to them corresponds to one
interaction site (Figure 2a). Therefore, one coarse-grained bead for water represents four molecules of
water while side chains of aromatic amino acids are represented by a higher resolution. The model is
relatively simple and consists of mainly four types of interaction sites—nonpolar, polar, apolar and
charged. These are further categorized into subtypes on the basis of hydrogen bonding capability
and polarity. The non-bonded interaction term is calculated by the Lennard-Jones 12–6 potential and
the bonded term is defined by the standard potential energy function [72]. Recent applications of
MARTINI models for the study of proteins were reported which includes the protein-ligand binding
process [73], mechanism of allostery [40], predicting the binding mode of peptides to G-Protein coupled
receptors [41] and determining the role of hydrophilicity and hydrophobicity in the self-assembly of
(AF) 6H5K15 peptide derivatives [74].
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Figure 2. (a) The peptide Ala, Arg, Phe and Ala is represented as coarse-grained (CG) beads based on
the MARTINI force field. (b) The CG mapping of the saccharide unit based upon the MARTINI force
field. (c) The CG beads for peptide based upon the United Residue (UNRES) model. (d) The CG beads
based upon the C-Alpha, Beta and Side Chain (CABS) model (adapted from References [2,3]).

The MARTINI model has been successfully and extensively applied to study the membrane proteins
and their association with lipids. For example, a coarse-grained MD simulation of membranes consisting
of 64 molecules of rhodopsin was carried out by Periole et al. to the timescale of 100 µs [75]. This study
resulted in the identification of favored interfaces for the interaction between dimer involving helices (H)
1/8, 4/5 and 5. In another study, Provasi et al. carried out extensive coarse-grained MD simulations for
the opioid receptors subtypes δ, κ and µ, to derive the preferable supramolecular organization in a cell
membrane model [76]. They have also reported the kinetics of receptor association. The simulation
study done by Sharma et al. reported the structural study of the TCRα-CD3ε-CD3δ transmembrane
domains and assembly in membranes as well as micelle environments [77]. Therefore, the model for
activation of immune receptors in the membrane environment was proposed. The MARTINI model
has also been used to study the role of cholesterol in the domain registration in plasma membrane [78].
Recently, Hirano et al. reported the MARTINI force field parameters for an ATP molecule and applied
it to study ATP-induced dimerization of nucleotide binding domains of maltose transporter [42].
It extended the utility of the MARTINI model to study the ATP-driven functions of other ATPases such
as ABC transporter proteins, myosin and kinesin. The coarse-grained MARTINI model with improved
parameters to study the helical hinge regions in transmembrane proteins has been reported [79].
This model was used to study the deactivation of the β2 adrenergic receptor and motions related to
KcsA potassium channel. Hinge related movements were observed and found to be in agreement with
the experimental findings. Thus, the model can help in better understanding the functional dynamics
of protein membrane systems. In the latest development, web servers to conduct the coarse-grained
modeling of membrane proteins has been launched, thereby providing easy and wide access to
coarse-grained simulations [43]. The MARTINI model has evolved as a simple, fast and flexible choice
for studying a wide range of biomolecular interactions. Interested readers can refer to the article by
Marrink and Tieleman [72]. They have discussed in detail the parameterization, applicability as well
as the limitations of the MARTINI model.
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2.1.2. UNRES Model

United Residue (UNRES) is a physics-based model of medium resolution available as a webserver [80].
It is a highly reduced model for protein as each residue is represented by two interaction sites, one for the
united side chain and the other for the united peptide group (Figure 2c). Therefore, it gives a 1000–4000-fold
speed up as compared to all-atom MD simulations. The force field is based upon solid statistical mechanics
and various MD-related methods have been used for sampling [39]. It had been extensively used for
protein folding studies, protein structure prediction, protein-DNA interaction, signaling mechanism,
action of chaperones and amyloid formation [81–85]. In an effort from Sieradzan et al., steered molecular
dynamics was implemented to the UNRES force field [44]. It offered an edge to attain pulling speed
comparable to the experiments. Therefore, protein unfolding pathways can be studied better as tested
by the simulations conducted for the Fn3 domain of the contactin 1 human protein. The UNRES model
has been used in protein structure prediction as evident from the participation in CASP experiments [86].
Recently, it performed well in CASP 12 tests with 80% of the predicted models being in the top 50% of
submitted models. This method performed well on oligomeric targets. In addition, the reoptimized
UNRES model has been used to select the best protein models amongst the pool of models [45]. The deep
feed-forward neural network method was used to reoptimize by adding more descriptive features to the
UNRES model. Recently, the server based upon the UNRES package has been made publicly available [46].
It allows local energy minimization and varied replica exchange dynamics. It is a user-friendly server
as it takes protein sequences, restraints and other parameters from user input and results are displayed
graphically. In another work by Sieradzan et al., a coarse-grained model for the protein and nucleic
acid system based upon UNRES and the NARES-2P force field has been developed [87]. The reported
model utilized the energy functions from UNRES and the NARES-2P model while the protein–nucleic
acid interactions were defined from their previous work [39]. As an application of this model, the initial
state of DNA damage repair has been studied. The dynamics of a Ku heterodimer bound to mismatched
base pairs of DNA and binding of DNA to the MarA protein was studied. Notably, this model has been
included in the UNRES software package.

It is well known that the UNRES force field has a key contribution in the area of protein structure
prediction and protein folding studies. There are numerous studies reported based upon the UNRES
model for understanding large protein motions and folding of small to medium size proteins [88,89].
In a step ahead, the revised backbone-local and correlation terms have been imparted onto the UNRES
force field to further improve ab initio modeling of proteins and other molecules [90]. In the most
recent development, the UNRES force field has been developed for the phosphorylated amino acid
residues and was successfully tested for ab initio simulation of mini proteins containing phosphorylated
residues [47]. Therefore, it extends the potential and use of the UNRES force field to the proteins
involved in signaling pathways.

2.1.3. CABS (C-Alpha, Beta and Side Chain)

CABS is medium resolution knowledge-based reduced representation model for proteins [91].
The amino acid residue is represented by four united groups—Cα, Cβ, the center of mass of the side
group, and the center of the peptide bond. The position of Cα atoms is confined to a cubic lattice
of a grid equal to 0.61 Å. This Cα traces works as variable to define the position of other interaction
centers. The position of the side chain is dependent on the Cα−Cα−Cα angle of the main chain and
the amino acid type (Figure 2d). The positions derived are based upon the statistical analysis of known
protein structures. Various Monte Carlo schemes are used for sampling. The force field used is based
upon several potentials of the mean force obtained from the calculated structural correlations of solved
protein structures. It has been successfully applied for the simulation studies of protein folding [92–95].

The CABS model has been implied for protein structure prediction [96]. The CABS-flex server is
available for the simulation of globular proteins [97]. Recently, it has been updated to version 2.0 and
is publicly available [98,99]. The updated version included the applicability of methods to multimeric
proteins and the option to customize the restraints and parameters related to simulation. The CABS
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model is also used as part of Aggrescan3D method-based server for predicting the aggregation
propensity scale for folded globular proteins under the dynamic mode calculations [100]. CABS-flex
methodology has been adapted to model the protein–peptide interaction for docking simulations [48].
In a similar work, the CABS model has been used to trace the large-scale changes associated with
p53-MDM2 interaction [101]. In the latest development, a Python-based CABS-flex standalone package
has been released. It can be used for the study of dynamics of disordered proteins, structural flexibility
and folding mechanism of proteins [49].

2.1.4. PRIMO (Protein Intermediate Model)

The PRIMO model is of higher resolution and developed for proteins and nucleic acids. This model
includes three to eight interaction sites representing one amino acid residue and twelve to thirteen
interaction sites for representation of one nucleotide. The interaction site scheme is close to atomistic
representation. The energy function includes terms similar to a standard MD force field. In addition,
it consists of bonded terms to define bond geometry, potential for explicit hydrogen bonding and
a generalized born parameter-based implicit solvent model. PRIMO can attain about an 8 to 12 time
speedup as compared to all-atom MD simulations. The model has been tested for the study of ab initio
folding of small peptides and the prediction of protein structure [102,103]. The PRIMO model has
an edge in its design regarding the transferability to other systems. For instance, PRIMO-M has been
implied to study the membrane-bound peptides [50].

2.1.5. OPEP (Optimized Potential for Efficient Structure Prediction)

This model was developed by Derreumaux and coworkers based upon knowledge- and
physics-based mixed kind of potential [104]. It is a model with representation of backbone as
all-atom and side chains as a single bead with an exception of proline represented by three beads.
The development and rise of the OPEP model have been reviewed earlier by Fabio Sterpone et al. [105].
This model has been used for protein folding, aggregation studies, role of hydrodynamics in peptide
aggregation and modeling of protein structure. Here we have discussed the OPEP model in view
of recently reported studies. In a study for the Aβ16−22 peptide, it was defined by a flexible OPEP
model and the initial aggregation phase study was done using multi-scale Lattice Boltzmann molecular
dynamics. The hydrodynamic interaction effect was studied and found to enhance the aggregation
process [106]. In another work, the OPEP model has been implied to study the amyloid fibril formation
along with interactive simulations for peptide folding and response to mechanical stress caused by
the surrounding fluid by catch bond proteins [105]. In a similar subject of an amylin oligomer study,
the OPEP model was coupled with replica exchange molecular dynamics to study the mutation effect
on its structural and thermodynamic properties [51]. The applicability of energy functions derived
from the OPEP model has been extended to the prediction of score for protein–protein complexes [52].

The studies discussed above reflects the successful application of the OPEP model for studying the
self-assembly of amyloid proteins, the structure prediction of peptides and the effect of hydrodynamics
on protein dynamics. However, the disadvantage associated with it is that the integration step can
use a time step of 2 fs, which is much lower than other coarse-grained models. Additionally, there is
also the scope of further improvement in studying systems at varied pH conditions. OPEP version 6
has been recently reported by Barroso da Silva et al. [53]. The developed model was tested for the
structural properties of insulin at varied pH conditions and was found to be in agreement with the
experimental data [53].

2.1.6. PRIME

PRIME is a medium-resolution protein model developed by Cheon and coworkers [107]. In this
model, amino acid residue is represented by three spheres for backbone including NH, CαH and CO,
while the side chains are divided into 14 groups based upon the charge, size, polarity, hydrophobicity
and hydrogen bond formation potential. The solvent is treated in an implicit manner. The model uses
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discontinuous potentials to define bonding and angular restrictions thereby enhancing the speed of
simulations. The hydrogen bonds are defined by directional square-well potential, therefore, favoring
the formation of α-helices and β-sheets. The model is well-suited for the study of large proteins for long
time scales. The model was used to study the tau fragment fibrils [108] and Aβ16-22 peptides [109].
The model was able to show conversion of oligomers of Aβ17–42 peptides to protofilaments [110].
Notably, this model has also been successful in describing the effect of crowding on amyloid beta
(16-22) aggregation [111,112] and the inhibitory effect of polyphenols on Aβ fibril formation [54].
Recent applications of this model include the study of structural and kinetic details of co-aggregation
of Aβ40 and Aβ16–22 peptides [113] and cross seeding in fibrillation of prion protein peptides [55,114].
These findings can be helpful in better understanding the molecular assembly of peptides and further
for therapeutic purposes.

2.1.7. Bereau and Deserno Model

The coarse-grained model for protein was developed by Bereau and Deserno [115]. The amino
acid residues are represented by four beads. The backbone is represented by three beads, N, Cα and C′,
while the side chain is represented by single bead at Cβ. The solvent is treated implicitly. The geometric
parameters were borrowed from previous peptide models [116–118]. The bonded interactions were
defined by harmonic potential. The non-bonded interactions for the side chain were defined using
potential developed by Miyazawa and Jernigan [119]. The hydrogen bonds were modelled implicitly,
and the interaction potential was taken from Irbäck et al. [118] based upon the 12-10 Lennard-Jones
potential along with the angular term. The model also contained an extra term for dipole–dipole
interactions of neighboring residues. The model has been implemented in the ESPResSO package [120].
Applications of this model so far have been focused on the studies of protein oligomerization [121] and
the unfolding process of alanine rich polypeptides [56]. In an interesting study by Bereau, the two
models were cross parameterized to reproduce the various peptide–membrane phenomena [57].

2.1.8. Kim and Hummer Model

The coarse-grained model for large multi-protein complexes was developed by Kim and
Hummer [122]. The model was simple where amino acid residues were represented by a single
bead centered at the associated cα atom. The interaction potential between the amino acid residues
was calculated using Lennard-Jones type potentials and electrostatic interactions for short range and
long range, respectively. This model is equipped with transferable potential energy function and has
been successfully applied for simulating conformational ensembles of large multi protein systems
of the ESCRT-I membrane protein complex [123–125], the multi domain kinase Protein C βII for
structure refinement [126] and protein phosphatases [127,128]. In recent works, the Kim and Hummer
(KH) model has been implied in the study of multi domain cellulosomes [58,59]. The cellulosomes
are comprised of multi-domains connected with each other through linkers which are intrinsically
disordered regions. The linker peptides have been simulated through the KH coarse grain model to
study the effect of length of the linkers over the cellulosomes. Notably, the KH-model-based simulations
have been coupled with SAXS analysis to study the highly flexible protein complexes containing
lipid kinases [60,61] and membrane segments of cell adhesion proteins involved in immunological
responses [129]. The KH model has been implemented in software packages such as CHARMM [130]
and other simulation software for coarse-grained models [131]. It is noteworthy that Dignon and
workers have utilized the KH model in LAMMPS and HOOMD software packages to study the phase
behavior of intrinsically disordered proteins FUS and LAF-1 [62].

2.2. Coarse-Grained Models for Carbohydrates

Carbohydrates are key players involved in many biological processes including the development
of diseases. Carbohydrates by virtue of their nature possess a high degree of polymerization therefore
opening up the possibility of an unlimited number of sequences, linkage and degree of branching [132].



Int. J. Mol. Sci. 2019, 20, 3774 10 of 21

Owing to the high structural diversity, the conformational degrees of freedom for carbohydrates is
high [133,134]. Consequently, development of coarse-grained models for carbohydrates possesses
challenges. Here, we will discuss the popular models and recently reported coarse-grained models of
carbohydrates and their role in the study of structure and dynamic aspects of polysaccharides.

2.2.1. M3B Model

In an early effort by Molinero and Goddard, coarse-grained model for malto-oligosachharide
in an aqueous solution was developed and termed as M3B [63]. The hexapyranose ring was represented
as three beads corresponding to C1, C4 and C6 atoms of an atomistic model while the water molecule
was represented as a single particle. The long-range forces were defined by a 2-body Morse function.
The developed model allowed the integration time step of 10 fs, thus enabling simulations for a glucan
system in microseconds on single workstations. This model turned to be helpful in studying the
water–glucan systems. In another study, a similar coarse-grained model for α-D-glucopyranose was
developed by Liu et al. In this model each glucopyranose ring was represented by three beads.
The bonded interactions were calculated through Boltzman analysis while the force-matching approach
was used for calculating non-bonded interactions [64]. This model appeared to be easy to apply to
polysaccharide systems but so far it has been applied to amylose and glucose systems.

In another model proposed by Bellesia et al., the interconversion of cellulose Iβ and cellulose IIII

was studied. Their model consisted of two energy terms: Lennard Jones and dihedral constraints
affecting inter-sheet equilibrium distance and rotational states of the hydroxy methyl group. The model
was successful to reproduce the structure of cellulose along with thermo mechanical feature of
cellulose [135]. Next, we will discuss the most popular force field, MARTINI, which was extended
to carbohydrates.

2.2.2. MARTINI Model

MARTINI has been a popular choice for a CG model for proteins and it was extended to
carbohydrates as reported by the work of López et al. [136]. The monomeric saccharide unit was
represented using three beads (Figure 2b) and parametrization followed the same principle of
reproduction of partitioning free energies of molecules for polar and non-polar phases. The bonded
parameters were optimized according to the most frequent rotameric state of the glycosidic bond.
The model was applied to amylose and curdlan which resulted in the reproduction of structural
properties. The cryo- and anhydro-protective effect was also studied for glucose and trehalose with
a lipid bilayer system, which also resulted in a correlation with the experimental and calculated
properties. In another recent work by César A. López, a MARTINI force-field-based, coarse-grained
model has been used to study the mechanical and physicochemical properties of cellulose Iβ, such as
bending resistance of cellulose nanofibers [65]. The slightly modified MARTINI model has been
used to study the Ganglioside-protein and lipid interactions [137]. The mapping from an atomistic
to a coarse-grained model was retained while minor modifications were done for the bonded and
non-bonded parameters to reduce the self-interactions. The model reproduced the ganglioside
clustering manner as evident from atomistic level simulation. The MARTINI force field has also found
application in studying the longitudinal dimension of chitin fiber, which is more than hundreds of
nanometers in length [138]. The chitin monomer was mapped to three beads. The starting parameters
for bonded and non-bonded terms were derived from the atomistic trajectory using Boltzmann inversion
calculation. The parameters were calibrated in accordance to the structure and elastic modulus of
chitin. The proposed model reproduced the crystalline α-chitin structure and opened up the possibility
of studying chitin and protein interactions. In another work by Steven et al., the coarse-grained model
for chitosan has been developed to study the effect of the degree of acetylation on its self-assembly
in solution [66]. For chitosan polysaccharide, another CG model was developed on the basis of
a free-energy landscape for glycosidic bonds [67]. The model was used to study the equilibrium
properties of chitosan in solution regarding the degree of deacetylation and polymerization, ionic
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strength and pH. Furthermore, the MARTINI force field has also been applied to study the second virial
coefficient of osmotic pressure, a thermodynamic solution attribute, for polysaccharides [139]. This work
has also proposed the effect and scaling of a Lennard-Jones interaction between saccharides molecules.

2.2.3. Other Models

Contrary to above mentioned multi-bead per monomer model, Srinivas proposed one bead per
monomer CG model to study the conformations of Iβ cellulose [68]. The centre of mass for monomer
unit glucose was mapped from all-atom simulation trajectories. The bonded interactions were taken
from the ensemble of conformations while the non-bonded parameters were optimized through the
Boltzmann Inversion method. In this study, the solvent was treated in an implicit fashion. Later on,
their group reported a CG model for natural cellulose in an explicit water system [69]. It was observed
that cellulose–water interactions have an important role in the transition of crystalline to the amorphous
form of cellulose.

In another effort by Glass, a residue scale CG model was developed termed as REACH (Realistic
Extension Algorithm via Covariance Hessian) [70]. Each monomer was represented by a bead and
the associated force field was developed through the atomistic simulation trajectory of cellulose
fibril in aqueous solution at different temperatures. This model was developed for Iβ cellulose and
applied for the characterization of its elastic attributes as well as degradation as a function of length
and temperature.

In a work by Poma et al., a unified CG model for polysaccharide and protein systems was
developed [140]. The glucose unit was represented by one atom analogous to the representation of
each amino acid residue by one bead at the Cα atom. The parameters for the CG model were derived
using Boltzmann Inversion and energy-based methods which were found to yield consistent results.
The non-bonded interactions were calculated as Lennard-Jones potentials. The contacts between
hexaose and the Man5B protein were characterized and an effective binding energy was determined
using the energy-based method. The parameters are provided in detail in the methods section of the
paper. This study was found to be in agreement with the fact that enzymatic activity of Man5B reduces
as cellohexaose binds to it.

In the case of carbohydrates, the coarse-grained scaling is customized in accordance to the nature
of the concerned question. The coarse-grained multi bead model has been found suitable for the study
of varied conformational states of polysaccharides and other chemical specificity issues as indicated by
the reported works. On the other hand, the coarse-grained models representing a glycosyl residue
as a single bead are more useful for the structural and dynamics studies of polysaccharide assembly.
The unified coarse-grained model for a protein–polysaccharide system can be helpful in studying
the process of enzymatic hydrolysis of polysaccharides which has important implications in the
biofuel industry.

3. Coarse-Grained Models and Biomolecular Complexes

The CG models have enabled us to study the assembly of biomolecular complexes as well as the
inside details of protein folding and aggregation. Dynamic assembly and disassembly are key features
of biological complexes. For example, the capsid protein assembly to form a capsid shell is required
for viral infectivity in case of HIV. Grime et al. have performed a coarse-grained simulation to study
capsid assembly in an HIV-1 system [141]. They have studied the basic principles of capsid assembly
and the effect of varied conditions such as molecular crowding, concentration of capsid assembly and
the conformational changes associated with it. In another study by Pak, a coarse-grained simulation
of sub-nanometer resolution has been applied to study the interaction network of HIV-1 assembly
and budding of Gag polyprotein [142]. They have suggested the putative role of the Gag protein,
RNA and cell membranes in the initial stages of immature HIV-1 lattice assembly. Coarse-grained
simulations have also been extensively carried out to study the capsid assembly in case of HIV as
evident by several reported studies [143–147].
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Action mechanisms of motor proteins have also been studied by coarse-grained models.
For instance, a coarse-grained model-based simulation study has been used to elucidate the molecular
basis of motility of myosin VI in detail [148]. In this CG model, amino acid residue was represented
by one bead with Cα positioned as its center. The interaction between the beads was defined on the
basis of the distance between beads in the native state. This work helped to explain the motility of
myosin VI in two steps: The change of the motor domain conformation, pushing the lever arm in the
forward direction, and then the lever arm undergoes rotational diffusion. The simulation results were
found to be in agreement with polTIRF experiments and, therefore, established the reliability and
utilization of CG-based simulations. In another study, the molecular mechanism of kinesin has been
elucidated [149]. The motion of kinesin on microtubules precedes processively, spanning 16 nm in each
step. The MT-kin complex was defined as a coarse-grained model using the self-organized polymer
model. In this the model, amino acid residue is represented by the interaction center at the cα position.
Brownian dynamics-based simulations were done to determine the mechanism of the kinesin step
in detail.

Coarse-grained methods are well suited for the studies of the folding process of intrinsically
disordered proteins [150,151]. Recently, Ramis et al. have performed coarse-grained simulation using
the SIRAH force field for the intrinsically disordered protein α-synuclein [152]. They have successfully
reproduced the properties of α-synuclein and therefore contributed to the better understanding of
its role in disease. CG models have also found applicability in the understanding of nanomechanical
characterization of biological fibrils. The mechanical and thermodynamic properties of intrinsically
disordered proteins, Aβ40, Aβ42 and α-synuclein have been investigated and found to complement
the experiments [153]. To this end, CG models have also been used to study the mechanism of fibrillar
growth and attachment of free monomeric units to it in α-synuclein [154]. Coarse-grained models are
also being used in combination with all-atom MD. Therefore, the integrated models provide insight into
the hierarchical level of information. In the next section we will discuss the multiscale MD simulations
and their applications.

4. Multiscale Simulations and Coarse-Grained Models

The structural dynamics of biological macromolecules and underlying mechanisms spans from
atomic to molecular level. In order to gain an in-depth understanding of the mechanisms, large scale
motions of macromolecular complexes with an insight of atomic picture is required. Therefore, multiscale
simulations have emerged as a promising approach. The coarse-grained models are integrated with
all-atom models and used to define different components of a system. The study of rotary motor
proteins through free-energy landscapes and CG-based simulation is a well-studied example of multiscale
simulations. Toru Ekimoto has reviewed the multiscale dynamics study of rotary ATPases [5]. The human
Frizzled and Taste2 GPCRs are another class of proteins studied extensively with varied simulation
approaches. Multiscale simulations of this class have suggested the activation mechanism of FZD4 class
receptors as well as the recognition mechanism of Taste 2 GPCRs and the effect of drugs. The various
reported simulation studies have been reviewed by Prieto et al. [155]. The multi-resolution approach can
help to overcome the inaccurate atomistic details of low-resolution complexes and enables faster sampling
of the system. For example, Tarenzi et al. proposed the integrated MM/CG approach with an H-AdResS
scheme for the solvent [156]. In this work, binding pocket and neighboring residues were treated as
the molecular mechanics (MM) MM region while the rest of the protein was coarse-grained modelled.
In this model, each amino acid residue was represented by single bead centered at Cα and interactions
between beads were calculated through Gō-type potential. The solvent was represented through the
Hamiltonian formulation H-AdResS, allowing the free diffusion of water molecules between MM and the
coarse-grained region. Thus, this multi scale approach is well suited for better understanding protein
ligand interactions and consequently drug design applications.

In an alternative approach, reverse mapping methods have been developed to reconstruct all-atom
structures from the coarse-grained models [157,158]. The coarse-grained models can be integrated with
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a mesoscale-level representation of a solvent through the Lattice Boltzmann (LB) method. It is based
upon the kinetic description of the solvent explained by the fluid dynamics under varied conditions.
LB-based hydrodynamics in combination with the OPEP coarse-grained model for proteins have been
reported to study the protein relaxation and aggregation processes [106,159,160].

5. Challenges in Coarse-Grained Modeling

Similar to all-atom force fields, coarse-grained models bear their own limitations. Firstly, they are
simplified representations of systems under investigation by eliminating atomic details, which may exert
significant effects on accurate predictions of important properties of the studied systems. Apparently,
such simplified representations provide limited chemical resolution compared to atomistic models; as
a quick fix, the atomic details could be reconstructed from coarse-grained models, which however is not
trivial [161]. Generally, the dynamics of the system is not uniformly scaled up, which makes it difficult to
evaluate the time scale of the simulated processes [162]. The coarse-grained models may have difficulties to
predict the correct kinetics and thermodynamic properties [163,164].

Since coarse-grained models are tailored for specific features of systems or phenomena of interest,
they have a lesser degree of transferability with respect to varied systems; that is to say, they should be
applied to study specific systems or systems under proper thermodynamic conditions. For instance,
the MARTINI model is based upon the calibration of non-bonded interactions against the oil/water
partitioning coefficients [72]. Membrane–peptide binding and protein–protein recognition are highly
correlated to this partition coefficient. Consequently, the MARTINI model has found dominant
applications in studying the membrane protein systems and their interaction with lipids. PRIME is
a knowledge-based coarse-grained model specially designed for discontinuous molecular dynamics
simulation studies of the protein aggregation process [107]. The CABS model is exclusively designed
for structure prediction or refinement [91]. Also, pH has an important role in the cell environment,
especially for the enzymes. The development of the OPEP6 model has offered the study of pH-mediated
biological processes. The applicable processes or questions for the various coarse-grained models have
been summarized in Table 1.

The challenges in accuracy and transferability are just examples among many other challenges, such as
model assessment, the integration of multiple coarse-grained models and adaptive resolution. We direct the
readers to recent reviews for further discussions on the challenges of coarse-grained models [72,165,166].

6. Conclusions

Computational chemistry has witnessed rapid advancement in modeling the biomolecular
complexes and their interactions. Molecular dynamics simulation has emerged as promising approach to
dissect the biological phenomenon spanning from the atomistic level of motion to biological assemblies.
Interestingly the continuing improvement in computational power and algorithmic accuracy has
provided accessibility of simulations to the wider scientific community. The coarse-graining models
and their applications have been discussed in this review and seem to be a suitable choice for studying
biological phenomenon at a relevant time scale. The coarse-grained modeling lacks general applicability
as coarse-grained methods require careful choice regarding the coarseness and energy functions as
well as the sampling scheme and analysis according to the query being addressed. The lesser the
number of pseudoatoms represented, the speed of simulations would be higher but the accuracy lower.
The popular models using three to four beads per residue for proteins can accelerate simulation in 3–4
orders of magnitude as compared to all-atom models [165]. We also anticipate that the advent of new
coarse-grained models in terms of better transferability will help to extend its applicability to the study
of new phenomenon quickly and easily. After more than a decade-long history of coarse-grained
modeling, it has found successful stories in the field of protein structure prediction, protein folding,
studying biological assemblies, structural and dynamic aspects of polysaccharide assembly, to list only
a few. Multiscale modeling of biological complexes at longer timescales can address a wide range
of questions of biology [167]. Moreover, the realistic cellular environment is a mixture of various
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biomolecules interacting across a broad range of time and spatial scales. Coarse-grained modeling can
be seen as an inclusive method for the simulation of whole-cell models [168].
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