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Proteinuric kidney diseases are a group of disorders with diverse pathological

mechanisms associated with significant losses of protein in the urine. The glomerular

filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular

endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates

that disruption of any one of these structures should lead to proteinuric disease.

Podocytes, in particular, have long been considered as the final gatekeeper of the GFB.

This specialized visceral epithelial cell contains a complex framework of cytoskeletons

forming foot processes and mediate important cell signaling to maintain podocyte health.

In this review, we will focus on slit diaphragm proteins such as nephrin, podocin,

TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and

their respective roles in participating in the pathogenesis of proteinuric kidney diseases.

Furthermore, we will summarize the potential therapeutic options targeting the podocyte

to treat this group of kidney diseases.
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INTRODUCTION

The kidney is dubbed the organ that filters out toxins and reabsorbs essential electrolytes
from the blood to maintain homeostasis in our bodies. Podocytes, along with endothelial cells
in the capillaries and glomerular basement membrane (GBM), form this filtration apparatus.
The podocyte is a highly-differentiated cell that is composed of several structures: a cell body,
primary process, secondary, and tertiary foot processes (FP) (1–7). Primary processes and foot
processes (FPs) are highly supported by a complex cytoskeletal architecture, which in of itself is
intertwined by a network of microtubules, intermediate filaments, and actin (8, 9). This complex
network (microtubules, intermediate filaments, and actin) not only accommodate podocytes to the
constantly changing environment, they are crucial hubs of signal transduction within podocytes
(10). Furthermore, the neighboring FPs form an interdigitating structure lining outside of the
capillary walls (11) and are connected by a specialized cell junction called the slit diaphragm (SD)
(12–15). The SD and the negatively charged surface on FP restrict protein from filtering through.
Either a dysregulated podocyte cytoskeleton or the loss of integrity of the SD can result in podocyte
foot process effacement (FPE), the most common pathological finding in podocyte diseases.
Proteinuria is, therefore, the pathognomonic phenomenon in podocytopathy (16). Research on
podocyte pathophysiology is crucial due to their function and their lack of ability to regenerate,
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despite more recent data supporting its potential regenerative
capacity (17). In this review, we will summarize our current
understanding of podocyte signaling pathways via the SD
proteins and the actin cytoskeleton and how they cause
proteinuric diseases. We will also discuss the latest updates in
using the podocyte as a target for drug development.

Slit Diaphragm Proteins and Disease
Implications-Nephrin, Podocin, and TRPC
In the past two decades, an increasing number of disease-
causing SD proteins has been identified (5). During kidney
development, the SD initially incorporates the features of cell-cell
junction which eventually matures into a zipper-like structure by
molecular cross-linking via proteins such as nephrin, podocin,
and Neph1. Other SD-related proteins may either participate
in junctional formation (Nck, CD2AP) or not (TRPC). It is
now known that the SD not only acts as a filter to prevent
proteinuria (18), but serves as a complex signaling hub to divert
different chemical and mechanical stimuli to podocytes (19). We
will highlight the best-studied proteins on the SD with clinical
significance: nephrin, podocin, and transient receptor potential
canonical (TRPC) proteins (Figure 1).

Nephrin
Most of our understanding of nephrin stems from the successful
cloning from patients with Congenital Nephrotic Syndrome
of the Finnish type (CNF) (20). Nephrin, a 180-kDa protein
encoded by NPHS1, consists of a cytoplasmic C-terminus, a
short transmembrane domain, and an extracellular fibronectin
type III motif attached with eight distal IgG-like motifs (19,
21). It acts as an intracellular signaling scaffold (22–24) and
a podocyte cytoskeleton modulator (25–27). Consistent with
the high mortality in children born with CNF, global nephrin-
null mice died soon after birth. The technical difficulties of
studying its biological function (28, 29) were overcome by the
discovery of podocyte-specific promoters (30–33) and the use
of short hairpin RNA (34). Of note, although nephrin-null
mice are not compatible with life, more than 80–90% successful
knockdown of nephrin only resulted in mild proteinuria unless
second renal injuries were implemented, suggesting more pivotal
role of nephrin in prenatal slit diaphragm development (34).
Most of the nephrin signaling occurs via the cytoplasmic
tail that is enriched by the highly-conserved tyrosine residues
(35) which are phosphorylated by a series of Src-family
kinases such as Fyn (23, 26, 36–38). Verma et al. (26)
and Jones et al. (27) established the concept of a nephrin-
Nck complex as an adaptor after nephrin phosphorylation to
regulate actin reorganization/polymerization (39–46), in concert
with other signaling pathways such as PI3K/Akt/Rac1 (25, 47,
48).

To date, derangement of nephrin can be largely divided into
four mechanisms: (1) decreased phosphorylation, (2) increased
endocytosis, (3) loss of function due to genetic mutations, and
(4) downregulation at both the mRNA and protein level. This
loss of the nephrin-led signaling cascade eventually causes the
proteinuric phenotype (27, 49, 50) Nephrin dephosphorylation
can be induced by angiotensin II (AngII) which results in

the diminished interaction with c-Abl and Akt inactivation,
pathways that promote cell survival and growth (51); in addition,
it can be caused by the c-maf inducing protein (c-mip) which
inhibits interactions between Fyn and the cytoskeletal regulator
N-WASP as well as between the adaptor protein Nck and
nephrin, resulting in actin cytoskeleton disorganization and foot
process effacement (52). Decreased nephrin phosphorylation
caused by phosphatases were also observed in various models
(53), such as protein tyrosine phosphatase 1B (PTP1B) in rat
with puromycin aminonucleoside nephrosis (PAN) (54) and Src
homology region 2 domain-containing phosphatase-1 (SHP-1)
in human podocytes with hyperglycemia (55). The blockade of
phosphatases on nephrin may thus be a therapeutic target in
proteinuric diseases and has shown positive results in murine
models (lipopolysaccharide[LPS]-induced proteinuria) (56, 57).
Nephrin endocytosis through β-arrestin can be stimulated by
AngII (58). and hyperglycemia, the latter effect occurs via the
interaction of β-arrestin2 with PKC-α which can be abrogated
by knocking down PKC-α (59, 60). Interestingly, the loss of
phosphorylation of nephrin increases nephrin endocytosis via
β-arrestin2 (61), suggesting that nephrin is under a location-
specific regulation. Apart from the original mutation described
in CNF, there are presently almost 200 disease-associated NPHS1
mutations that have been described (62–66). The phenotypic
variability of these mutations has shown us that the nephrotic
syndrome manifests not only in the first 90 days of life, but
can occur much later on in life as well (67). Furthermore,
compound heterozygous or homozygous NPHS1mutations have
also been identified in families with adults with focal segmental
glomerulosclerosis (FSGS) (65). In addition to mutations, single
nucleotide polymorphisms (SNPs) in NPHS1 andWT-1 have also
been identified to confer risk end-stage kidney disease in African
Americans (68) and FSGS (69), respectively. Nephrin expression
is further regulated by transcription factors such as WT1 (70,
71), NF-κB (72), Sp1 (specificity protein 1) (73), Furthermore,
studies have demonstrated that Wilms’ tumor 1 (WT1) not
only functions as a pivotal gene in kidney development, it
also regulates other important SD proteins by binding to the
proximal promoters, such as Nphs2, Synaptopodin, and Nck2
(74, 75). Downregulation of nephrin has been observed in
many human glomerular diseases by detecting protein and
mRNA levels, such as minimal change disease (76), membranous
nephropathy, membranoproliferative glomerulonephritis, IgA
nephropathy, lupus nephritis (77), diabetic kidney disease (DKD)
(78, 79), and preeclampsia (80). Detection of urinary nephrin
protein (nephrinuria) or mRNA has already been studied as
an early biomarker of disease in DKD, glomerulonephritis, and
preeclampsia (81–87) with variable success.

Podocin
After successful cloning of NPHS1, a new mutated gene
NPHS2, which encodes for podocin on chromosome 1q25-
31, was mapped in patients with autosomal-recessive steroid-
resistant nephrotic syndrome (SRNS) (88, 89). Patients’ clinical
presentations can range from early-onset nephrotic syndrome
(typically from 3 months to 6 years of life), FSGS, to end-stage
kidney disease (ESKD) by the first decade of life (90, 91). Podocin
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FIGURE 1 | Schematic interaction between slit diaphragm signal cascades and actin dynamics in healthy podocytes. In healthy podocytes, slit diaphragm (SD) is

composed by various proteins and acts as a signaling hub, to maintain podocyte survival and regulated actin dynamics. For example, nephrin phosphorylation recruits

AKT/PI3K and Nck/NWASP to modulate pro-survival signaling and actin organization, respectively, in concert with other SD proteins such as podocin, CD2AP, and

synaptopodin. In physiological status, predominant TRPC6 offers necessary intracellular calcium and activates RhoA, an important small GTPase promoting stress

fiber formation. Imbalance between RhoA and Rac1/Cdc42 (activated by TRPC5) leads to dysregulated actin formation. Upon stimulation (for example angiotensin II),

G-protein coupled receptors (GPCRs) triggers second messengers’ formations, further modulating intracellular calcium concentration via activating TRPC6 (yellow

star ). Endocytosis and recycling of proteins on slit diaphragm is controlled by serial phosphorylation and associated proteins such as β-arrestin2. PI3K,

phosphatidylinositol-4,5-bisphosphate 3-kinase; Rac1, ras-related C3 botulinum toxin substrate 1; Cdc42, cell division control protein 42 homolog; RhoA, ras

homolog gene family, member A; CaMKII, ca2+/calmodulin-dependent protein kinase II; Synpo, synaptopodin; MAGI-1, membrane-associated guanylate kinase

inverted-1; PIP2, phosphatidylinositol bisphosphate; PLCβ, phospholipase Cβ; DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; β-ARR2, β-arrestin 2.

is a hairpin-like protein including both cytoplasmic N- and C-
terminus with a transmembrane portion (92). Almost exclusively
expressed on SD of the kidneys (93), podocin interacts with
phosho-nephrin and Neph1, another SD protein with a similar
structure to nephrin; the podocin-Neph1 interaction is believed
to be important for recruitment of nephrin to the lipid raft
which augments nephrin signaling (23, 94–99). The prohibin
homology (PHB) domain of podocin does not participate in
hairpin formation or mediate podocin endocytosis (100), though
it may regulate the activity of the TRPC6 channel and act as
a mechanic sensor in podocytes (101–103). Among the several
types of mutations, nonsense and missense mutations of NPHS2
fail to recruit nephrin into raft domains (94). Other types
of nephrotic syndrome (NS), including familial and sporadic
steroid resistant nephrotic syndrome (SRNS) (28–40% and 6–
19%, respectively) (90, 91, 104–107), adult-onset FSGS (108–
110), and non-diabetic ESKD in African Americans (111) have
also found to exhibit NPHS2 mutations. The type of mutation,
whether heterozygous or homozygous, appears to correlate with
a different phenotype. For example, patients with two pathogenic
NPHS2 mutations have presented with an early onset of SNRS
with a low incidence of post-transplant recurrence, whereas
heterozygous NPHS2 variants seem to exhibit a milder, late-
onset phenotype with a higher incidence of recurrence (91, 105,
112). Furthermore, mutations of the transcription factors LMX1B
and FoxC (113–115) that control podocin expression can also
result in disease, such as the nail-patella syndrome or isolated
hereditary FSGS (116, 117). Interestingly, the transcription

factor WT1 can also regulate LMX1B and FoxC expression,
adding an extra layer of modulation in podocin expression
(118). Currently, more than 1,000 podocin variants that have
been described (https://databases.lovd.nl/shared/genes/NPHS2)
(119) and further study will be needed to understand their
individual roles, particularly in different genetic backgrounds
(120). Lastly, podocin downregulation has also been observed in
lupus nephritis (121), pediatric nephrotic syndrome (122), and
FSGS (123), but not in preeclampsia (80).

TRPC
Transient receptor potential canonical (TRPC) channels are
a group of seven families of non-selective cationic channels
(TRPC1 to TRPC7) and largely divided into TRPC3/6/7 and
TRPC1/4/5 based on sequence alignment and functionality (124).
Among them, TRPC6 and TRPC5 have been identified in
podocytes and have been widely researched in the past decade.
The impetus for this research started after a gain-of-function
mutation was identified in a family of autosomal FSGS (125, 126).
Like other TRPCs, TRPC6 can be activated by phospholipase C
(PLC)-dependent pathway via the generation of diacylglycerol
(DAG) and inositol 1,4,5-phosphate (IP3), resulting in the
subsequent Ca2+ influx into podocytes.Winn et al. demonstrated
that a gain-of-function mutation in TRPC6 (proline to glutamine
substitution at position 112) enhanced calcium signaling via
AngII stimulation and cell surface expression of TRPC6 in
HEK 293 cells (126), which ultimately causes eventual podocyte
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apoptosis and detachment (127). Recently, a TRPC6 loss-of-
function type of mutation was also found to be associated
with human FSGS (128), thus providing evidence that reduced
physiological TRPC6-mediated calcium entry may also cause
disease. In addition to FSGS, TRPC6 has been reported to affect
DKD by increasing TRPC6 expression mediated by AngII as seen
in streptozotocin-induced diabetic rats; this suggests a role for
TRPC6 in causing podoctyopenia and proteinuria (129, 130).
TRPC5 and TRPC6 both affect the actin cytoskeleton differently,
i.e., upon activation through AngII, TRPC6 couples with Rho
A (see section on Rho/Small GTPases) while TRPC5 couples
with Rac1, resulting in stress fiber vs. motile phenotype in
the podocyte, respectively. TRPC5-mediated signals have been
considered as “disease-type” leading to cytoskeletal collapse
(131). The function of TRPC5, however, has recently been put
in question. There is evidence that deletion of TRPC5, either
genetically or pharmacologically, results in decreased glomerular
injury when exposed to LPS or protamine sulfate (PS) (132).
Recently, Zhou et al. showed that inhibition of TRPC5 with a
small molecule inhibitor (AC1903) prevented podocyte loss in a
rat model of AT1R overexpression (model of FSGS) and halted
the disease progression in the Dahl salt-sensitive rate model of
hypertensive kidney disease (133). These findings, however, were
contradicted by another study suggesting that the overexpression
TRPC5 in mice does not cause proteinuria nor aggravate
LPS-induced albuminuria (134). Nonetheless, these conflicting
findings further complicate our current understanding of TRPC
channelopathy on podocytes, and in fact, echo some of the
contradictory results in GTPases studies in this field (see below).

Podocyte Signaling at Actin
Cytoskeletons- Rho/Small GTPases, and
Synaptopodin
Derangements in the actin cytoskeleton of podocytes have been
widely reported to cause proteinuric kidney diseases. Not only
does it maintain the structural integrity of the podocytes, but it
also mediates complex signal cascades, endocytic pathways, and
interactions outside of podocytes such as the GBM (10). Here we
will focus on Rho-family of small GTPases and synaptopodin.

GTPases
The Rho-family of small GTPases such as RhoA, Cdc42,
and Rac1 regulate actin cytoskeleton remodeling by acting as
molecular switches to coordinate signaling by either promoting
cell motility or inhibiting cell migration (135). Each GTPase
cycles between an active GTP-bound state and an inactive GDP-
bound state. Upon activation, Rho GTPases are able to bind to
a range of effector proteins to regulate downstream signaling
pathways. Rho-dependent pathways are activated by AngII,
platelet-derived growth factor, endothelin-1 (136), and promote
contractile phenotype with the formation of stress fibers. On the
contrary, Cdc42/Rac1 activation leads to lamellipodia/filopodia
formation, an unstable phenotype of podocytes which causes
FPE (137). Although initially it seemed that RhoA activation
with Cdc42/Rac1 suppression was beneficial to the podocyte,
studies in the past decade have shown conflicting results. For
example, transgenic mice with constitutive activation of RhoA in

podocytes resulted in proteinuria with FPE, podocyte apoptosis,
decreasing nephrin expression (138) and histologic features
of FSGS (139). Inhibiting RhoA signaling was thus shown to
mitigate podocyte injury murine chronic kidney disease model
(5/6 nephrectomy) and rats with PAN (140, 141). However,
constitutive expression of dominant-negative RhoA in mice
also caused proteinuria and loss of stress fiber formation in
mouse podocytes (138), while preserving RhoA signaling in
mice with LPS-induced proteinuria via synaptopodin (142)
showed anti-proteinuric effects (143). Thus, the balance of
RhoA signaling is imperative for podocyte, and it is likely to
be dependent on the specific disease state. In the Cdc42/Rac1
system, podocyte-specific Rac1 knockout mice were shown to
exhibit normal podocyte morphology and protection from PS
induced-podocyte injury (144). However, these Rac1 knockout
mice were also found to exacerbate the injury from chronic
hypertensive glomerulosclerosis. Activation of Rac1 has shown
to attenuate podocyte injury and expedite recovery in vitro
(145, 146), yet hyperactivation of Rac1 has been linked to
diseased podocytes in a dose-dependent manner (147–149). For
Cdc42, podocyte-specific deletion in mice led to early-onset
severe proteinuria, FPE, glomerulosclerosis (144), and congenital
nephropathy (150). Similarly, reduced Cdc42 expression resulted
in mouse podocyte apoptosis due to downregulated Yes-
Associated Protein (YAP) signaling (151, 152) and promoted
filopodia formation. Decreased activity of both Cdc42 and Rac1
via FAT1 mutation has shown to cause human and mouse
glomerulotubular nephropathy (153). These results collectively
suggest Rac1 signaling might be dispensable for podocyte
development as compared with Cdc42 (150), but whether Rac1
deletion is beneficial or detrimental, again, depends on the type
of podocyte injury.

Mutations in human genes that interfere with Rho GTPase
signaling have been identified in nephrotic syndrome (154), FSGS
(155), and DKD (156). For example, mutations in ARHGDIA,
which exists in a complex with Rho GTPases, increased levels of
Rac1 and Cdc42 (but not RhoA) have been found in individuals
with SRNS (Table 1) (154). The human disease mutation in
Rac1-GTPase-activating protein (Rac1-GAP)ARHGAP24, which
results in elevated Rac1 and CDC42 levels, was also found to
be associated with a family with FSGS (155). Hence, we are
only beginning to learn more about the significance of these
subclasses of the Rho-family of small GTPases as they appear to
have divergent roles in specific disease states.

Synaptopodin
Synaptopodin is a proline-rich actin-binding protein highly
expressed in dynamic cells such as telencephalic dendrites
and podocytes. In podocytes, synaptopodin was found to
interact with α-actinin-4, an important protein to cross-link
between actin filaments (189). Loss of synaptopodin led to
delayed stress fiber formation and development of aberrant
nonpolarized filopodia. Although the ultrastructure of podocytes
in synaptopodin-deficient (synpo−/−) mice appeared to be
normal, these mice showed impaired recovery from both
PS- and LPS-induced kidney injury (190). Synaptopodin was
later revealed to block Smurf1-mediated ubiquitination of
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TABLE 1 | Genes of slit diaphragm and actin cytoskeleton that are associated with proteinuric kidney diseases.

Diabetic nephropathy Focal segmental glomerulosclerosis Membranous

nephropathy

Minimal change disease

Slit diaphragm • TRPC6 (130)

• NPHS1(78, 157–159)

• NPHS2 (159)

• NPHS1 (20, 65)

• NPHS2 (89–91, 105, 108–110, 160)

• CD2AP (161–163)

• TRPC6 (126, 128, 164–168)

• PLCE1 (169)

• NPHS1 (170)

• NPHS2 (171)

• NPHS1 (76, 172, 173)

• NPHS2 (119, 174)

Actin cytoskeleton • Rac1 (175)

• PTEN (156)

• ACTN4 (176–178)

• INF2 (179–181)

• FAT1 (153)

• MYO1E (182)

• ARHGP24 (155)

• ARGHDIA (154)

• Rhpn1 (183)

• YAP (184)

• C-MIP (185)

• CRK1/2 (186)

• KANK (187)

• CFL1 (188)

• C-MIP (185)

FPE, foot process effacement; TRPC, Transient receptor potential canonical; PTEN, phosphatase and tensin homolog; CD2AP, CD2-associated protein; PLCE1, phospholipase C

epsilon 1; ACTN4, alpha-actinin 4; INF2, inverted formin 2; FAT1, fat cadherin 1; MYO1E, myosin IE; AHRGP24, Rho GTPase activating protein 24; ARGHDIA, Rho-GDP dissociation

inhibitor alpha; YAP, yes-associated protein; C-MIP, c-maf-inducing protein; KANK, KN motif and ankyrin repeat domain; CFL1, cofilin-1.

RhoA to preserve stress fibers formation by increasing RhoA
expression and activation (142). By contrast, synaptopodin
inhibits binding of Cdc42 and Mena to IRSp53 and therefore
protects aberrant filopodia formation in mouse podocytes (191).
Synaptopodin is phosphorylated by PKA/CaMKII and binds 14-
3-3ß to promote Rho signaling (143). Under TRPC5-mediated
calcium influx, synaptopodin is degraded by calcineurin-
mediated phosphorylation and promotes Rac1 signaling and ROS
formation (192). Cyclosporine A, a calcineurin inhibitor used
in immunosuppression, was found to have an anti-proteinuric
effect due to blocking calcineurin-mediated dephosphorylation
of synaptopodin (143). Additionally, Yu et al. demonstrated that
synaptopodin affects TRPC6 localization and function which
suggests that decreased synaptopodin levels under diseased
conditions will increase TRPC6-mediated calcium influx and
induce podocyte apoptosis (193). Clinically, reduced expression
of synaptopodin has been observed in FSGS (176, 194), HIV-
associated nephropathy (HIVAN) (194–196), IgA nephropathy
(197), and idiopathic nephrotic syndrome of childhood (198).
Synaptopodin levels have been shown to correlate with disease
severity and response to treatment in human FSGS and minimal
change disease (MCD) (199, 200). Urinary synaptopodin protein
and mRNA excretion have also been used to assess the decline of
renal function and certain glomerular diseases (201, 202).

Clinical Implications
Advances in our understanding of podocyte biology have
been a great asset to elucidate underlying pathophysiology
in proteinuric kidney diseases. DKD, MCD, FSGS, and
membranous nephropathy (MN) were all found to have
dysfunction at the SD or actin cytoskeletal system (Figure 2).
Although the therapeutic options targeted to podocytes are
limited, the concept of restoring SD proteins, stabilizing the
cytoskeleton, or stimulating podocyte regeneration is showing
promise.

Renin-Angiotensin-Aldosterone System Inhibition
Inhibiting AngII has shown to be beneficial in several models of
glomerular diseases. In DKD, there is a large body of evidence
that shows inhibition of AngII results in the reduction in
proteinuria and the slowing of the rate glomerular filtration
rate (GFR) decline in humans. In addition to the well-
known hemodynamic effects of inhibiting the renin-angiotensin-
aldosterone system (RAAS) (215), both angiotensin-converting
enzyme inhibitor (ACEI) and AngII type 1 receptor blocker
(ARB) have shown to significantly increase nephrin expression
in murine diabetic models (157, 216). A similar effect was also
observed in rats models by adriamycin-induced nephropathy
and PAN (217, 218). Since AngII has a direct TRPC6-mediated
calcium signaling (219, 220) which results in ROS expression
(221) and proteinuria (222), inhibiting TRPC6 indirectly via
AngII blockade is a feasible strategy in proteinuric diseases such
as FSGS.

As described above, the concept of podocyte’s limited capacity
of regeneration has been challenged by novel genetic labeling
techniques to trace possible podocyte progenitors. The exact
origin of the detected newly-developed podocytes is still under
debate; to name a few, glomerular parietal epithelial cells (PEC)
and cells of renin lineage (CoRL) have been most investigated
to date. Surprisingly, RAAS inhibition has been also shown
to increase podocyte numbers either from PEC (223, 224) or
CoRL (225, 226), suggesting its unique property and potential
therapeutic effect.

Glucocorticoid
Glucocorticoid (GC) is the backbone and initial therapy for
several nephrotic syndrome including FSGS (209) and MCD
(227). In addition to the effects on immunomodulatory cells,
cultured murine podocyte was shown to carry glucocorticoid
receptor (GR) complex and respond to GC in a dose-
and time-dependent manners at both transcriptional and
posttranscriptional levels (228). In an immortalized human
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FIGURE 2 | Schematic depiction of pathophysiologic processes in specific proteinuric kidney diseases. Dysregulated slit diaphragm and altered actin dynamics

depicted in specific disease states that cause podocyte foot process effacement (FPE) and podocyte loss. The commonalities of pathophysiology in different diseases

are grouped into blue (dysregulated pathways related to SD proteins) or red (cytoskeletal dysregulation via TRPC or Rho-GTPase) dashed square. (A)

Diabetic Nephropathy. Under hyperglycemia, nephrin endocytosis can be induced by the interaction of β-arrestin2 with PKC-α (59, 60). Increased AngII (78, 158) and

Claudin-1 (159, 203) in diabetes were both shown to reduce expression of nephrin and podocin. On the contrary, increased TRPC6 expression mediated by AngII was

seen in streptozotocin-induced diabetic rats causing podocytopenia and proteinuria (129, 130). Hyperglycemia also leads to podocyte apoptosis from production of

reactive oxygen species (ROS) through NAPDH oxidase (NOX) (204), so as does insulin resistance due to reduced AKT pro-survival signaling (205). (B) Minimal

Change Disease. Mutations of nephrin (NPHS1) and podocin (NPHS2) have been reported in MCD and tended to have higher rates of steroid-resistance

(119, 174, 206), as well as recessive mutations of KANK (kidney ankyrin repeating-containing protein) KANK1 and KANK2 identified in a cohort of Arab and European

origins (187). Cofilin-1, actin-binding protein necessary for maintaining podocyte architecture (207), is inactivated by phosphorylation seen in human MCD, leading to

its redistribution to nucleus in the disease states (188). A novel molecule c-mip noted to be upregulated in human MN/MCD was shown to impair podocyte actin

reorganization by inhibiting interaction between Fyn/N-WASP and nephrin/Nck. Podocyte overexpressed with c-mip could result in downregulation of nephrin and

synaptopodin (52, 185, 208). (C) Focal Segmental Glomerulosclerosis (FSGS). Multiple gene mutations have been identified in patients with FSGS through genetic

studies. Most of them encode various critical podocyte structures or signaling pathways, such as SD complex (NPHS1, NPHS2, CD2AP), SD-related Ca2+ signaling

(TRPC6, PLCE1), actin cytoskeleton/endocytosis (ACTN4, INF2, FAT1, MYO1E), and small-GTPases (AHRGP24, ARGHDIA, ARHGEF17) (209–214). A novel

mechanism of increased podocin endocytosis via sorting nexin 9 (SNX9), which is seen in human IgA nephropathy, membranous nephropathy and FSGS was also

described (171). Blocking the imbalanced TRPC5/6 signaling and increased circulating permeability factors (suPAR/CLC-1) are possible new therapeutic approaches

in FSGS. (D) Membranous Nephropathy. Besides the well-known antibody-mediated primary MN (anti-PLA2R/THSd7A), reduced nephrin phosphorylation (170) and

increased podocin endocytosis (171) have been described in human MN. Disorganization of actin cytoskeleton from a different cytoskeletal pathway Cas-FAK-Crk1/2

activation (not the typical nephrin-Nck pathway) was also seen in human MCD and MN (186). Mutation (red thunder ) of proteins, inhibiting (red cross ) or activating

(yellow star ) different signal pathways leads to reduced level of phosphorylation, increased intracellular calcium and endocytic process. AngII, Angiotensin II; c-ABL,

Abelson murine leukemia viral oncogene homolog 1; RhoA, ras homolog gene family, member A; NOX, NAPDH oxidase; ROS, reactive oxygen species; Cdc42, cell

division control protein 42 homolog; Rac1, ras-related C3 botulinum toxin substrate 1; Lmx1b, LIM homeobox transcription factor 1-beta; SNX-9, sorting nexin 9;

suPAR, soluble urokinase plasminogen activator receptor; CLC-1, cardiotropin-like cytokine-1; FAK, focal adhesion kinase; PLA2R, phospholipase A2 receptor;

THSD7A, thrombospondin Type 1 domain containing 7A; c-mip, c-maf-inducing protein; KANK, kidney ankyrin repeating-containing protein.

podocyte model, the expression of nephrin and other podocyte
genes was upregulated after dexamethasone treatment (229, 230).
GC was also shown to help to stabilize the actin cytoskeleton
system (231), and to increase actin stress fiber formation via
overexpression of Krüppel-like factor 15, a downstream target
of GC (232). Lastly, in murine model of experimental FSGS
(via cytotoxic anti-podocyte antibody), GC might regenerate

podocytes from adjacent PECs (233). Therefore, the therapeutic
actions of GC in proteinuric diseases may very well be due to its
myriad benefits on the podocyte (234).

Inhibition of Rho-Associated Kinases (ROCKs)
With murine diabetic and PAN models, inhibiting downstream
effectors Rho-associated kinases (ROCKs) using ROCK
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inhibitors has shown renoprotective effects (235, 236). Increased
Rac1 and mineralocorticoid receptor signaling were also
found to be increased in mice lacking Rho GDP-dissociation
inhibitor-alpha [Arhgdia(−/−) mice] with heavy albuminuria and
podocyte damage. A Rac-specific small-molecule (NSC23766)
and eplerenone (mineralocorticoid receptor antagonist) have
successfully ameliorated the renal damages seen in Arhgdia(−/−)
mice, suggesting the therapeutic effects by suppressing Rac1
or mineralocorticoid receptor signaling (237). Nevertheless,
conflicting data in this field demands additional meticulous
studies to further illuminate future therapeutic targets.

Vitamin D and Retinoic Acids
Selective vitamin D receptor activation was proven to lower
proteinuria in patients with DKD (238); it was later demonstrated
that vitamin D3 analogs might ameliorate podocyte injury
by reversing the decrease in nephrin expression induced by
hyperglycemia (239–241). The combination of vitamin D analog
with an ARB has been shown to have synergetic effects on
RAAS blockade, thereby boosting its overall therapeutic effect
(242, 243). However, as there is currently no recommended
clinical dosage of vitamin D analog for use in DKD, long-term
and prospective clinical data is required to assess its safety and
efficacy (244, 245). Retinoic acids (RAs) are vitamin A derivatives
and appear to have renoprotective effects on various murine
nephropathy such as HIV-associated nephropathy (HIVAN)
(246) and PAN-induced nephrotic rats (247). Recently, Dai
et al. reported that RA treatment activated podocyte retinoic
acid receptor-α (RAR-α) and increased synaptopodin expression
on PEC in wild type mice with nephrotoxic serum-induced
glomerulonephritis (GN). The group subsequently identified
RAR-α expression in human crescentic GN kidney biopsies,
substantiating a possible therapeutic option in treating human
crescentic GN (248). RA was also found to induce podocyte
markers in PECs in a murine model membranous nephropathy
(Heymann nephritis) and FSGS (anti-glomerular antibody
model) (249). However, the toxicities of RA have hindered it from
wide clinical use and have resulted in difficulties in recruiting
patients to a Phase II clinical trial of podocyte diseases (MCD,
FSGS, collapsing glomerulopathy) (NCT 00098020) (250). Thus,
less toxic alternatives, such as Kruppel-like factor-15 and boronic
acid retinoid are being explored (250, 251).

Biological Agents
Emerging evidence also suggests that biological agents might
regulate the podocyte SD. Rituximab (RTX), an anti-CD20
antibody which depletes B cells, is widely used in different
proteinuric diseases such as FSGS (252–254) and steroid-
resistant MCD (255–258). Besides its immunological response,
RTX was found to preserve sphingomyelin-phosphodiesterase-
acid-like 3b (SMPDL-3b), which in turn regulates acid

sphingomyelinase (ASMase) activity in the raft of podocytes
(259). SMPDL-3b can partially co-localize with synaptopodin
and hence prevent the actin remodeling that occurs after
exposure to serum from FSGS patients (259). This concept
was supported by a recent clinical observation of the increase
in urinary SMPDL-3b in patients at the remission stage after
RTX treatment compared with the proteinuric stage (260).
Abatacept (CTLA-4-Ig), a costimulatory-inhibitor that targets
B7-1 molecule, may be another therapeutic agent to treat
nephrotic syndrome via the actin cytoskeleton. Since induction
of the T-cell costimulatory molecule B7-1 by LPS has been
shown to be associated with nephrotic syndrome and actin
reorganization (261), an inhibitor of B7-1 may ameliorate these
findings. Though Yu et al. initially reported that treating five
FSGS patients with abatacept achieved partial remission (262),
these findings have not been successfully replicated (263–266).
Presently, there is an ongoing phase II trial of abatacept for
patients with FSGS or MCD (NCT02592798).

CONCLUSION

Our improved understanding of the podocyte in terms of its
SDs and cytoskeleton has allowed us to target this cell for new
treatments for proteinuric diseases (267, 268). However, there
is much more to discover. Novel therapeutic target genes or
proteins in podocytes are constantly being discovered as we
write this review (269–271). Longstanding concepts, such as
the function of the SD and the lack of mitotic ability of the
podocyte, are already being challenged (272–274). For instance,
the use of glycogen synthase kinases 3 inhibitor has already
demonstrated initial promising results of transforming renal
progenitor cells into podocytes (275). Growing podocytes from
induced pluripotent stem cells on the chip also serves as a great
tool to assess new drug development (276). At the same time,
newer imaging systems to count podocytes (277) and to study
their membrane dynamics have enhanced our ability to study this
cell (278). The information that we hope to garner from the field
of “-omics” (279, 280) reminds us that data is both tremendously
helpful and potentially fraught with error, and hence must be
interpreted with great care (281, 282). Thus, persistent endeavors
to elucidate complex podocyte biology (283, 284), along with
long-term patient follow-up (285), would greatly add to our
present understanding of these common yet poorly understood
proteinuric diseases.
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