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Abstract: Increased levels of type I (T1) interferon (IFN)-inducible POP3 protein in myeloid cells
inhibit activation of the AIM2 inflammasome and production of IL-1β and IL-18 proinflammatory
cytokines. The AIM2 mRNA levels were significantly higher in benign prostate hyperplasia (BPH)
than the normal prostate. Further, human normal prostate epithelial cells (PrECs), upon becoming
senescent, activated an inflammasome. Because in aging related BPH senescent PrECs accumulate,
we investigated the role of POP3 and AIM2 proteins in pre-senescent and senescent PrECs. Here
we report that the basal levels of the POP3 mRNA and protein were lower in senescent (versus
young or old) PrECs that exhibited activation of the T1 IFN response. Further, treatment of PrECs
and a BPH cell line (BPH-1) that expresses the androgen receptor (AR) with the male sex hormone
dihydrotestosterone (DHT) increased the basal levels of POP3 mRNA and protein, but not AIM2, and
inhibited activation of the AIM2 inflammasome. Of interest, a stable knockdown of POP3 protein
expression in the BPH-1 cell line increased cytosolic DNA-induced activation of AIM2 inflammasome.
These observations suggest a potential role of POP3 protein in aging-related prostatic inflammation.
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1. Introduction

Molecular mechanisms that contribute to the development of aging-related prostatic
inflammatory diseases, including benign prostate hyperplasia (BPH), remain largely un-
known [1–4]. Notably, studied using biopsies from patients with BPH and informative
animal models have indicated a role for prostatic inflammation (PI) in the development of
BPH [5–9].

Prostatic infections induce production of T1 interferons (IFN-α/β) through activation
of the cGAS-STING pathway as a part of innate immune response [4,10,11]. The T1 IFNs,
upon binding to a cell surface receptor, activate the JAK/STAT signaling in cells, resulting
in stimulation of the expression of T1 IFN-inducible proteins [12]. The T1 IFN-inducible
PYHIN protein family includes human IFI16 proteins, pyrin-only protein 3 (POP3), and
AIM2 protein [13–15]. The proteins in the family share the N-terminal PYRIN domain
(PYD) and the C-terminal HIN domain [13]. The PYD allows homotypic protein-protein
interactions and the HIN domain allows sequence-independent binding to DNA [13,14].
The POP3 protein lacks the HIN domain [15].

We have reported earlier that treatment of human normal prostate epithelial cells
(PrECs) and normal prostate stromal cells (PrSCs) with T1 IFN increased the levels of
the androgen receptor (AR) and stimulated the transcription of AR-regulated gene [16].
Activation of AR in PrECs and PrSCs by the male sex hormone, dihydrotestosterone (DHT),
regulates cell proliferation and survival [17,18]. Further, we noted earlier that activation of
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the AR in human prostate cancer cell line PC-3 stimulated the expression of IFI16 PYHIN
proteins [19]. Increased expression of the IFI16 proteins in human normal PrECs, PC-3
prostate cancer cell line, and human normal diploid fibroblasts (HDFs) associated with the
onset of cellular senescence [20–23]. Of interest, AR also drives human PrECs to cellular
senescence [24]. Although the senescent cells exit the cell cycle permanently and do not
divide, these cells secrete proteases and proinflammatory cytokines (e.g., IL-6, IL-1β, and
IL-18) [25,26]. This phenotype of senescent cells has been termed senescence-associated
secretory phenotype (SASP) and the phenotype is thought to contribute to aging-related
chronic inflammation [25,26]. Notably, senescent PrECs accumulate in BPH [27] and their
SASP promotes BPH [28]. However, the molecular mechanisms that contribute to the
development of SASP in the senescent PrECs remain unclear.

The AIM2 protein senses cytoplasmic dsDNA in a variety of cell types and recruits
an adaptor protein ASC through its PYD to form the AIM2 inflammasome [13,14]. The
activated AIM2 inflammasome through activation of caspase-1 protease proteolytically
cleaves the gasdermin D protein, pro-IL-1β, and pro-IL-18 [29]. Activated gasdermin D
induces cell death by pyroptosis [29]. Proteolytic cleavage of pro-IL-1β, and pro-IL-18
promotes the secretion of the mature IL-1β and IL-18 proinflammatory cytokines [13,14,29].
Notably, increased levels of the POP3 protein in macrophages bound with PYD of AIM2
protein and the binding diminished the ability of the AIM2 protein to bind with ASC
adaptor protein and to form AIM2 inflammasome [15].

Given that human prostatic infections are associated with chronic inflammation [4,5],
and the development of BPH is associated with an accumulation of senescent PrECs with
SASP [27,28], we investigated the role of POP3 and AIM2 proteins in senescent PrECs.
Here we report that levels of the POP3 protein decreased in senescent PrECs as compared
with pre-senescent proliferating or old cells. Further, DHT-mediated activation of the AR in
human PrECs and in a benign prostate hyperplasia (BPH) cell line (BPH-1) up-regulated the
expression of POP3 protein and inhibited cytosolic DNA-induced activation of the AIM2
inflammasome. Further, a knockdown of POP3 protein expression in BPH-1 cells activated
the activity of the AIM2 inflammasome. Our observations have important implications for
the development of aging-related prostatic inflammatory diseases.

2. Materials and Methods
2.1. Reagents

Synthetic double-stranded DNA (Poly (dA:dT)) in complex with transfection reagent
(LyoVec) and LyoVec were from InvivoGen (San Diego, CA, USA) and EDTA-free protease
inhibitor cocktail was from Roche Applied Science (Indianapolis, IN, USA). Dihydrotestos-
terone (DHT) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and a stock
(100 mM) was prepared in 100% ethanol and stored at −20 ◦C.

2.2. Primary PrECs, Prostate Cell Line, and Treatments

Human primary prostate epithelial cells (PrECs; at passage 2) from different donors
(age 19 to 37) in culture (or frozen vials) were purchased from Lonza (Houston, TX, USA).
Cells were maintained in culture as suggested by the supplier in the presence of medium
supplements that were provided by the supplier as a part of the PrEGM™ Bulletkit™.
Immortalized BPH-1 cell line was originally provided by Dr. Simon Hayward (Vanderbilt
University Medical Center, Nashville, TN, USA) [30].

When indicated, cells in culture were treated with the indicated concentrations of
dihydrotestosterone (DHT; stock in 100% ethanol) in phenol-free culture medium that
was supplemented with charcoal/Dextran-treated fetal bovine serum (to decrease the
endogenous levels of the steroid hormones) from the US source (from HyClone).

The asynchronous onset of cellular senescence in the primary cultures of human
PrECs in late passages (passage 7 and higher) was assessed using well-described criteria
for cellular senescence, including cell morphological changes and positivity to senescence-
associated acidic β-galactosidase (SA-β-gal) as we have described [20]. In senescent
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cultures of PrECs, >90% cell population tested positive for the SA-β-gal, exhibited a large
and flat cell morphology, and stopped cell proliferation [20].

2.3. Antibodies

Following antibodies were used to specifically detect proteins in immunoblotting: AR
(sc-816), IFI16 (sc-8023), ASC (sc-22514), IL-1β (sc-7884), and IL-18 (sc-7954) from Santa
Cruz Biotech (Santa Cruz, CA, USA); Caspase-1 (AHZ0082) from Invitrogen (Grand Island,
NY, USA); Anti-STAT1 (cat # 9172), p-STAT1 (cat # 9171), and β-actin (cat # 4967) from Cell
Signaling Technology (Danvers, MA, USA). Rabbit polyclonal antibodies that we raised
against the C-terminal AIM2 peptide that specifically detected two human hAIM2 isoforms
have been described [31]. Specific custom anti-peptide rabbit polyclonal antibodies were
raised against a peptide (REEQETGICGSPSSARSV) in the POP3 protein, which detected
an IFN-inducible POP3 protein of an expected size (~18 kDa) in total cell extracts from IFN-
treated THP-1 cells as described [15]. Horseradish peroxidase (HRP) conjugated secondary
anti-mouse (NXA-931) and anti-rabbit (NA-934) antibodies were from GE Healthcare
Biosciences (Piscataway, NJ, USA).

2.4. Immunoblotting

Total cell lysates were prepared in radio-immunoprecipitation assay (RIPA) buffer
(50 mM Tris-Cl (pH 7.4), 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate,
0.1% sodium dodecyl sulfate) that was supplemented with complete mini EDTA-free pro-
tease inhibitor cocktail and phosphatase inhibitors (Cell Signaling, Danvers, MA, USA)
as described [31]. The lysates containing approximately equal amounts of total proteins
(~25−50 µg) were subjected to immunoblotting [31]. When indicated, actin protein was
used as an internal control (because levels of actin did not change after DHT-treatment
of cell types that we used). Enhanced chemiluminescence (ECL) signals of proteins were
measured by the Molecular Imager Gel Doc XR+ System (Bio-Rad, Hercules, CA, USA). Im-
munoblots that were used for quantification of protein levels are shown in Supplementary
Figures and the quantification values in an accompanied Table.

2.5. Inflammasome Assay

Activation of inflammasome activity in PrECs or BPH-1 cells was assessed using the
criteria described earlier [32]. In brief, we subjected the total cell lysates or proteins from
cell culture medium to immunoblotting and assessed (i) a decrease in the cellular levels
of pro-caspase-1 (p45); (ii) an increase in the cellular levels of activated caspase 1 (p20)
and/or (p10); (iii) a decrease in the cellular levels of pro-IL-1β (p31); and (iv) an increase in
the cellular levels of the mature IL-1β (p17). Notably, in contrast to macrophages [32], in
PrECs and BPH-1 cell line, activation of the inflammasome activity was accompanied by
moderate to appreciable changes in the cellular levels of pro-caspase-1 (p45) and pro-IL-1β
(p31) under our experimental conditions as described [31]. Further, when indicated, we
detected the secreted levels of the mature IL-1β and IL-18 in the culture medium after
precipitation of the proteins from the medium.

2.6. RNA Isolation and PCR

Cells were collected by centrifugation and the pellets were suspended into the Trizol
reagent (Invitrogen) to isolate total RNA as described [31]. cDNA synthesis and semi-
quantitative RT-PCR were performed as described [31]. The following primers were used
for RT-PCR: the human AR (forward: 5′-CATCTGTGAAATAGAGCCTATCATATCCAC-3′;
backward: 5′-TAACGCCTGCCTAGTGGCTTTGGAG-3′), IFI16 (forward: 5′-CCAAGACT
GAAGAC TGAA-3′; backward: 5′-ATGGTCAATGACATCCAG-3′), POP3 (forward: 5′-
ATGGAGA GTAAATATAAGGAG-3′; backward: 5′-TCAACATGCATTCCCA GAAAT-3′),
AIM2 (forward: 5′-ATGTGAAGCCGTCCAGA-3′; backward: 5′-CATCATT TCTGATGG
CTGCA-3′), and actin (forward: 5′-GCTCGTCGT CGACAACGGCTC-3′; backward: 5′-
CATG ATCTG GGTCATCTTCTC-3′). Levels of actin mRNA were used as an internal
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control. To determine the fold change (FC) in the levels of an mRNA following a treatment,
the intensity of the actin DNA band (an internal control) on the agarose gel and the DNA
band of a gene of interest were measured by the Molecular Imager Gel Doc XR+ System
(Bio-Rad, Hercules, CA, USA) with Image Lab Software. Next, the ratio was calculated
using the DNA band intensity value for the gene of interest and actin DNA band. This
ratio in control cells was indicated as 1 and the FC for DHT-treated samples was calculated
by calculating the ratio between the value from treated samples (calculated as in the case
of control sample) and the control value 1.

For quantitative real-time TaqMan PCR assays, Applied Biosystems’s (Foster City, CA,
USA) technique was used [31]. The PCR cycling program consisted of denaturing at 95 ◦C for
10 min and 40 cycles at 95 ◦C for 15 s, and annealing and elongation at 60 ◦C for 1 min. The
TaqMan assays for IFI16 (assay Id #Hs00194216_mL), human interferon-β (IFNB; assay Id #
Hs01077958 _s1), and for the endogenous controlβ-actin (assay Id# Hs99999903_mL) were pur-
chased from Applied Biosystems (Foster City, CA, USA) and used as suggested by the supplier.
The POP3 TaqMan assay was custom designed: (forward: 5′-AGCACGAGTAGCCAACTT
GATT-3′; backward: 5′-GGTCTTCCTCACTGCAGACA-3′).

2.7. Transfection

Sub-confluent cultures of PrECs or BPH-1 cells were either treated with vehicle
(ethanol) or with the indicated concentrations of DHT (in ethanol) as noted. Following the
treatment, cells were “primed” with TNF-α for 3 has described [31]. Control or “primed”
cells were either transfected with LyoVec (control) or poly (dA:dT)/LyoVec (5 µg/mL)
for the indicated time. At the end of incubations, cells were harvested to prepare total
cell lysates.

2.8. Stable Knockdown of POP3 Expression

To knockdown POP3 protein expression in BPH-1 cell line, cells were either transfected
with an empty vector (pcDNA3.1) or pcDNA3.1-POP3(AS) plasmid (a PCR fragment was
cloned in the multiple cloning site in the vector in the reverse orientation), thus, allowing
the expression of an antisense mRNA. The transfected cells were selected using G418
(500 µg/mL) for two weeks and the G418-resistant colonies (>300 colonies) were pooled.
To maintain cells in culture, a reduced concentration (250 µg/mL) of the G418 was used.
The transfected cells were cultured without G418 in the medium for two days prior to
the experiments.

2.9. Statistical Methods

Experiments involving immunoblotting and semi-quantitative RT-PCR techniques
were repeated at least 3-times. A representative result is shown. For quantitative PCR,
the assays were performed in triplicates. Fold-changes in the levels of certain proteins
and mRNAs are indicated based on the quantitation of signal in independent experiments.
The statistical measurement values, when indicated, were presented as means ± SEM.
The statistical significance of differences in the measured mean frequencies between the
two experimental groups was calculated using the Student two-tailed t-test.

3. Results
3.1. Activation of Type I Interferon Signaling in Senescent PrECs Differentially Regulated the
Expression of POP3 and AIM2 Proteins

Senescent human diploid fibroblasts (HDFs), as compared with young proliferating
or old HDFs, expressed higher basal levels of the IFN-β and activated the type I IFN-
signaling [22]. Further, activation of the type I IFN-signaling in senescent HDFs increased
the levels of AIM2 protein but decreased IFI16 protein levels [22]. Therefore, we examined
the expression of IFN-β and the IFN-β-inducible PYHIN-family proteins in proliferating
(passage 2), old (passage 5), and senescent PrECs (passage 8). As shown in Figure 1A, the
levels of IFN-β mRNA were significantly higher in senescent vs. proliferating or old PrECs.
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Consistent with our previous observations [22], senescent PrECs exhibited activation of
T1 IFN response as compared with proliferating or old PrECs as determined by increases
in the levels of type I IFN-inducible STAT1 protein and its activating phosphorylation on
Tyr-701 residue (Figure 1B). Interestingly, in contrast to senescent HDFs, the levels of type I
IFN-inducible IFI16 proteins were higher in senescent PrECs than the young or old PrECs.
Expectedly [16], the levels of AR were also higher in senescent PrECs than the young or
old PrECs. Further, the levels of AIM2 protein were higher in senescent vs. young or old
PrECs. However, the levels of POP3 protein were lower in senescent vs. young or old
PrECs. Because POP3 protein inhibited activation of the AIM2 inflammasome [15], we also
examined the levels of the mature IL-1β (p17) and IL-18 (p18) in the culture medium. We
found that the levels of IL-1β and IL-18 were higher in the culture media of the senescent
PrECs than young proliferating cells. These observations thus suggested activation of an
inflammasome in senescent PrECs.

Figure 1. Activation of type I interferon signaling in human senescent PrECs differentially regulated
the expression of POP3 and AIM2. (A) Total RNAs isolated from young proliferating (Y; passage-2),
old (O; passage-5), or senescent (S; passage-8) human PrECs were subjected to quantitative real-time
PCR using the TaqMan assay specific for the human IFNB mRNA. The RNA levels were normalized
using ACTIN mRNA. The relative levels of the IFNB mRNA in young PrECs are indicated as 1. The
values indicated as SEM (* p < 0.05). (B) Total cell extracts prepared from young (Y; passage-2), old
(O; passage-5), or senescent (S; passage-8) human PrECs were analyzed by immunoblotting using the
antibodies specific to the indicated proteins. The IL-1β(M) and IL-18(M) indicate the cleaved forms of
the pro-IL-1β and pro-IL-18 that were detected in the culture medium. The experiments were repeated
at least two times from cells derived from two different donors of different ages. Immunoblots
that were used for quantification of protein levels are shown in Supplementary Figure S1 and the
quantification of protein levels in an accompanied Table. (C) Young proliferating (Y; passage-2) PrECs
were either left untreated or treated with 1000 u/mL of IFN-β for indicated times (h). Total RNA was
isolated and subjected to RT-PCR for the indicated mRNAs as described in Material and Methods.
Fold changes (FC) in the levels of POP3 mRNA were calculated as noted in Materials and Methods.
(D) Total RNAs isolated from young, old, or senescent PrECs, as described in the panel (A), were
subjected to the quantitative real-time PCR using the TaqMan assays (in triplicates) specific for the
human POP3 mRNA. The RNA levels were normalized using ACTIN mRNA. The relative levels of
the POP3 mRNA in young PrECs are indicated as 1. The values indicated as SEM (* p < 0.05).
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IFN-β treatment of human macrophages for increasing length of time (0 to 48 h)
differentially regulated the expression levels of POP3 and AIM2 mRNA [15]. Therefore,
to investigate the potential role of AIM2 inflammasome activation in SASP of PrECs that
activated the T1 IFN-signaling (Figure 1A), we treated proliferating PrECs with increasing
length of time (0–48 h) and compared the levels of POP3 and AIM2 mRNA levels. As
shown in Figure 1C, the treatment of PrECs with IFN-β increased the levels of AIM2
and POP3 mRNAs within an hour. However, the levels of AIM2 mRNA decreased after
an hour of treatment but increased again after 48 h of treatment. In contrast, the levels
of POP3 mRNA stayed higher after an hour of the treatment of PrECs but stayed lower
after 14 h of treatment. Accordingly, a quantitative PCR revealed that old and senescent
PrECs expressed lower basal levels of POP3 mRNA than proliferating cells (Figure 1D).
These observations are consistent with a chronic activation of the T1 IFN-signaling in
senescent PrECs, contributing to an increased AIM2/POP3 protein ratio through a tran-
scriptional mechanism.

3.2. Androgen Receptor Activation in Proliferating PrECs Increased the Expression of POP3

Human primary PrECs express detectable levels of the androgen receptor (AR) [16].
Further, treatment of primary PrECs with type I IFN increased the levels of AR and
stimulated the transcriptional activity of AR [16]. Because senescent PrECs exhibited
activation of T1 IFN response and expressed higher basal levels of AR (Figure 1B), we
tested whether activation of the AR in proliferating PrECs could regulate the expression of
POP3 and AIM2. Consistent with our previous observations [19], treatment of proliferating
PrECs with the male sex hormone DHT (10 nM) for 14 h increased the levels of IFI16 mRNA
(Figure 2A). Further, the treatment increased the levels of POP3 mRNA ~ 4-fold. However,
the levels of AIM2 mRNA remain unchanged. Therefore, we performed quantitative PCR
to assess the extent of increase in the levels of POP3 mRNA by DHT in PrECs. As shown
in Figure 2B, treatment of cells with DHT significantly increased the levels of POP3 and
IFI16 mRNAs. Accordingly, we also noted measurable increases in the levels of IFI16 and
POP3 proteins in extracts from DHT-treated proliferating PrECs (Figure 2C). Consistent
with these observations, treatment of LNCaP human prostate cancer cells, which express
abundant levels of AR (as compared with normal proliferating PrECs) [33], with 10 nM
concentration of DHT also increased the levels of POP3 mRNA (Figure 2D). Similarly,
treatment of human benign prostate hyperplasia cell line BPH-1 with 10 nM DHT also
increased the levels of IFI16 and POP3 proteins, but not AIM2 protein (data not shown).
However, treatment of androgen independent human prostate cancer cell line PC-3 with
10 nM DHT did not increase the levels of POP3 protein (data not shown). Together, these
observations are consistent with activation of T1 IFN-signaling in human senescent PrECs
potentiating stimulation of the AR-mediated increases in the levels of IFI16 and POP3
proteins, but not the AIM2 protein.

3.3. Androgen Treatment of PrECs Inhibited Cytosolic DNA-Induced Activation of the
AIM2 Inflammasome

To determine whether activation of androgen receptor in human proliferating PrECs,
which increased the levels of POP3 protein (Figure 2), could inhibit AIM2 inflammasome
activity, we compared the inflammasome activation in proliferating PrECs after vehicle
(alcohol) or DHT treatment. As shown in Figure 3, DHT treatment of human primary PrECs
(passage 2), as compared with control cells (vehicle treated), appreciably increased the
levels of the POP3 protein (compare lane 3 with 1). Further, the basal levels of procaspase-1
(p45) were lower in control cells that were stimulated with the synthetic DNA poly [dA:dT]
(compare lane 2 with 4). Accordingly, levels of the activated caspase-1 (p20) were higher in
the control cells than DHT-treated cells that were stimulated with synthetic DNA. Similarly,
the secreted IL-1β (p17) and IL-18 protein levels were higher in the culture medium of
control cells than DHT-treated cells. Together, these observations indicated that activation
of AR by DHT in proliferating normal PrECs up-regulated the levels of POP3 and the
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up-regulation associated with a decrease in cytosolic DNA-induced activation of the AIM2
inflammasome activity.

Figure 2. Androgen receptor activation in human proliferating PrECs increased the expression of
POP3. (A) Sub-confluent cultures of proliferating young (passage 2) human PrECs were either treated
with vehicle (ethanol) or 10 nM DHT for 18 h. After the treatment, total RNA was isolated and
subjected to RT-PCR for the levels of mRNAs for the indicated genes. The fold change (FC) in the
levels of POP3 mRNA in response to DHT-treatment of cells as compared with vehicle treated cells
was estimated as described in methods. (B) Total mRNA isolated in panel (A) was subjected to
quantitative real-time PCR (in triplicates) using the TaqMan assay specific for the indicated mRNA.
The mRNA levels were normalized using ACTIN mRNA. The relative levels of the mRNA in vehicle
treated PrECs are indicated as 1. The values indicated as SEM (* p < 0.05, ** p < 0.01, *** p < 0.001).
(C) Cultures of young proliferating (passage 2) PrECs were either treated with vehicle (lane 1) or
10 nM DHT for 18 h as described in methods. After the treatment, total cell lysates containing
equal amounts of proteins were subjected to immunoblotting using the antibodies specific to the
indicated proteins. Immunoblots that were used for quantification of protein levels are shown in
Supplementary Figure S2 and the quantification of protein levels in an accompanied Table. The
experiment was repeated two times using cells derived from a single donor. (D) Cultures of the
LNCaP cells were either treated with vehicle or the indicated concentration of DHT for 18 h. Total
mRNA was isolated and subjected to quantitative real-time PCR using the TaqMan assay specific for
the POP3 mRNA. The POP3 mRNA levels in all samples were normalized using ACTIN mRNA. The
relative levels of the mRNA in vehicle treated LNCaP cells are indicated as 1. The values indicated as
SEM (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.4. A Stable Knockdown of POP3 Protein Expression in BPH-1 Cell Line Increased Cytosolic
DNA-Induced AIM2 Inflammasome Activation

We also investigated whether a knockdown of POP3 protein expression in BPH-1
cells could increase activation of the AIM2 inflammasome without or after DHT treatment.
As shown in Figure 4A, stable transfection of BPH-1 cells with an expression vector that
allowed the expression of the antisense POP3 mRNA appreciably reduced the basal levels
of POP3 mRNA in cells as compared with cells that were transfected with an empty vector.
Further, androgen-treatment of vector transfected control cells and their stimulation with
cytosolic synthetic DNA did not result in appreciable activation of the inflammasome
activity as determined by the lack of detection of proteolytically cleaved caspase-1 (p20)
in cell lysates and secreted mature IL-1β (p17) and IL-18 (p18) in the culture medium
(Figure 4B). However, a knockdown of the POP3 protein expression in cells and their treat-
ment with DHT did not result in a measurable increase in POP3 protein levels. Importantly,
treatment of cells with the synthetic DNA robustly activated the inflammasome activity in
cells, as measured by increases in the proteolytically cleaved and activated caspase-1 (p20)
levels in cell lysates and the secreted levels of the mature IL-1β (p17) and IL-18 (p18) in
the culture medium. Together, these observations indicated that a stable knockdown of
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POP3 protein expression in BPH-1 cell line activated cytosolic DNA-induced activity of the
AIM2 inflammasome.

Figure 3. Androgen treatment of PrECs inhibited cytosolic DNA-induced activation of the AIM2 in-
flammasome. Cultures of human proliferating PrECs were either treated with vehicle (lanes 1 and 2)
or with 10 nM DHT (lanes 3 and 4) for 18 h. Cells treated with either vehicle or DHT were further
treated with 10 ng/mL TNF-α for 3 h to “prime” cells. The primed cells were either treated with
LyoVec (lanes 1 and 3) or poly(dA:dT)/LyoVec (5 µg/mL; lanes 2 and 4) for 4 h. After the treatment,
total cell lysates and culture medium (after precipitation of proteins) were subjected to immunoblot-
ting using the antibodies specific to the indicated proteins. The IL-1β (M) and IL-18 (M) indicate
the cleaved forms of the pro-IL-1β and pro-IL-18 that were detected in the culture medium. The
experiment was repeated using proliferating PrECs from a single donor. Immunoblots that were
used for quantification of protein levels are shown in Supplementary Figure S3 and the quantification
in an accompanied Table.

Figure 4. A stable knockdown of POP3 protein expression in BPH-1 cell line increased AIM2
inflammasome activation. (A) Total RNA isolated from vector transfected control BPH-1 cells (lane 1)
or cells transfected with the pcDNA3.1-POP3(AS) vector allowing the expression of the antisense
POP3 mRNA were analyzed by RT-PCR for the indicated genes. The experiment was repeated two
times. (B) Control BPH-1 cells in panel (A) or cells transfected with pcDNA3.1-POP3(AS) vector
were either treated with vehicle (lanes 1 and 3) or 10 nM DHT (lanes 2 and 4) for 18 h. Cells were
further treated with 10 ng/mL TNF-α for 3 h to “prime” cells. The primed cells were incubated with
either LyoVec (lanes 1 and 3) or poly (dA:dT)/LyoVec (5 µg/mL; lanes 2 and 4) for 4 h. After the
treatment, total cell lysates and cell culture medium (after precipitation of proteins) were subjected to
immunoblotting using the antibodies specific to the indicated proteins. The IL-1β (C), the cleaved
IL-1β (p17) within the cell; IL-1β (M), cleaved IL-1β detected in the culture medium. The experiment
was repeated two times. Immunoblots that were used for quantification of protein levels are shown
in Supplementary Figure S4 and the quantification in an accompanied Table.
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4. Discussion

Senescent PrECs accumulate in BPH [27]. Further, SASP is associated with activa-
tion of an inflammasome activity and an increase in the production of proinflammatory
cytokines [34,35]. Therefore, our observations that (i) human senescent PrECs expressed
higher basal levels of the AIM2 protein and lower basal levels of POP3 protein (Figure 1);
and (ii) reduced basal levels of the POP3 protein in senescent PrECs (Figure 1) associated
with activation of cytosolic DNA-responsive AIM2 inflammasome are consistent with a
role of POP3 protein in the suppression of SASP in senescent PrECs.

Serum androgen levels decrease in men with aging [36,37]. Further, androgen receptor
levels increase in PrECs in certain parts of the prostate [37]. Therefore, our observations
that senescent PrECs that activated type I IFN signaling expressed higher basal levels of
the AR (Figure 1B) and activation of androgen receptor in human PrECs increased the
levels of POP3 protein (Figure 2) and increased levels of POP3 in PrECs inhibited cytosolic
DNA-induced activation of the AIM2 inflammasome activity (Figure 3) support the idea
that aging-related reduced serum levels of androgens in men contribute to a decrease
in the levels of POP3 protein in PrECs, thus leading to an increase in activation of the
AIM2 inflammasome. Because our observations implicate a role for the POP3 protein in
aging-related prostatic inflammation, further work will be needed to examine the role of
androgen-AR/POP3/AIM2 axis in the development of aging-related prostatic diseases.

POP3 protein also bound with the IFI16 proteins and inhibited activation of the IFI16
inflammasome [15]. Notably, androgens mediated activation of AR in human normal
proliferating PrECs also increased the expression of IFI16 gene [19]. As increased levels of
IFI16 proteins in human proliferating PrECs potentiated the p53-mediated cell cycle arrest
that is associated with cellular senescence [23], it is conceivable that androgens-mediated
up-regulation of the POP3 protein in human PrECs also affects the cell cycle inhibitory
functions of the IFI16 proteins. Because AR also drives human PrECs to cellular senes-
cence [24], further work is needed to determine whether androgens-mediated increased
levels of POP3 protein in human PrECs modulate the p53-mediated functions.

Activation of certain inflammasomes contributes to the development of prostatic
diseases in animal models and humans [38–41]. These diseases include chronic prostatitis
and chronic pelvic pain syndrome [38], BPH associated prostatic inflammation [39], and
prostate cancer [40,41]. However, it remains unclear whether androgens-mediated acti-
vation of the AR in PrECs regulates the activity of the inflammasomes. Therefore, our
observations that activation of AR in human PrECs suppressed activation of the AIM2
inflammasome are likely to serve the basis for further studies.

Androgen deprivation therapy (ADT) in prostate cancer patients is often associated
with increased production of pro-inflammatory cytokines (e.g., IL1β) [28]. However, it
remains unknown whether ADT in prostate cancer patients promote prostatic inflammation
through activation of inflammasomes. Therefore, our observations that activation of AR in
human PrECs up-regulated the expression of POP3 protein, an inhibitor of the production
of inflammatory cytokines (IL-1β and IL-18) through activation of inflammasomes, are
of significance.

The 5′-regulatory region of the POP3 gene remains uncharacterized. Although the
expression of POP3 gene is induced by type I IFN [15], the IFN-responsive cis-element(s)
remain unknown. Therefore, our observations that treatment of human PrECs (and BPH-1)
cell line with androgen DHT increased levels of the POP3 mRNA and protein will require
further work to identify the molecular mechanisms through which AR activation in PrECs
increases the levels of POP3 mRNA and protein.

In summary, our observations identify the IFN-inducible POP3 PYHIN protein as a
potential negative regulator of the AIM2 inflammasome and SASP in human senescent
PrECs. These observations also suggest that aging-related reduced levels of androgens in
men through reduced basal activation of the AR in PrECs increase the activation of the
AIM2 inflammasome. Thus, our observations have important implications for aging-related
development of prostatic inflammatory diseases.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11040366/s1, Figure S1: Protein levels in immunoblots in Figure 1B were quantified and
fold changes in protein levels were calculated as noted in the Materials and Methods. The table
shows the values for the protein band intensity fractions using the GelQuant.NET software. The
values in the parenthesis in the table indicate fold changes in protein levels, Figure S2: Protein levels
in immunoblots in Figure 1C were quantified and fold changes in protein levels were calculated as
noted above. The values in the parenthesis in the table indicate fold changes in protein levels, Figure
S3: Protein levels in immunoblots in Figure 3 were quantified and fold changes in protein levels were
calculated as noted above. The values in the parenthesis in the table indicate fold changes in protein
levels, Figure S4: Protein levels in immunoblots in Figure 4B were quantified and fold changes in
protein levels were calculated as noted above. The values in the parenthesis in the table indicate fold
changes in protein levels.
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