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Abstract

De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating
genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we
have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here,
we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga
Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii.
Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is
l¼ 7.6� 10�10, and is highly variable between MA lines, ranging from l¼ 0.35� 10�10 to l¼ 131.7� 10�10. The SNM
rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r> 0.97). We infer
that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for
cross-prediction between species. Among these genomic factors, sequence context and complexity are more important
than GC content. With the exception of a remarkably high C!T bias, the SNM spectrum differs markedly between the
two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a
similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.

Key words: Chlamydomonas incerta, Chlamydomonas reinhardtii, comparative mutability, mutation accumulation,
mutation rate, mutation spectrum.

Introduction
Mutation plays a key role in evolution, since it generates
genetic variation, providing the raw material for selection
and adaptation. New mutational variance and heritability
are important for determining the long-term response to
selection (Walsh 2004; Mulder et al. 2019), and thus the evo-
lutionary potential of populations. Standing genetic variation
is also strongly influenced by variants continuously regener-
ated by mutation, so that heritability under mutation-drift
equilibrium depends directly on the input of mutational var-
iation (Lynch et al. 1999; Walsh and Lynch 2018). Since mu-
tation also underlies genetic differentiation between lineages,
it influences evolutionary divergence rates (Keightley 2012).
Moreover, when new mutations have direct effects on phe-
notypes, particularly fitness and health, they also have a major
impact in applied fields, such as conservation biology and
medicine (Charlesworth 2018; Zhang and Vijg 2018). A better
understanding of the rate of mutation and the distribution of
mutational effects is one of the key goals in evolutionary
biology (Eyre-Walker and Keightley 2007).

From an evolutionary perspective, the mutation rate itself
can be regarded as a quantitative trait, which is modulated by
natural selection and genetic drift (Lynch and Conery 2003;
Lynch 2010). The drift-barrier hypothesis proposes that selec-
tion drives mutation rates to low values, minimizing the del-
eterious load, and that this process is more efficient in
populations of higher effective size (Ne) (Lynch 2011; Sung,
Ackerman, et al. 2012). However, although Ne is expected to
play a central role in mutation rate evolution, there are likely
to be many other genetic and biological factors that are in-
volved in the evolution of mutation rates and its differentia-
tion between species, such as the size of the functional
genome (Sung, Ackerman, et al. 2012) and an organism’s
life cycle (Sung, Tucker, et al. 2012; Long et al. 2015). The
mutation rate is also affected by environmental conditions
(Bjedov et al. 2003), and its evolution could in part be driven
by factors including spatial and temporal heterogeneity (de
Visser 2002). From a genomic point of view, the mutation rate
has been observed to be highly heterogeneous along the ge-
nome, and many factors contribute to genomic variation in
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mutability, including nucleotide context, GC content, and
DNA repetitiveness, among others (Mirkin 2008;
Stamatoyannopoulos et al. 2009; Muzny et al. 2012;
Aggarwala and Voight 2016; Sanju�an and Domingo-Calap
2016; Sassa et al. 2016; Frigola et al. 2017; Leffak et al. 2017;
Kessler et al. 2020; McKinney et al. 2020). However, whether
or not these correlates of mutation rate are causal, how they
compare across species and the extent of their involvement in
the evolution of the mutation rate remain open areas of
study.

Because individual mutations are very rare, we have only
recently been able to study large sets of mutations by com-
bining whole-genome sequencing (WGS) and mutation ac-
cumulation (MA) experiments (Katju and Bergthorsson
2019). In an MA experiment, inbred or clonal lines are main-
tained with minimal Ne so that selection is ineffective and
newly arising mutations can drift to fixation. This approach
has been used in a variety of organisms (Keightley et al. 2009;
Denver et al. 2012; Zhu et al. 2014; Flynn et al. 2017; Hamilton
et al. 2017; Long et al. 2018; Krasovec et al. 2019; Weng et al.
2019; Kucukyildirim et al. 2020; Chebib et al. 2021), but has
been generally limited to phylogenetically distant model
organisms and rarely applied in closely related species to en-
able comparative investigation of mutation.

For example, in the distantly related yeast species
Saccharomyces cerevisiae and Schizosaccharomyces pombe,
Farlow et al. (2015) observed similar mutation rates, but dif-
ferent spectra of single nucleotide mutations (SNMs).
Although the similarity of the mutation rates agreed with
the drift-barrier expectation, these yeast species are so dis-
tantly related that their genomes share essentially no detect-
able synteny (Rhind et al. 2011), and a comparative analysis
on their mutation properties provide little insight into the
phylogenetic scale over which changes in the mutation spec-
trum evolves. Denver et al. (2012) addressed the importance
of estimating mutational properties in more closely related
species by studying several genotypes of two Caenorhabditis
species that diverged approximately 100 Ma (Stein et al.
2003). In their MA experiment, neither the mutation rate
nor SNM spectra differed significantly among species or gen-
otypes, indicating that the mutation rate and spectrum may
be evolutionarily stable in this clade. More recently,
Terekhanova et al. (2017) analyzed sequence data from hu-
man and other primates and showed that estimates of the
mutation rate in shared genomic windows (i.e., local muta-
tion rates) are similar between closely related species (e.g.,
human and chimpanzee), but the correlation between mu-
tation rate estimates decays with phylogenetic distance.
Nonetheless, the scale over which the mutation rate and
spectrum diverge remains unclear, and more information
on the evolution of mutation processes in phylogenetically
closely related species is needed.

Here, we present an MA experiment in Chlamydomonas
incerta, the closest known relative of the green alga
Chlamydomonas reinhardtii, which has emerged as a model
for the study of rate and fitness effects of de novo mutation
(Ness et al. 2012; Sung, Ackerman, et al. 2012; Morgan et al.
2014; Ness et al. 2015; Kraemer et al. 2017; Böndel et al. 2019).

Although the taxonomic classification of C. incerta, which is
also referred to as C. globosa, is subject to ongoing debate, it
has long been recognized as a genetically and biologically
distinct species from C. reinhardtii (Pröschold et al. 2005;
Popescu et al. 2006; Nakada et al. 2010). The two species
exhibit �34% divergence at 4-fold degenerate sites, likely di-
verged less than 100 Ma and have highly syntenic genomes
with similar gene contents (Craig et al. 2021). A highly con-
tiguous and well-annotated C. incerta genome assembly has
recently been produced using Pacific Biosciences sequencing,
enabling comparative genomics analyses between C. rein-
hardtii and its closest relative to be performed for the first
time (Craig et al. 2021). Thus, a comparative study on the
mutation rate, its spectrum, and the genomic factors related
to mutability should lead to a better understanding of the
mutation process and its evolution. Based on predictive sta-
tistical models, the nearly 6,000 mutations identified in C.
reinhardtii by Ness et al. (2015) provided several insights
into the genomic factors related to mutability. Here, we
also study the C. reinhardtii data from Ness et al. (2015) to-
gether with nearly 2,000 new SNMs identified in C. incerta and
investigate the evolution of mutational properties in the two
species. Specifically, we address the following questions: 1) is
the rate and base spectrum similar between the two species?
2) Is the extent of mutation rate variation between lines and
across the genome similar in the two species? 3) Are predic-
tors of mutation rate variation in the genome similar in the
two species?

Results

Mutation Rates
A total of 27 MA lines of C. incerta were maintained for an
average of 788 generations before performing whole-genome
resequencing. The analysis of the re-sequencing data aligned
to the C. incerta reference genome (129.2 Mb) gave an overall
proportion of 72% high-quality sites (i.e., callable sites), where
candidate mutations could be called. The fraction of callable
sites (the callable rate) was consistent across MA lines
(Kruskal–Wallis, KW test, v2

26 ¼ 30.41, P¼ 0.25), but varied
significantly between contigs (KW test, v2

115 ¼ 2.6 � 106,
P< 2.2 � 10�16), and there was generally a higher callability
in larger contigs (supplementary fig. S1a–c, Supplementary
Material online) and the plastid (82%) and mitochondrial
genomes (92%). The positive relationship between contig
length and callability is likely to be a consequence of the
highly repetitive content of many short contigs (Craig et al.
2021), which foil assembly and lead to low mapping quality
(MQ) due to read misalignments (supplementary fig. S1b,
Supplementary Material online). Although C. incerta has a
higher mapped repeat content than C. reinhardtii, its callable
rate is higher than that previously repeat content (�28% vs.
�22%) than the smaller C. reinhardtii genome (�111 Mb), its
callable rate is higher than that previously obtained in several
strains of C. reinhardtii (Ness et al. 2015). This is presumably
the result of the C. incerta MA lines being derived from the
same strain as was used to produce the genome assembly,
unlike in C. reinhardtii where field isolates exhibiting
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substantial genetic variation relative to the reference genome
were studied. The callable rate was variable between different
classes of genomic sites (supplementary fig. S1d,
Supplementary Material online, KW test, v2

4 ¼ 7.2 � 106,
P< 2.2� 10�16) and was negatively correlated with the pro-
portion of repetitive sequence (Pearson’s product-moment
correlation, t3 ¼ �3.56, r ¼ �0.90, P¼ 3.8 � 10�2).

Based on the callable portion of the C. incerta genome
(�84 Mb), a total of 2,609 de novo mutations were found,
leading to an average mutation rate estimate per site per
generation of l� 15.10 � 10�10. There were 1,991 SNMs
(lSNM ¼ 11.56 � 10�10), 350 deletions (lDEL ¼ 2.03 �
10�10), and 268 insertions (lINS¼ 1.56� 10�10). These num-
bers are similar to those previously obtained in C. reinhardtii,
that is, Ness et al. (2015) estimated l ¼ 11.5� 10�10 (lSNM

¼ 9.63� 10�10, lINSþ lDEL¼ 1.90� 10�10), with an average
number of SNMs detected per line and generation similar to
the number in the present experiment (�9.72 � 10�2 in C.
incerta vs.�7.15� 10�2 in C. reinhardtii). The median lSNM

¼ 7.62 � 10�10 in C. incerta was also similar to that of C.
reinhardtii (lSNM ¼ 5.27 � 10�10) and fell within the range
observed for C. reinhardtii strains (Ness et al. 2015). In con-
trast, the average number of insertion and deletion variants
(INDELs) per line and generation was higher in C. incerta (3.02
� 10�2 vs. 1.41 � 10�2), but this could be caused by differ-
ences in the callability of these variants (see below). No muta-
tions were found in the mitochondrial genome, presumably
because of its small size (�17.6 kb), and only two SNMs were
found in the plastid genome (lPLASTID¼ 5.4� 10�10), result-
ing in an estimate of the mutation rate that is similar to that
observed in C. reinhardtii (lPLASTID¼ 7.7� 10�10). The plas-
tid genome mutation rate is similar to the nuclear genome
mutation rate in these species, a finding that contrasts with
land plants (Smith and Keeling 2015; Ness et al. 2016). We
restrict all further analyses to mutations found in the nuclear
genome. Supplementary table S1, Supplementary Material
online contains a list of all SNMs and INDELs found.

Although the C. incerta MA lines were derived from a
single ancestral strain, the mutation rate was highly variable
among lines, ranging over more than two orders of magni-
tude, between l ¼ 0.35� 10�10 in line 3 with only 3 SNMs,
to l ¼ 131.7� 10�10 in line 27 with 829 SNMs (fig. 1A). The
distribution of the mutation rate among MA lines was highly
leptokurtic (supplementary fig. S2a, Supplementary Material
online), fitting better a lognormal distribution (meanlog ¼
�3.01, sdlog ¼ 1.15, Kolmogorov–Smirnov test, KS test,
D¼ 0.14, P¼ 0.60) than any other distribution tested, includ-
ing an exponential or gamma distribution. High variability
among lines derived from the same genetic background
was also observed in C. reinhardtii (Ness et al. 2015, see sup-
plementary fig. S2b, Supplementary Material online), and the
distribution of mutation rates in MA lines derived from C.
reinhardtii strains CC-2344 and CC-2931 resembles that of C.
incerta (KS test, D< 0.4, P> 0.07, supplementary fig. S2b,
Supplementary Material online). After excluding hypermu-
tant line 27, the variance in the number of mutations be-
tween lines of C. incerta, assuming an equal number of
generations between MA lines, was still substantial (r2

l ¼

1070.03). This variation is approximately 22-fold higher than
that expected from a Poisson distribution (k ¼ 48.44, KS test,
D¼ 0.38, P¼ 1.45 � 10�3), a distribution that is commonly
assumed to represent the mutation processes (Charlesworth
2012). We also compared the observed distribution of muta-
tion rates among MA lines with that obtained from computer
simulations in which mutations arose independently, using
the software SLiM (Haller and Messer 2019). The variance in
the number of mutations among simulated lines was much
closer to the Poisson expectation (median variance over rep-
licates¼ 75.05, 95% CI¼ 39.87–128.04) than to the observed
variance among the MA lines. High mutation rate variability
between lines derived from the same ancestor genotype has
been observed in other species (Dumont 2019; Ho et al. 2020)
and supports the idea that substantial variability of the mu-
tation rate may be common. Additional results and discus-
sion on mutation rate variability and the hypermutant line 27
can be found in supplementary file S1, Supplementary
Material online.

The mutation rate also varied significantly between contigs
(KW test, v2

115¼ 158.86, P¼ 4.24� 10�3) and was generally
higher and more variable in shorter contigs (Pearson’s
product-moment correlation, t108 ¼ �2.59, r ¼ �0.24,
P¼ 0.01, supplementary fig. S3a, Supplementary Material on-
line). Interestingly, the mutation rate also varied between
gene-related features (KW test, v2

4 ¼ 49.54 � 106, P¼ 4.50
� 10�10). For example, the mutation rate was 40–50% higher
in untranslated regions (UTRs) and intergenic regions than in
coding regions, whereas intronic sequences had an interme-
diate rate (supplementary fig. S3b, Supplementary Material
online). In principle, a lower number of mutations in coding
sequences could be due to selection during the transfer of
colonies from one plate to another. However, the estimate of
Ka/Ks in coding sequences was 0.84 (Fisher’s exact test,
P¼ 0.07), suggesting that little selection occurred, and that
other genomic factors were therefore responsible for the var-
iation in the mutation rate between genomic features. One
possibility is that the DNA repair machinery is more efficient
at preventing mutations in coding regions compared with
intergenic sequences, as previously demonstrated in
Escherichia coli and Arabidopsis thaliana MA lines that were
mutant for mismatch repair proteins (Lee et al. 2012; Foster et
al. 2015; Belfield et al. 2018). Higher mutation rates in UTRs
were also observed in C. reinhardtii, although the intergenic
mutation rate was not higher than that of coding sequence
(supplementary fig. S4, Supplementary Material online). The
two species have very similar amounts of annotated coding
(39.5 Mb C. incerta, 37.7 Mb C. reinhardtii) and UTR (4.0,
3.9 Mb, respectively) sequence, and the �18 Mb greater as-
sembly size of C. incerta is largely associated with a relative
increase in repetitive intergenic sequence (Craig et al. 2021).
This may suggest that genome organization plays a role in the
observed difference in intergenic mutation rates between the
species, although we cannot exclude alternative explanations
(e.g., differences in callable rates or annotation quality).
Nonetheless, the common pattern observed for coding
regions and UTRs supports the existence of a bias toward
low mutation rate at coding regions in Chlorophyta, since
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similar results were observed in other algal species (Krasovec
et al. 2017).

The distribution of inter-mutation distance (IMD) differed
significantly from the distribution expected if SNMs occurred
at random genomic positions (KS test, D¼ 0.11, P< 2.2 �
10�10). This was due to an over-representation of mutation
pairs separated by less than 10 bp (supplementary fig. S5a,
Supplementary Material online). Among these mutations, 17
SNM pairs out of 27 (63%) occurred at adjacent sites. The
most highly represented dinucleotide mutation was CC
(35%), which always mutated to AA, TA, or TT. C!A muta-
tions were nearly 2-fold more frequent when compared with
other SNM types at dinuleotide mutation sites, after correct-
ing for GC content (supplementary fig. S5b, Supplementary
Material online). Differences from random expectation in the
number of mutations in genomic segments of different
lengths (1, 10, 100, or 500 kb) were nonsignificant (KS test,
D< 0.08, P> 0.1). These results are also in broad agreement
with previous findings in C. reinhardtii (Ness et al. 2015), in-
dicating not only that mutation rates are similar between C.
incerta and C. reinhardtii, but that mutations are similarly
distributed across the genome.

INDELs and Structural Variants
Three different software packages were used to detect short
INDELs and structural variants: Freebayes (Garrison and
Marth 2012), GATK (Van der Auwera et al. 2013), and
Pindel (Ye et al. 2009). In contrast to SNMs, many of the
INDELs and structural variants detected could not be con-
firmed by visualization in IGV (Thorvaldsd�ottir et al. 2013), or
the visualized variants did not exactly correspond with the
calls in the VCF files. Therefore, to minimize the number of
false positives, INDELs, and structural variants were manually
curated following visualization by IGV. On this basis, approx-
imately 56% of deletions and 10% of insertions detected by
Pindel were rejected, whereas only 6% and 14% of the dele-
tions and insertions called by GATK were excluded. Only 1%

of deletions found by Freebayes were rejected. In general,
most INDELs were found using GATK, followed by Pindel
and Freebayes (supplementary fig. S6, Supplementary
Material online). A false-positive rate in C. reinhardtii was
estimated from our previous data (Ness et al. 2015) as the
percentage of mutations originally called in a line but not
verifiable in a visible inspection prior to genotyping them in
recombinant lines (Böndel et al 2019). This rate suggested
more false positives for INDELs (7.7%) than SNMs (2.3%),
and it is expected to be of the same magnitude in C. incerta,
given the similar approach used for sequencing, alignment,
and calling.

After filtering, deletions were significantly more frequently
retained than insertions (v2

1 ¼ 10.84, P< 0.001), and the
estimated mutation rates were lDEL ¼ 2.03 � 10�10 for
deletions and lINS ¼ 1.56 � 10�10 for insertions. However,
it should be noted that the short-read sequencing used here
makes deletions of all sizes easier to detect than insertions.
The INDEL mutation rate was higher in C. incerta than in C.
reinhardtii (lDEL ¼ 1.03 � 10�10, lINS ¼ 0.87 � 10�10, Ness
et al. 2015), even when variants only called by GATK were
considered (lDEL¼ 1.58� 10�10, lINS¼ 1.40� 10�10). This
was the only variant caller used to analyze the C. reinhardtii
data.

The numbers of deletions and insertions were highly var-
iable among MA lines, but were strongly positively correlated
with the number of SNMs (Pearson’s product-moment cor-
relation, t24 > 18, rSNM-DEL ¼ 0.97, rSNM-INS ¼ 0.99, P< 1 �
10�15; fig. 1B and C and supplementary fig. S7a,
Supplementary Material online), even after excluding the
hypermutant line (t23 > 5, rSNM-DEL ¼ 0.72, rSNM-INS ¼ 0.78,
P< 1 � 10�4). This suggests that the mechanisms responsi-
ble for the occurrence of SNMs and INDELs are related.
Deletions were generally larger than insertions (Wilcoxon
rank-sum test, W¼ 58,003, P¼ 1.49 � 10�8, supplementary
fig. S7b, Supplementary Material online), that is the median
length was 1 bp for insertions and 2 bp for deletions, although

FIG. 1. (A) Mutation rate (l) estimates for SNMs in the C. incerta MA lines. Lines are sorted from lowest (left, l¼ 0.04� 10�9) to highest l (right,
l¼ 13.2� 10�9). (B and C) Correlation between lSNM and lINDEL (on log10 scale) for deletions (B, in red) and insertions (C, in blue). The dashed
lines show linear regression lines for lSNM as a function of lINDEL. Note the squared correlation coefficient is lower than that mentioned in the main
text, because of the use here of a logarithmic scale.
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larger deletions were also detected. There were 47 deletions
longer than 100 bp (l ¼ 2.15� 10�11), and 8 of them were
longer than 10 kb (l ¼ 3.66 � 10�12). Short INDELs
(<50 bp) were slightly shorter than in C. reinhardtii, that is
mean lengths were 3.6 bp for deletions and 2.3 bp for inser-
tions (vs. 7.9 bp for deletions and for insertions 5.9 bp in C.
reinhardtii). In addition to INDELs, five large inversions were
found by Pindel (lINV¼ 2.2� 10�12), with sizes ranging from
�700 to�3,700 bp. No insertions or tandem repeat variants
larger than 50 bp were found. As mentioned above, INDEL
detection was more challenging that detection of SNM var-
iants, so only SNMs will be considered for further analyses,
unless otherwise stated.

Factors Influencing Mutability
To examine the genomic factors associated with mutability,
we employed a regularized logistic regression model to pre-
dict mutated sites from their genomic properties. The use of a
regularized regression algorithm reduces the effect of corre-
lation between the multiple predictor variables fitted in the
model. For both C. incerta and C. reinhardtii, a training set
composed of all identified SNMs along with a random sample
of 105 nonmutated callable sites was used for fitting the
model. To test how well the model predicted mutability, a
test set containing all SNMs and a larger set of 106 randomly
selected callable sites was used. A cross-validation scheme
between species was implemented by running the model
fitted to one species in order to predict mutability in the
other. The predictive mutability model always returned sta-
tistically significant results, including for the crossed-
predictions (P< 1 � 10�3). There was also a strong linear
relationship between the predicted and the observed muta-
bility, which was higher within species than between species
(fig. 2). The correlation between the regression coefficient
estimates in the two species was significantly positive
(Pearson’s product-moment correlation, t141 ¼ 5.77,
r¼ 0.44, P¼ 4.86 � 10�8), and six out of the ten most im-
portant genomic factors associated with mutability were
shared by C. incerta and C. reinhardtii (fig. 3).
Supplementary figure S8, Supplementary Material online
shows the ten most important predictors for C. incerta and
C. reinhardtii, and a complete list including all raw regression
coefficient estimates is given in supplementary table S2,
Supplementary Material online. These results indicate that
the mechanisms associated with mutation in the two species
are highly related.

Remarkably, the trinucleotides CTC and CAC (where the
underlined C represents the mutated site) had a similar effect
on mutability in the two species. The CTC trinucleotide was
the single most important factor in C. reinhardtii, and its high
mutability has been previously reported in this species (Ness
et al. 2015), as well as in other phylogenetic groups, including
fungi (Zhu et al. 2014) and animals (Alexandrov et al. 2013).
This finding highlights the importance of sequence context
variation for variation in mutability (Ling et al. 2020), which is
supported by the large amount of variation in the effect of
different triplet sequences on mutability (supplementary ta-
ble S2, Supplementary Material online). For example,

regarding the upstream context of C nucleotides, there
were regression coefficients both positively and negatively
associated with mutability in C. incerta (fig. 4A). In C. rein-
hardtii, most coefficient estimates related to sequence con-
text were close to zero (supplementary fig. S9a,
Supplementary Material online), probably due to differences
in the penalty term of the regularized regression model in the
two species. However, the observed proportion of SNMs in
different sequence contexts (fig. 5) was highly variable in the
two species, and strongly correlated between them (Pearson’s
product-moment correlation, t93 ¼ 13.14, r¼ 0.81,
P< 10�15).

GC content is the variable most commonly used to reduce
local genomic information into a single value, since it is typ-
ically correlated with important biological features, including
the mutation rate (Krasovec et al. 2017). Here, we explored
the role of two additional parameters in relation to mutation,
the local Shannon Entropy (E) and sequence linguistic com-
plexity (L), both of which provide insight into the amount of
noncompressible information contained in DNA sequences
(Schneider 2000; Vinga 2014). In simple terms, E measures
nucleotide repetitiveness (it is maximal when all nucleotides
have equal frequencies, p¼ 0.25, and minimal when p¼ 1 for
one nucleotide), whereas L measures sequence repetitiveness
(it is maximal in regions where all possible different sequences
of a given length or range of lengths are represented). We also
quantified GC content and variation in GC, E and L within
genomic windows (named DGC, DE, and DL, respectively).
Thus, although GC measures the mean GC content within a
genomic window, DGC measures the extent of GC variation
within that window. Most genomic regions are characterized
by having high L and low DL, DE, and DGC. Conversely, mu-
tated sites were usually located in regions with low L, high DL,
DE, and DGC, or in regions with unusually high or low values
of E or GC (fig. 4B and supplementary fig. S9b, Supplementary
Material online). This agrees with previous results suggesting
that deviations in GC content from the genomic equilibrium
lead to increased mutability (Krasovec et al. 2019).
Interestingly, predictors related to nucleotide and sequence
complexity showed a stronger association with mutability
than GC content in both species (fig. 3 and supplementary
table S2, Supplementary Material online). For example, DL in
small windows (�20 bp) showed the strongest association
with mutability in C. incerta, and E and L were generally
more informative about mutability than measures based on
GC in both species (supplementary fig. S8 and table S2,
Supplementary Material online). Exceptionally, in C. reinhard-
tii GC content at a mutated site showed a strong association
with mutability, probably related to the hypermutability of
CTC and CAC trinucleotides, and to the higher probability of
mutation at G:C sites than at A:T sites in this species (see
below).

In view of previous results on the importance of nucleotide
and sequence complexity measures for predicting mutability,
we also estimated the correlation between the mutation rate
and distance from repetitive sequence regions annotated as
low complexity regions and microsatellites. However, corre-
lations were nonsignificant for both low complexity regions
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(Pearson’s product-moment correlation, t361177¼ �0.34, r¼
�5.68 � 10�4, P¼ 0.73) and microsatellites (t20111 ¼ 0.30,
r¼ 2.14 � 10�3, P¼ 0.76). It should be noted that our an-
notation of repetitive sequences did not include large satellite
DNA, because these regions are not expected to be callable.

To further explore repetitive patterns that could help to
explain the higher mutability of genomic regions of low lin-
guistic complexity, we expanded our analysis to include alter-
nate DNA conformations, which are usually characterized by
repetitive sequences. This analysis was done using NeSSie
(Berselli et al. 2018) and QPARSE (Berselli et al. 2020) to detect
the absence/presence of potential motifs for DNA triplexes,
G-quadruplexes, mirrors, and palindromes. When considering
small genomic windows of 10 bp extending either side of a
mutated or a randomly sampled site, the proportion of ge-
nomic regions containing potential DNA triplex motifs was
approximately 4-fold higher in regions containing a mutated
site than other genomic regions (KW test, v2

1 ¼ 30.76,
P¼ 2.92� 10�8, fig. 6). Sequence mirrors, potentially associ-
ated with DNA hairpins (Gajarsk�y et al. 2017), were also more
frequently found near mutated sites (KW test, v2

1 ¼ 7.95,
P¼ 4.8 � 10�3), whereas palindromes were slightly under-
represented (KW test, v2

1 ¼ 4.51, P¼ 0.03). When analyzing
genomic windows longer than 20 bp (0.2 and 2 Kb), no sig-
nificant enrichment was found for any of the DNA sequence
motifs considered (supplementary fig. S10, Supplementary

Material online). Thus, it is possible that mutability is influ-
enced by close proximity to DNA motifs that lead to alternate
conformations such as DNA triplexes or hairpins. The bioin-
formatic analysis presented here, however, assumed that
these motifs are truly indicative of the presence of DNA sec-
ondary structure in C. incerta, but there is no experimental
confirmation, and therefore results should be interpreted
with caution. More studies addressing sequence complexity
and DNA secondary structure are needed, particularly in the
context of de novo mutation.

SNM Spectrum
The SNM spectrum departed from the expectation of equally
frequent SNM types, after correction for the genomic mean
GC content of 66% (v2

5 ¼ 1,124.9, P< 2.2 � 10�16).
Specifically, transition point mutations were much more fre-
quent than transversions, and C!T transitions were 2.35
times more frequent than the random expectation, and twice
as frequent as A!G transitions (fig. 7A). Overall, C!T muta-
tions represented nearly 52% of all SNMs. A similar pattern
was observed by Ness et al. (2015) in C. reinhardtii. However,
whereas transitions were the most frequent mutation type in
C. incerta, C sites had a higher mutability in C. reinhardtii (i.e.,
C!A transversions were more frequent than A!G transi-
tions), mainly due to the hypermutability of the trinucleotide

FIG. 2. Correspondence of predicted and observed mutability within and across the Chlamydomonas incerta and Chlamydomonas reinhardtii
genomes. Predicted mutability (Pl) was obtained for the C. incerta and C. reinhardtii validation data (top and bottom plots, respectively) using
models trained with either C. incerta or C. reinhardtii data (left and right plots, respectively). Genomic regions were binned in groups with the same
Pl value (rounded to 1 decimal place) and its value was compared with the observed mutation rate (l) of the same sites. Vertical bars show 95%
confidence intervals of Pl values obtained over ten replicates using different training data sets. Red dashed lines show the linear fit of the
predictions, weighted by the number of sites in each bin (larger points indicate more observations). All fits were significant (P< 10�3), with
coefficients of determination (r2) shown in the figure.
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CTC. Consequently, the mutation spectrum of the two spe-
cies is qualitatively different (fig. 7B).

As previously done for mutability, a regularized predictive
model was run to determine the genomic factors that explain
the occurrence of different types of SNMs. Thus, the data set
only included observations at SNM sites, and the response
variable was first defined as the SNM type, a multinomial
variable with six levels, one per type of SNM (A!C, A!G,
A!T, C!A, C!G, and C!T). Models tested included reg-
ularized multinomial regression and classification machine
learning algorithms, such as neural networks and random
forests (details on the tuning of the different models used
are given in Materials and Methods). A random sample of
75% SNMs was used for training and the remaining 25% for
testing, so that accuracy could be measured as the proportion
of SNM types correctly classified in the test set, relative to the
total number of observations. A cross-validation scheme be-
tween species was also included. For both species, however, all
classification models considered produced low (<33%) and
nonsignificant accuracy values. Alternatively, when the re-
sponse variable was set as a binomial variable indicating
whether or not an SNM was of type C!T, accuracy increased
to values close to 65% both in C. incerta (exact binomial test,
EB test, P< 1.6 � 10�3) and in C. reinhardtii (EB test,
P¼ 0.02). Accuracy was always nonsignificant for predictions
across species, and the most important predictors

determining the occurrence of C!T mutations were differ-
ent for each species (supplementary fig. S11 and table S3,
Supplementary Material online). This indicates that the
C!T bias is either associated with different factors in each
species, the relative importance of the factors analyzed differ
between the two species, or the most important explanatory
variables regarding C!T prediction were not included in our
model.

Discussion
We have conducted a comparative study of mutability in
Chlamydomonas green algae using WGS data from an MA
experiment in C. incerta and from an experiment previously
carried out in C. reinhardtii (Ness et al. 2015). Given their
relatively large genomes (111–129 Mb) and their short gen-
eration intervals, these unicellular species represent excellent
models for investigating the nature of de novo mutations,
since large numbers of mutations can be accumulated in a
short time (�0.097 SNMs per line per generation), allowing
the factors associated with the properties of new mutations
to be investigated. Our analyses revealed that the mutation
rate, the spatial distribution of mutations across the genome,
and the genomic factors associated with mutability were sim-
ilar between the two species, whereas the SNM spectra dif-
fered and were nonpredictable across species. The mutation
rate was also found to be highly variable between lines de-
rived from the same ancestral strain in both species.

It is perhaps unsurprising that the median SNM rate esti-
mated in C. incerta (7.6 � 10�10) is similar to that observed
across strains of C. reinhardtii (5.3� 10�10, Ness et al. 2015),
since they are closely related and have similar genomic archi-
tectures and total lengths of coding sequence. Earlier esti-
mates of the mutation rate in C. reinhardtii were
substantially smaller, that is 2.1 � 10�10 (Ness et al. 2012)
and 0.7 � 10�10 (Sung, Ackerman, et al. 2012), but this dif-
ference could either be due to methodological differences in
mutation detection or to between-strain variation in the mu-
tation rate. Krasovec et al. (2017, 2018) estimated the muta-
tion rate in five more distantly related green algal species that
have much smaller genomes (in the range 12–21 Mb) and
more variable GC contents (46–64%) than Chlamydomonas.
In these species, estimates were nonetheless of the same order
of magnitude as C. incerta and C. reinhardtii (3.02� 10�10�
lSNM � 9.19 � 10�10). Unfortunately, there are only two
known isolates of C. incerta and no genetic diversity data are
available for the species, so it is not currently possible to
estimate Ne for the species, which can be used to test the
“drift barrier” hypothesis (Sung, Ackerman, et al. 2012; Lynch
et al. 2016).

Not only was the mutation rate similar between the two
Chlamydomonas species, but also the genomic factors asso-
ciated with mutability. There was a high correlation between
the genomic predictors of mutability in the two species and
an accurate cross-prediction of mutability between the spe-
cies, suggesting that the modeled genomic factors were asso-
ciated with the mutation rate in the species’ common
ancestor. We found that sequence context and complexity

FIG. 3. Regression coefficient estimates obtained from the predictive
model of genomic mutability. Median estimates and 95% confidence
intervals are shown based on ten training set replicates of C. incerta
(dark bars) and C. reinhardtii (light bars). Only factors that were
common between the ten most important ones estimated in C.
incerta and C. reinhardtii are shown. The factors shown in the figure
are: Variation in sequence repetitiveness (DL2 and DL10, measured in
windows of 2 and 10 bp, respectively, extending downstream and
upstream), nucleotide repetitiveness (E100 and E1000, measured in
windows of 100 and 1,000 bp, respectively, extending downstream
and upstream), and trinucleotides CTC and CAC (where the under-
lined C is the reference site containing the mutation). Factors are
sorted by their median effect sizes estimated in C. incerta. All predic-
tors were standardized prior to regression, so their effect sizes are
comparable.
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were the most important factors associated with mutability
in Chlamydomonas. The mutation rate varied substantially
among different trinucleotide sequence contexts (fig. 5) and

was especially high in the CTC and CAC contexts. Variation in
sequence editing proteins with context-dependent activity,
such as the APOBEC family of cytidine deaminases (Sanju�an

FIG. 5. Percentage of different types of SNM by upstream genomic context, defined as 2 bp upstream from a reference A or C site. Bars are colored
by nucleotide composition at the reference site (A/T: blue, C/G: red). For each bar the different types of SNM are further colored in light (A!C and
C!A), intermediate (A!G and C!G) or dark (A!T and C!T) colors. Sequence context is sorted on the x-axis by mutation frequency in C.
incerta.

FIG. 4. Relationships between sequence context, base composition, sequence complexity, and mutability in C. incerta. (A) Regression coefficient
estimates for the 16 possible dinucleotides upstream of reference C sites. (B) Relationship between scaled mean nucleotide repetitiveness (E), GC
content (GC), and sequence repetitiveness (L), measured in genomic windows of 2 Kb. (C) Relationship between the scaled variation in nucleotide
repetitiveness (DE), variation in GC content (DGC), and variation in sequence repetitiveness (DL), measured in a genomic windows of 20 bp. Note
that standard deviations are used as the unit of measurement for the genomic parameters in plots (B) and (C). Only genomic sections where l> 0
are shown in (B) and (C).
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and Domingo-Calap 2016), could explain the strong associa-
tion of particular sequence contexts with mutability. For ex-
ample, APOBEC3 is known to introduce C!T mutations and
shows affinity for TC and CC substrates (Refsland and Harris
2013; Roberts et al. 2013). However, the true nature of the
hypermutability of CTC and CAC contexts in
Chlamydomonas remains unknown. Regarding measures of
nucleotide and sequence complexity, these factors contrib-
uted more to the prediction of mutability than measures
based on GC content alone (fig. 4 and supplementary fig.
S9 and table S2, Supplementary Material online). The strong
association between complexity-related measures and muta-
bility might arise from the higher level of sequence informa-
tion they provide compared with GC content. For example,
nucleotide complexity (i.e., sequence entropy) is more sensi-
tive to differences in the arrangement of nucleotides than GC
content, and variation in complexity within genome sequen-
ces can be used to predict the presence of repetitive

sequences (Thanos et al. 2018). Linguistic sequence complex-
ity might be associated with nonstandard DNA conforma-
tions, which usually involve some degree of repetitiveness
(Wells 1988; Bacolla and Wells 2004). High mutagenicity for
secondary structure-forming sequences might then explain
the association between low complexity sequences and mu-
tability, for example via double-strand breaks (DSBs) or inter-
ference with the DNA repair machinery. This association has
been described for Z-DNA, which is associated with DSBs and
mutation in humans and yeast (McKinney et al. 2020), and
whose presence seems to be associated with alternate purine-
pyrimidine repeats. Although it is clear that higher-order pat-
terns within sequences strongly influence stability and muta-
tion rates, the causal mechanisms remain to be determined.

In spite of the close phylogenetic relationship between C.
reinhardtii and C. incerta, and the aforementioned similarities
of their mutation rates and associated genomic factors, the
SNM spectra of the two species showed substantial differ-
ences. Only a high C!T bias was in common between the
two SNM spectra, but this bias is nearly universal, since it has
been found both in prokaryote and eukaryote organisms
(Hershberg and Petrov 2010; Ossowski et al. 2010; Farlow et
al. 2015; Krasovec et al. 2019). More generally, transitions are
the most common SNM type in C. incerta, whereas in C.
reinhardtii SNMs at C sites represent the most common
type of SNMs. Although differences in the SNM spectra
may evolve as a consequence of environmental change (Liu
and Zhang 2019), we do not expect this to be the case here,
since C. incerta and C. reinhardtii experiments were per-
formed at the same time, under the same environmental
conditions, and we have no evidence on these conditions
being more stressful for one species than the other. In an
evolutionary context, similar mutation rates, but different
SNM spectra, have been observed in other taxa, such as in
the yeast species S. cerevisiae and S. pombe (Farlow et al.
2015), and in diverse green algal species (Krasovec et al.
2017). However, previous studies have involved species that
are phylogenetically more distantly related than C. incerta is
to C. reinhardtii. Thus, our results highlight that the SNM

FIG. 7. Spectrum of SNMs. (A) SNM spectrum for C. incerta. The height of the bars represents the deviation of the observed value from the
expectation for all SNMs being equally frequent, after correcting for GC content (mean GC¼ 66%). (B) SNM spectrum for C. incerta relative to C.
reinhardtii. The height of the bars is calculated using the observed/expected deviation calculated in (A) for C. incerta, divided by the same
measurement estimated for C. reinhardtii, using data from Ness et al. (2015). Light bars refer to mutations at A:T sites, whereas dark bars refer to C:G
sites.

FIG. 6. Percentage of genomic sites containing at least one of the
following features: mirror, palindrome, G-quadruplex, and triplex in
windows of 21 bp. Regions are grouped into those containing known
mutated sites, containing a total of 1,991 SNMs (in red), and 104

randomly sampled genomic locations (in blue). Significance is calcu-
lated using the Kruskal–Wallis test (*P< 0.05, **P< 0.01,
***P< 0.001). Confidence intervals (95%) are based on 1,000 boot-
strap samples.
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spectrum may be subject to evolutionary divergence between
closely related species, possibly contributing to the early dif-
ferentiation of genomic and biological characteristics.
Evolution of DNA repair machinery is likely to be related to
the evolution of the SNM spectrum, as suggested by evidence
from experiments in bacteria. For example, Dillon et al. (2017)
showed that the SNM spectra in wild-type Vibrio cholerae
and Vibrio fischeri strains are substantially different, but they
converge in strains mutant for the DNA mismatch repair
gene mutS. In E. coli, C!T mutations are the most common
SNM, but in mutL mutants A!G mutations are the most
abundant (Lee et al. 2012). Thus, it is possible that the differ-
ences between the C. incerta and C. reinhardtii SNM spectra
have evolved as a consequence of a small number of substi-
tutions in DNA repair genes, such as mutS homologs.
Orthologs of known DNA repair genes have experienced non-
synonymous substitutions between the species (up to a rate
of 2.4%, supplementary table S4, Supplementary Material on-
line), and it is possible that some of these amino acid changes
may contribute to SNM divergence in Chlamydomonas.
However, confirming the involvement of DNA repair machin-
ery divergence in shaping the SNM spectra would require
experimental validation, making use of strains mutant for
the DNA repair machinery.

The mutation rate and its spectrum are variable in nature
and probably respond to the same evolutionary forces, in-
cluding genetic drift and selection, as regular quantitative
traits (Lynch 2010). In particular, the evolution of mutational
properties is likely to be driven by the evolution of the DNA
repair machinery. Understanding the genetic architecture of
the mutation rate and the causes of its variation both at the
population and the genomic level is a fundamental problem
in evolutionary biology. Here, we have studied the determi-
nants of the mutation rate in Chlamydomonas, and charac-
terize differences in the SNM spectra of C. incerta and C.
reinhardtii. The two species’ genomes are highly syntenic,
but show an average synonymous divergence of �34%
(Craig et al. 2021), which means they are on a similar scale
of divergence as humans and rodents (Lindblad-Toh et al.
2011). We show that the mutation rate and its associated
genomic factors have been maintained in Chlamydomonas,
whereas the SNM spectra have substantially diverged, likely
contributing to the appearance of genomic differences be-
tween species. Thus, our results contribute to the under-
standing of the evolution of mutational properties in
closely related species. More work is needed, however, focus-
ing on the evolution of mutational properties in the context
of the evolution of the DNA repair machinery. Future re-
search shall also benefit from using additional sources of de
novo mutations, such as structural mutations, using recent
long-read technology.

Materials and Methods

MA Experiment and WGS
MA lines were initiated from the C. incerta strain SAG 7.73,
which was obtained from the SAG culture center (Germany).
During the MA experiment, cell suspensions were spread out

on Bold’s agar plates, and lines were bottlenecked regularly by
picking single colonies at random and transferring them from
one plate to another at intervals of 3–5 days for an average of
74 transfers. The effective population size was therefore
expected to be low, reducing the effectiveness of natural se-
lection. In order to calculate the number of generations that
occurred during the MA experiment, the generation times of
colonies growing over 3-, 4-, and 5-day periods were deter-
mined for two replicates of 14 of the MA line endpoints. Since
the generation time is expected to increase as mutations
accumulate, this procedure is likely to underestimate the
generation time over the whole course of MA. However,
the mean generation time of the MA lines was close to
that measured for five replicates of the ancestor (Wilcoxon
rank-sum test, W¼ 1,119, P¼ 0.71, supplementary fig. S12,
Supplementary Material online), and therefore we expect this
bias to be small. Liquid cultures were plated and colonies were
allowed to grow for 3, 4, or 5 days. The total number of col-
onies (N0) on each plate was counted, and then the plates
were flooded with medium in order to suspend the cells. Cell
suspensions were diluted and replated, incubated for 5 days,
and newly growing colonies counted. Then, the total colony
forming units (Nt) in the undiluted cell suspensions were
calculated. The number of generations (t) was computed as
t ¼ (log Nt—log N0)/log 2. Growth rate per day for each
transfer period was then used to compute the total number
of generations over the course of the entire MA experiment.
For MA lines that did not have direct measurement of growth
rate, the average rate of the other MA lines was used.
Additional details on the maintenance of the MA lines can
be found in Morgan et al. (2014).

A total of 27 lines were generated from the MA experi-
ment. DNA was extracted from frozen cells using the phenol-
chloroform protocol as described in Ness et al. (2012).
Sequencing followed Ness et al. (2015). Briefly, whole-
genome resequencing was performed at �25X coverage of
100 bp paired-end reads on the Illumina HiSeq 2500 platform
by BGI (China), using modified PCR conditions (Aird et al.
2011) to accommodate the high GC content (66%) of the C.
incerta genome.

Alignment and Variant Calling
We used the �129 Mb C. incerta reference genome of the
ancestral strain (SAG 7.73), which is a highly contiguous (con-
tig-level N50� 1.6 Mb) assembly based on Pacific Biosciences
sequencing (Craig et al. 2021). Plastid and mitochondrial
genomes were included in the alignment. The short reads
were aligned to the reference genome using BWA-MEM
v.0.7.17 (Li and Durbin 2009). The resultant BAM files were
sorted with SAMtools v.1.9 (Li et al. 2009; Li 2011) and further
processed using Picard tools v.2.21.1 (Broad Institute 2019).
The tool MarkDuplicates was used to tag duplicate reads, and
AddOrReplaceReadGroups was used to update the files’
metadata. After processing, the average coverage measured
with SAMtools was �21X.

To directly compare the mutations inferred in C. incerta
with those from C. reinhardtii, contigs with no evidence of
synteny between the two species were excluded. These
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represented approximately 9% of the C. incerta reference ge-
nome (Craig et al. 2021). Variant calling was first done using
GATK v4.1.4.0 (McKenna et al. 2010; Van der Auwera et al.
2013), but variants found by Freebayes 1.3.2 (Garrison and
Marth 2012) were also included. In GATK, the
HaplotypeCaller command was used to generate a genome
variant call format (GVCF) file for each line separately using
the optional parameter for a haploid genome (-ploidy 1), and
every genomic site was called, including nonvariant ones (-
ERC BP_RESOLUTION). GVCF files were merged using GATK
CombineGVCFs. The combined variant call format (VCF) file
was indexed with IndexFeatureFile, and variants were called
with GenotypeGVCFs (-ploidy, -all-sites). Freebayes was run
with ploidy set to 1 (-p 1), and invariant sites (–report-mono-
morphic) were included in the output. In addition to GATK
and Freebayes, Pindel v0.2.5b9 (Ye et al. 2009) was used to call
INDELS, including large insertions, and inversions and tandem
repeats. Pindel was configured using inserts sizes of 250, 500,
and 2,500 bp.

Mutations and Callable Sites
Candidate mutations were detected following a similar pro-
cedure as described by Ness et al. (2015), making use of a
custom Cython script and the cyvcf2 0.11.5 package
(Pedersen and Quinlan 2017) (see Data Availability). We sum-
marize the main steps for detecting SNMs and structural
variants below. Callable sites were required to have an MQ
of at least 50, a threshold chosen on the basis of the distri-
bution of its observed values. Similarly, a minimum value of
the Phred quality score (QUAL) of 100 was set for all nuclear
contig sites, but a lower threshold of 70 was set for the or-
ganelle genomes, based on their distribution of QUAL values.
The distribution of contig read depths (DP) did not show
clearly distinct peaks, and thus a minimum combined DP for
all lines was set to 167 for the nuclear contigs, which is one
standard deviation below their mean DP value. Similarly, this
threshold was set to a combined DP of 26,000 for the plastid
and 20,000 for the mitochondrial genome. In addition, only
callable sites marked as haploid and with Phred-scaled geno-
type quality (GQ) equal to its maximum value of 99 in at least
three lines were called. In order to compare the frequency of
callable sites between MA lines, a line-specific callable rate
was also estimated from a separate set of alignment files (one
per line) containing synthetic mutations at known sites
(Farlow et al. 2015; Keightley et al. 2015). These mutations
were distributed every 27 kb, and called as regular mutations
(see below), so a callable rate was estimated from the number
of mutations retrieved relative to the total number
introduced.

Since mutations are assumed to be extremely rare events,
variant sites were only considered as mutation candidates
when the alternate allele was present in only one line.
Candidate mutation sites were further required to have a
GQ of 99, be biallelic, have a minimum depth of six reads,
and with no more than one in six reads containing the ref-
erence allele. The alignment context was also taken into ac-
count, by removing candidate mutations that occurred no
farther than 10 base pairs from a site where at least 14 lines

contained more than 1 out of 6 reads with alternate alleles.
Mutation candidates were further validated by visualization
of snapshots generated using the batch mode of the
Integrative Genomics Viewer, IGV (Robinson et al. 2011;
Thorvaldsd�ottir et al. 2013).

For comparative analyses, a data set of callable sites from C.
reinhardtii was also used. This corresponded to the one used
by Ness et al. (2015), including genome-wide information for
reference and mutated alleles and their position, and included
more than 5,000 SNMs from approximately 95 Mb of callable
positions (combined over ancestral strains). Callable and mu-
tated sites were defined as above. Other parameters related to
sequence context and annotation of genomic features were
recalculated using the same tools and methods as used for C.
incerta (see below).

The Mutation Rate and Its Distribution
The mutation rate (l) was estimated as l¼ Nl/(Nc� Nlines
� t), where Nl is the number of mutations found, Nc the
length of callable genome (in base pairs), Nlines is the number
of MA lines, and t the number of generations. When l was
estimated for individual lines, contigs or genomic features, the
numerator and denominator were adjusted accordingly. The
distribution of SNMs among lines was fitted to parametric
distributions using the R package fitdistrplus 1.1-1
(Delignette-Muller and Dutang 2015). Normal, log-normal,
gamma, Poisson, and exponential distributions were tested,
and the one with the lowest value of the Akaike information
criterion was selected. The Poisson distribution was chosen as
a null hypothesis for the expected variance of the number of
mutations among lines (Charlesworth 2012). This variation
was also evaluated by simulating the MA experiment using
SLiM 3 (Haller and Messer 2019). The callable genome length
and mutation rate of C. incerta were calculated assuming a
haploid, neutral model with no recombination. A total of
1,000 replicates were simulated for the estimated average
number of generations of the experiment (788 generations).

MA line 2 was excluded when computing mutation rates,
as it was found to share an unusually high number of alter-
nate alleles with MA line 3 (75%, compared with the mean 1%
shared with the remaining lines), suggesting possible contam-
ination during the maintenance or sequencing of the lines. A
neighbor-joining dendrogram generated using vcf-kit phylo
(Cook and Andersen 2017) illustrates this genetic relationship
(supplementary fig. S13, Supplementary Material online).
Two SNMs found uniquely in MA line 2 were included for
all remaining analyses.

Counts of SNMs causing synonymous and nonsynony-
mous changes within coding sequences were used to esti-
mate the Ka/Ks ratio (Hurst 2002) and to test for the possible
existence of selection during the MA experiment. Since only
one or a few mutations are expected within each coding
sequence, all coding sequences with at least one SNM were
concatenated. The processing of the files was done using the
bedtools v2.29.2 intersect and getfasta utilities (Quinlan and
Hall 2010), and the Ka/Ks ratio was estimated with
KaKs_Calculator 2.0 (Wang et al. 2010). Amino acid mutation
effect types were also classified as low (synonymous),
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moderate (missense), or high (stop lost/gain) using SnpEff
4.3t (Cingolani et al. 2012), and their functional annotation
was obtained both with biomaRt 2.44.0 (Durinck et al. 2005,
2009) using the Phytozome database (Goodstein et al. 2012),
and BLAST (Boratyn et al. 2013) using the standard nucleo-
tide database.

The IMD was used as an indication of the level of clustering
of mutations. This parameter was estimated by measuring the
distance (in base pairs) between SNMs belonging to the same
contig, irrespective of the MA line carrying it. To determine
whether the observed IMD was distributed differently from a
random expectation, the IMD was also computed for the
same number of mutations, located at random callable sites.
This process was repeated for 1,000 iterations. Mutation clus-
tering was also measured by counting the number of SNMs in
genomic sections of 1, 10, 100, and 500 kb, and numbers were
compared with the expected number of mutations in these
sections, following the same procedure as described above.

Genomic Context
The genomic context of the mutations was explored in two
ways, first by means of parameters that collapse genomic
information into simple parameters and second by identify-
ing sequence motifs and features.

Local genomic information was first summarized by mea-
suring GC content, but other parameters such as Shannon
Entropy (E) and linguistic complexity (L) were also calculated
(Schneider 2000; Vinga 2014). These parameters were com-
puted in windows of 2, 10, 100, and 1,000 bp extending up-
stream and downstream from a mutation site, including the
mutation site. Genomic intervals and GC content were mea-
sured using the bedtools makewindows and nuc utilities. E
and L were measured using NeSSie (Berselli et al. 2018).
Variability in GC, E, and L, measured as the standard devia-
tions of these parameters within windows overlapping a given
position were also computed and then averaged for windows
of 5, 21, 201, and 2,001 bp (obtained as above).

Regarding sequence motifs, we considered the trinucleo-
tide context of every site. For a given site, three different
contexts were obtained: upstream, downstream, and sur-
rounding contexts, all based on trinucleotide sequences, in-
cluding the site whose context was extracted. For example,
taking the sequence AGATA, where the middle and under-
lined A is the reference site whose context is of interest, three
different contexts are obtained: AGA (upstream context),
GAT (surrounding context), and ATA (downstream context).
In order to reduce the total number of possible context
sequences, trinucleotide context sequences were edited so
that the reference site was always either A or C. For example,
given the sequence TATCT, the surrounding context of the
underlined T, ATC, would we converted to GAT using the
reverse complement. The upstream and downstream con-
texts were also deduced using the reverse complementary
sequence, but including a swap between these contexts, for
example the upstream context TAT would be considered as
downstream context using the reverse complement: ATA.

In addition, annotations for different genomic features
were used to provide genomic context. Gene annotations

for C. incerta were obtained from Craig et al. (2021) and
the C. reinhardtii v5.6 annotation (Merchant et al. 2007)
was obtained from Phytozome. We limited the analyses to
coding sequences, introns, UTRs, and intergenic regions.
When features overlapped, coding sequences took prece-
dence over other site classes, followed by 50 and 30UTRs,
and finally introns. Repetitive sequences were identified by
providing RepeatMasker v4.0.3 (Smit et al. 2013–2015) with a
custom repeat library containing manually curated transpos-
able elements (TEs) from C. reinhardtii, C. incerta,
Chlamydomonas schloesseri, Edaphochlamys debaryana, and
Volvox carteri (see Craig et al. [2021]). Repeats were classified
as TEs, low complexity regions (defined as single nucleotide
repeats), and microsatellites. TEs were further divided by class
(i.e., class I and II) and order/superfamily following Wicker et
al. (2007). Distance (in base pairs) was also calculated from
each genomic feature to the closest mutation site.

Modeling Mutability
Generalized linear models allow the estimation of the effects
of genomic factors on mutability based on data sets contain-
ing sites classified either as mutated or nonmutated. Here, we
used a regularized regression approach that introduced a pe-
nalization factor to constrain the magnitude of the coefficient
estimates, which reduces the correlation between the varia-
bles used as predictors in the model. A database was first built
for all callable genomic positions. Only presence/absence of
nuclear SNMs was evaluated as the response variable in the
model. As predictor variables, we included variables related to
genomic context, including GC, E, and L content in different
genomic window sizes, trinucleotide motifs, genomic features,
and distances, as detailed above. Positions where any of these
variables were missing were removed from the data set, along
with near-zero variance predictors. All factors were converted
into dummy numerical variables, centered, and scaled so that
a unit change corresponded to a change of one standard
deviation. Given the large number of parameters, and the
likely correlation among them, a logistic regression model
was run via penalized maximum likelihood making use of
elastic net regularization using the glmnet R package 4.0-2
(Friedman et al. 2010). This allows first for optimizing penal-
ization factors using a 10-fold cross-validation method, where
75% of data are used for training and 25% for validation. The
generalized model was then run in a similar fashion as de-
scribed in Ness et al. (2015), using a training set composed of
all the detected mutations and 105 random nonmutated
sites. The performance of the model was tested against a
larger data set containing all mutated sites and 106 nonmu-
tated random callable positions. In addition, fits and predic-
tions were run ten times, using independent training and test
sets, including model prediction across species (see below).
Confidence intervals were built for the predicted response
and regression coefficient estimates based on their variation
over replicates.

A second set of models was fitted in order to model the
occurrence of the six different types of SNM (A!C, A!G,
A!T, C!A, C!G, and C!T). The data set used here was
obtained from the previous one with the following changes.
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First, only mutation sites were considered in the data set.
Variables related to GC content were excluded, and those
related to trinucleotide context were edited so that the mu-
tated site was excluded from them. The data set was split in
two, one for training containing 75% of the observations, and
an independent data set with the remaining 25% for testing.
Given the multinomial nature of the response variable, we
trained different classification and regression models using
the caret package v6.0-86 (Kuhn 2020), including penalized
regression as described above (glmnet), but also including
machine learning methods based on regularized random for-
ests and neural networks (nnet). Since the different SNM
types were unevenly represented in our data set (e.g., C!T
mutations were largely over-represented), different strategies
to correct data imbalance were considered, including random
down-sampling and up-sampling, and the synthetic minority
over-sampling technique, SMOTE (L�opez et al. 2013). In ad-
dition, a model was run where the response variable only had
two levels, C!T mutations (the most abundant SNM type),
and other SNM types grouped together. The same training
set was used in each case, by setting the same seed for sam-
pling random numbers. An R environment (version 3.6.1, R
Core Team 2020) was used for all statistical analyses, including
prediction of mutation properties. Predictive models were
also run on a genomic data set with C. reinhardtii data
from Ness et al. (2015), and cross predictions were performed
using one species’ data set for training, and the other’s for
testing (e.g., by fitting the model with C. incerta data and
making predictions on C. reinhardtii data).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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