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uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in
several cancer-related properties and its overexpression commonly correlates with poor
prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in
human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/
Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of
the most known cancer stem cells-associated genes and the EGFR while we observed
the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR
“rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to
demonstrate the involvement of uPARmRNA in tumor progression. Knocking out PLAUR,
uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a
significant percentage of cells acquiring a stem-like phenotype. In vivo experiments
demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained
stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR
gene was sufficient to restore the wild-type status validating the hypothesis that such a
region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR
region might be responsible for uPAR-dependent inhibition of EGFR expression.

Keywords: urokinase-type plasminogen activator receptor, CRISPR, miR146a, melanoma, colon cancer
INTRODUCTION

The urokinase plasminogen activator (uPA) receptor (uPAR) is a membrane receptor characterized
by three globular domains, involved in several typical cancer features such as survival, invasion and
migration, angiogenesis and intra-tumor recruitment of inflammatory cells (1–4). Commonly
identified as a biomarker in breast cancer, the Plasminogen Activation system is validated for
prognostic use in level-of-evidence-1 studies (5) and we recently identified uPAR as a potential
marker in the acquisition of BRAF-I resistance in V600E mutant melanoma cells (6). Indeed, while
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uPAR is only tethered to the cell membrane by a GPI-anchor,
lacking any intracellular domain, it is able to mediate
connections with many other receptor systems such as
receptor-tyrosine-kinases (EGFR, PDGFR), G-protein-coupled
receptors and formyl peptide receptor-type 1 (7), activating such
receptors even in absence of their specific ligand (8). In
particular, the Epidermal Growth Factor Receptor (EGFR) is a
fundamental partner of uPAR as it is able to transmit uPAR
signal through the ERK pathway, generating a dynamic complex
with the a5b1 integrin (9). Indeed, uPAR and EGFR are to date a
well-known couple, able to regulate cancer cell proliferation,
adhesion and migration (10). Recent studies also demonstrated
that high levels of such molecules are associated with drug
resistance in melanoma (6). Albeit this close association, little
evidence has been reported about the cross-talk regulation
although some studies demonstrated that uPAR may induce
EGFR expression (11, 12). To better understand this mechanism,
we exploited in the present study two melanoma cell lines,
genetically identical but expressing different levels of uPAR
and EGFR (6). Many studies, including our own, had focused
on the features and the behavior of cancer cells after uPAR
cleavage or downregulation, both in vitro and in vivo, using anti-
uPAR oligodeoxynucleotide (ODN) (13, 14) and miRNA (15),
exploiting uPAR inactivation specific cleavage systems such as
MMP-12 (16), or inhibiting its interaction with the complex
“uPAR interactome” by a specific uncoupler peptide (17). In one
of our previous studies, we decided to exploit the CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats)/
Cas9 technique to establish two melanoma and one colon
carcinoma cell lines with a complete uPAR KO (18), to better
understand its role in tumor progression, examining the typical
cancer hallmarks. This wide-spreading technology, based on a
naturally-occurring system that protects bacteria from phages
infections (19), is particularly useful being uPAR commonly
modulated by many extracellular factors such as hypoxia,
cytokines and transcription factors such as NF-kB and TCF/
LEF (20) but also by cell-cell contact (21). Indeed, several
inhibitors including small molecules, peptides and monoclonal
antibodies, have been developed to block and inhibit uPAR
function to study in deep how it might influence cancer
progression. Moreover, other kinds of molecules were also
established to inhibit its interaction with the integrins, the
receptor-tyrosine-kinases and uPA. However, none of them
have found application in clinical practice due to the poor
affinity and bioavailability limit of such molecules. uPAR
knockout via CRISP/Cas9 has already demonstrated promising
results as its loss-of-function suppresses cell proliferation,
migration and invasion in oral, colon carcinoma and
neuroblastoma cell lines (22, 23). Being uPAR a master
regulator of cancer proliferation the unbalanced activation of
p38 and ERK due to the decreased activation of Akt might
explain the induction of uPAR KO to a G0 state and thus to the
incapacity to actively proliferate (18, 22). Moreover, uPAR loss
led to decreased resistance to 5-FU, cisplatin, docetaxel, and
doxorubicin demonstrating that it is also a major regulator of the
drug resistance phenomenon (23). We previously identified in
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uPAR KO cells signs of mitochondrial biogenesis dysregulation
and glycolysis inhibition paired with a more pronounced
oxidative phosphorylation (OXPHOS) phenotype (18) that
induced us to investigate if such features, commonly reported
associated with cell plasticity (24, 25), might be also correlated
with the presence of cancer stem cells (CSCs) markers. Indeed,
while uPAR overexpression was associated for a long time with a
stem-like phenotype (26, 27), it was also observed that its
expression is completely absent in CD33+ myeloid precursors
(high stem rank), CD14+ monocytic cells (a population that can
differentiate into a host of different cells) and in CD3+ T
lymphocytes and CD19+ B lymphocytes (28). Consequently,
uPAR expression resulted increased only after granulocyte-
colony-stimulating factor (G-CSF) treatment in CD33+ myeloid
and CD14+ monocytic cells, while mobilized CD34+
hematopoietic stem cells remained uPAR negative. Therefore,
uPAR plays a fundamental role as a differentiation antigen on
cells of the myelomonocytic lineage and as an activation factor for
monocytes and T lymphocytes (29). Such clues let us investigate
whether uPAR deprivation in solid tumors may trigger the
expression of Yamanaka’s factors (30), whose expression leads
to the formation of induced pluripotent stem cells (iPSCs), and the
appearance of stem-like surfacemarkers. As reported above, uPAR
lacks any intracellular domains, therefore its capability to
regulated several so different pathways might be hidden in its
transcript. Indeed, it was recently reported that PLAUR (uPAR
encoding gene) 3’UTR might act as a molecular sponge, attracting
and inhibiting many miRNAs. Through this complex mechanism
it was demonstrated that uPAR, in a 3’UTR-dependent manner,
may regulate several pro-tumoral factors, including Cathepsins
and MMP2, TfR1, vimentin, ICAM-1, IL-8 and HGF in an acute
leukemia cell model (31). In the present study we investigated all
these aspects in the obtained uPAR KO clones, demonstrating in
vitro and in vivo tumor growth inhibition coupled with
unexpected features, sometimes unrelated to what previously
reported by using short-term silencing methods, such as
appearance of stemness markers and loss of EGFR.

MATERIALS AND METHODS

Cell Lines
Human melanoma A375p (CRL1619) and colon cancer HCT 116
(CCL247) cell lines were obtained from American Type Culture
Collection while human melanoma cell line A375-M6 was isolated
from a lung metastasis of SCID bg/bg mice i.v. injected with
A375p (32) and validated through STR profile (BMR Genomics).
All the cell lines were grown in DMEM with 10% FBS (Euroclone,
Milano, Italy). uPAR KO and “rescue expression” cell clones were
the same obtained in our previous work and were characterized
and validated as previously described (18). Cells were tested every
two weeks for Mycoplasma by PCR using two universal primers
(MGSO and GPO1) (33).

Transfection and Plasmid
uPAR KO cells were obtained as previously reported (18).
Briefly, the plasmids (sc-400666-NIC) for CRISPR/Cas9,
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targeting PLAUR exon 3, were obtained from Santa Cruz
Biotechnology (Santa Cruz, California, USA) and transfected
according to the manufacturer’s instructions. sgRNA were
however subjected to off-target site analysis throughout the
Cas-OFF Finder software (http://www.rgenome.net/cas-
offinder/). No off-target sites, in the loci of the most likely off-
target activity of the CRISPR/Cas9 system targeted by the chosen
sgRNAs, could be detected. Cells were then sorted for GFP
marker and selected with 1 µg/ml puromycin for 2–3 weeks
(Sigma-Aldrich, Saint Louis, Missouri, USA), singularly
characterized using Western Blotting, qPCR and PCR on the
full-length mRNA. For the uPAR rescue expression experiment,
cells were stably transfected using an Okayama-Berg vector
containing uPAR cDNA (including its 3’UTR) and selected
with G418 as previously reported (34). The plasmid encoding
PLAUR 3’ UTR was kindly provided by Prof. Ragno Pia (31).

RNA Extraction and Quantitative PCR
Total RNA was prepared using Tri Reagent (Sigma-Aldrich),
agarose gel-checked for integrity, and reverse transcribed (from
500 ng to 1 µg measured through Thermo Fisher Scientific
NanoDropOne) with cDNA synthesis kit (BioRad, Milano,
Italy) according to the manufacturer’s instructions. Selected
genes were evaluated by Real-Time RT-PCR (qPCR) using
SsoAdvanced Universal Green Mix (BioRad) with BioRad
CFX96 qPCR System (BioRad) with the reported amplification
steps: polymerase activation 95°C for 3 min, denaturation 95°C
for 10 s and annealing/extension 60°C for 30 s (the last two steps
repeated for 40 cycles). Melt curve analysis was evaluated every
qPCR performed following the in-built Biorad CFX96 protocol.
Fold change was determined by the comparative Ct method
using b2-Microglobulin and 18S as normalization genes. Primer
sequences (IDT, TemaRicerca, Bologna, Italy) are reported in
Table 1.

miR146a Bioavailability Inhibition
miR146a activity was inhibited by using simultaneously two anti-
miR146a, targeting the 3p and the 5p (Thermo Fisher Scientific).
Such anti-miRNAs were transfected into the cell lines through
Lipofectamine 3000 (Thermo Fisher Scientific) according to the
manufacturer’s instruction. According to our optimized
conditions, a final concentration of 30 nM was enough to
Frontiers in Oncology | www.frontiersin.org 3
inhibit miR146a activity for at least 72 h. Higher concentrations
(a maximum of 100 nM was tested) did not exert better or long-
lasting effects.

Flow Cytometry Analysis
Cells were harvested with Accutase (Euroclone), washed once with
cold PBS and then stained with fluorochrome-conjugated mAbs
anti-CD44 (Immunotools GmbH, Germany), -CD133, -CD243
and -EGFR (eBioscience, Milano, Italy), and ALDH1 (Abcam,
Milano, Italy) for 1 h on ice in dark. Irrelevant fluorochrome-
conjugated IgG was used in all experiments as a negative control.
Cells were analyzed by flow cytometry BD-FACS Canto II coupled
with DivaSoftware (BD Biosciences, Milano, Italy) while statistical
analysis was supported by FlowJo software (LLC, BD Biosciences).

CellTrace CFSE Proliferation Assay
Cells were harvested with Accutase (Euroclone) and stained with
CellTrace CFSE (Thermo Fisher Scientific) according to the
manufacturer’s instruction. Cells were harvested 24 and 48 h
after the start of the experiment and compared with control (T0).
Cells were then fixed and analyzed by flow cytometer through
ModFitLT software (BD Biosciences).

Tumor Spheroid Formation
Tumor cell monolayers were harvested and 200 ml/well of cell
suspensions (0.5 × 104 cells per well) were dispensed into a 96-
well flat-bottomed plate pre-coated with 1.5% Agar as previously
described (35) using a multichannel pipette. Plates were
incubated for 4 days at 37°C, 5% CO2, 95% humidity. We
visually confirmed tumor spheroid formation and images were
taken at regular intervals. The radius of each spheroid was used
to calculate the volume (mm3): V = 4/3 p r3

In Vivo Tumor Proliferation
All in vivo procedures were approved by the ethical committee of
the Animal Welfare Office of the Italian Work Ministry and
conformed to the legal mandates and Italian guidelines for the
care and maintenance of laboratory animals (Auth. N° 401/2015-
PR). Six- to eight-week-old female NOD SCID (Charles River,
Lodi, Italy) were injected into the flanks with 1.0 × 106 cells (n = 5).
To determine tumor volume, the greatest longitudinal diameter
(length) and the greatest transverse diameter (width) were
TABLE 1 | List of all the primers used.

Gene Sense Antisense

B2M GCCGTGTGAACCATGTGACT GCTTACATGTCTCGATCCCACTT
18S CCAGTAAGTGCGGGTCATAAG GCCTCACATAA-CCATCCAATC
PLAUR GCCCAATCCTGGAGCTTGA TCCCCTTGCAGCTGTAACACT
3’UTR ACCTGAAATCCCCCTCTCTG CCACTGGTACAAAATCTTTATGTAAG
KLF-4 GCAGCCACCTGGCGAGTCTG CCGCCAGCGGTTATTCGGGG
Nanog ACCTTGGCTGCCGTCTCTGG AGCAAAGCCTCCCAATCCCAAACA
Oct3/4 TTTTGGTACCCCAGGCTATG GCAGGCACCTCAGTTTGAAT
SOX2 GAGCTTTGCAGGAAGTTTGC GCAAGAAGCCTCTCCTGAA
c-myc AATGAAAAGGCCCCAAGGTAGTTAT GTCGTTTCCGCAACAAGTCCTCTTC
MGSO TGCACCATCTGTCACTCTGTTAACCTC
GPO1 ACTCCTACGGGAGGCAGCAGTA
M
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determined with an external caliper. Tumor volume was calculated
by the following formula: tumor volume = length × width2 × 0.5.
Mice were monitored every two days and sacrificed before
showing evident physical signs of discomfort with an overdose
of isoflurane.

In Silico miRNAs Analysis
The analysis of all the possible miRNAs targeting the PLAUR
3’UTR region was retrieved by TargetScan software (36), which
predicts miRNA target genes by searching for the presence of six to
eight mer sites that match the seed region of a given miRNA and
make alignment to all mammals or vertebrates conserved sites.

In Vitro Limiting Dilution Assay
Control or uPAR KO cells were seeded into ultra-low attachment
96-well plate at different cell doses, with a maximum of 100 cells
per well and a minimum of one cell per well, and incubated in
DMEM/F12 supplemented with N2, 20 µg/ml insulin, 20 ng/ml
FGF-2, and 20 ng/ml EGF (provided by Thermo Fisher Scientific)
at 37°C. Colony formation was assessed by visual inspection. For
each dilution series, we counted wells that showed sphere
formation on day 11. Data were analyzed and displayed using
the Extreme limiting dilution assay (ELDA) software available at
http://bioinf.wehi.edu.au/software/elda/ (37).

Western Blot Analysis
Cells were lysed in RIPA buffer (Merck Millipore, Milano, Italy)
containing PMSF (Sigma-Aldrich), sodium orthovanadate
(Sigma-Aldrich), and protease inhibitor cocktail (Calbiochem,
San Diego, CA, USA), sonicated and centrifuged 15 min at
14,000 rpm at 4°C. 50 µg of protein, evaluated through the
BCA method, were separated on Bolt® Bis-Tris Plus gels, 4–
12% precast polyacrylamide gels (Thermo Fisher Scientific).
Fractionated proteins were transferred to a PVDF membrane
using the iBlot 2 System (Thermo Fisher Scientific). Following 1-
h blocking with Odyssey blocking buffer (Bioclass, Pistoia, Italy),
the membrane was probed overnight at 4°C with the respective
primary antibody. Primary antibodies used were: anti-Nanog
(1:500) provided by Genetex (CA, USA), anti-cMyc (1:1,000)
and anti-a-Tubulin (1:1,000) provided by Cell Signaling, anti-
EGFR (1:500) provided by Santa Cruz Biotechnology. Protein
bands were analyzed by Odyssey Infrared Imaging System (Licor
Bioscience) using ImageJ software (developed by Wayne
Rasband, National Institutes of Health, Bethesda, MD, USA)
for protein quantification.

Cell Viability Assay
Cell viability and death percentage were determined by flow
cytometer using Annexin V FITC-conjugated (Immunotools
GmbH, Germany) and PI (Sigma-Aldrich) according to the
manufacturer’s protocol. Briefly, cells were harvested with
Accutase (Eurolone), collected in flow cytometer tubes (1 × 105

cells/tube), washed once in PBS and incubated 15 min at 4°C in
dark with 100 µl Annexin Binding buffer (100 mM HEPES,
140 mM NaCl, 25 mM CaCl2, pH 7.4), 1 µl of 100 µg/ml PI
working solution, and 5 µl Annexin V FITC-conjugated. The
samples were then analyzed at BD FACSCanto II. Cellular
Frontiers in Oncology | www.frontiersin.org 4
distribution depending on Annexin V and/or PI positivity
allowed the measurement of the percentage of viable (Annexin
V and PI-negative cells) and death cells (Annexin V and/or PI
positive cells).

Statistics
Results are expressed as means ± SD. Multiple comparisons were
performed by the Student test or One-way ANOVA using
GraphPad Prism 6. Statistical significances were accepted at
p <0.05.
RESULTS

Loss of uPAR Causes Significant
Growth Inhibition
Starting from previous observations about the decreased
glycolytic capacity in absence of uPAR (18, 38), we focused on
the analysis of cell proliferation. To accomplish such aim, we
used previously obtained and selected individual clones (18),
after CRISPR-mediated uPAR KO, which were called A375 PL1
from A375p, M6 A5 from A375M6 (melanoma cell lines) and
HCT116 A3 from HCT116 (colon carcinoma cell line). Control
cells were instead obtained through transfection with a plasmid
containing a scramble sgRNA. Thus, we decided to generate
spheroids of uPAR KO and control cells, thereby testing in such a
way the tumor growth with a method that most closely mimics
the tumor growth in vivo. While M6 and HCT116 arrange
themselves in tight spheroids, A375p formed the so-called
“Loose Aggregate Spheroids” probably due to their melanocytic
origin, as they grow as a compact mass at the center with friable
aggregate cells all around (35). We monitored them for 14 days
and observed evident growth inhibition in all uPAR KO cells
(Figure 1A). We repeated the assay in 2D culture by counting
cells at 24 and 48 h, obtaining similar results (Figure 1B). We
further confirmed such data by determining the proliferation
index using CFSE labeling dye (Figure 1C). As shown in
Figure 1C, no evident changes occurred at 24 h for A375 PL1,
probably due to the latency phase of these cells, but at 48 hours
we observed a decreased proliferation index (the average number
of divisions that all responding cells have undergone since the
initiation of the culture). Although the demonstrated different
proliferation rates between control and uPAR KO cells, we did
not detect any significant change in cell viability (Supplementary
Figure 1).

In Vivo uPAR KO Growth Inhibition
To further confirm that loss of uPAR led to the inhibition of
tumor growth, we exploited “uPAR rescued expression” cell
lines, previously obtained (18), briefly forcing the re-expression
of uPAR by stably transfecting KO cells with a plasmid
containing the sequence of PLAUR gene. Thus, we inoculated
subcutaneously in NOD SCID mice, Control, uPAR KO and
“rescued expression” cells. As shown in Figure 2, after about 20–
25 days from the inoculation, Control and uPAR rescue groups
mice required sacrifice, due to excessive tumor dimensions, while
May 2021 | Volume 11 | Article 663225
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we demonstrated significant growth inhibition in M6 A5 and
HCT116 A3 and absolutely no growth in A375 PL1, confirming
in vivo what we previously observed in vitro.
uPAR Deficiency Induces the Acquisition
of a Stem-Like Profile
Given the low proliferation rate and our previous reported
evidence about the relationship between uPAR loss and the
acquisition of a more oxidative metabolic phenotype and the
dysregulated mitochondrial biogenesis (18), we decided to
investigate if such features might be correlated with a stem-like
phenotype of the uPAR KO cells, being such features commonly
associated to enhanced cell plasticity (24, 25). Even if a universal
marker for Cancer Stem Cells (CSCs) identification remains
undiscovered, CSCs often express distinctive markers like
CD133, CD44, ABCB1/5 (CD243), ALDH1 and many others,
though many of them are tissue- and tumor-related (39, 40). As
Frontiers in Oncology | www.frontiersin.org 5
shown in Figure 3A, by flow cytometer analysis, we observed
that uPAR KO cell lines, kept in standard culture media and
conditions, express stem cell markers, otherwise poorly or not
expressed at all in Control cells. Indeed, A375p PL1 and M6 A5
have an increased expression level of ALDH1 and CD133 while
HCT116 A3 upregulated CD44. Moreover, also CD243 is
expressed in all uPAR negative cells. ALDH1 is a common
well-known marker for many types of tumors (41), while
CD133 and CD44 are reported to be closely associated with
both melanoma and colon carcinoma (42–46). To further
analyze uPAR-mediated stem-like phenotype acquisition, we
performed a qPCR analysis for the Yamanaka’s factors (30)
and Nanog, one of the genes involved in the maintenance of
the stemness state (47, 48). As shown in Figure 3B while c-Myc
is substantially not expressed in all the three KO cell lines,
according to the observed slower proliferation rate (49, 50), all
the other stem markers are upregulated in M6 A5 and HCT116
A3 except SOX2 and Oct3/4 respectively. In A375 PL1 we
A B C

FIGURE 1 | (A) Agar-coated 96-well flat-bottomed plates were used to generate spheroids (a single spheroid per well). Starting from day 4 post generation, images
were obtained at intervals using an inverted microscope. The analysis was carried out using ImageJ software and growth curves were obtained (n = 60 spheroids/
timepoint; magnification 4×, bar 500 µm). (B) Cellular growth counting the total number of cells 24 and 48 h after the initiation of the culture. (n = 3). (C) Proliferation
Index: fold expansion during culture (ratio of final cell count to starting cell count) as defined in ModFitLT (n = 5). Values are mean ± SD *p <0.001 (Student’s Test).
FIGURE 2 | Tumor growth curves of A375 (left), M6 (center) and HCT116 (right); from tumors appearance, masses were measured every two days with a caliper.
Each point represents the mean tumor volume (± SD) of measurements from two tumors for every single mouse (n = 5). *p <0.001 (One-Way ANOVA).
May 2021 | Volume 11 | Article 663225
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observed instead an overexpression of Oct3/4 and SOX2 and a
downregulation of KLF-4 while Nanog was not significantly
changed. We were able to validate through Western Blot the
expression of c-Myc and Nanog as shown in Figure 3C.
Moreover, being the self-renewal potential one of the
hallmarks of CSCs, we decided to test in vitro the potential of
Frontiers in Oncology | www.frontiersin.org 6
the evaluated cell lines to form tumor-spheres using a limiting
dilution assay, evaluating sphere formation 10 days later cell
plating in a typical stem-selecting media (51). By analyzing the
results via ELDA software, we assessed that all uPAR KO cells
demonstrated an increased generation of spheres to controls,
resulting in a significant increase in their tumor-initiating cells
A

B

D

C

FIGURE 3 | (A) Melanoma uPAR KO cells were tested for ALDHA1 and CD133 while colon carcinoma uPAR KO cells were tested for CD44 by FACS analysis.
CD243 expression was evaluated on all the three uPAR KO cell lines (n = 3). (B) Total RNA isolated using Tri Reagent was subjected to RT–PCR and qPCR was
performed (n = 3). (C) Whole-cell lysates were analyzed by Western Blot for c-Myc, and Nanog expression and a-Tubulin was used as a loading control (n = 3).
(D) Limiting dilution sphere assay of uPAR KO and control cells. ELDA analysis plot (upper) and relative table reporting the TIC percentage (lower) (n = 5). Values are
mean ± SD; *p <0.01, **p <0.001, ***p <0.0001 (Student’s Test).
May 2021 | Volume 11 | Article 663225
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(TIC) percentage (Figure 3D) (37). However, due to the extreme
variability of the expression of the transcripts among the cell line
models included in our study, probably caused by a complex cells
heterogeneity as yet reported (52–58), we decided to perform
further analysis taking into consideration the surface stem cell
markers which were found to be more reliable.

PLAUR 3’UTR Is Involved in CSCs
Pattern Acquisition
To better understand how uPAR loss may be involved in the
induction of a stem-like profile we decided to perform an
antigenic surface analysis not only on uPAR KO and rescue
expression cells but also adding uPAR KO cells stably transfected
with a plasmid containing only PLAUR 3’UTR (Supplementary
Figure 2). Indeed, PLAUR 3’UTR was recently reported (31) to
behave as a molecular sponge, attracting many miRNAs and thus
inactivating them. As shown in Figure 4A we performed an in
silico analysis through TargetScan software, looking for the six to
eight mer sites that matched the seed region of a given miRNA
and aligning them to all mammals or vertebrates conserved sites
(36). Analyzing the different miRNAs with a probable affinity for
PLAUR 3’UTR is not clear from the current literature if some of
them might be responsible for the unexpected acquisition of
stem-like markers (Table 2). However, analyzing the previously
reported stem surface antigens (Figure 4B), we demonstrated an
almost complete restoration of the expression of CD133 in the
two melanoma cell lines, CD44 in the colon carcinoma and
CD243 in all the three cell lines to control levels, after the
reintroduction of the complete uPAR sequence or only its
3’UTR, proving that providing back PLAUR 3’UTR is
sufficient to revert the expression of the stem-related markers.
Actually, we also need to point out that ALDH is the only marker
that did not show any changes after uPAR reintroduction (in its
entire form or only the 3’UTR) (Data not shown).
Frontiers in Oncology | www.frontiersin.org 7
miR146a Is Responsible for uPAR-
Dependent Inhibition of EGFR Expression
To validate if such a mechanism might be responsible for the
unpredicted behavioral changes in uPAR KO cells, we decided to
analyze miR146a, which was recently experimentally identified
to be bound on PLAUR 3’ UTR (31), albeit not shown in the
previous analysis in Figure 4A, and it is commonly involved in
the regulation of EGFR expression (99, 100). Indeed, as shown in
Figure 5, we evaluated EGFR expression by flow cytometry and
Western Blotting (a) observing a strong downregulation in all
uPAR KO cells which is in turn reverted by the reintroduction of
uPAR full length or uPAR-3’UTR, reflecting the above-reported
behavior. To evaluate if miR146a might be responsible for such a
mechanism we exploited a specific miR-inhibitor, composed of a
mix of 3p and 5p anti-miR146a oligonucleotides, in order to
block its functionality. As shown in Figure 5B, EGFR expression
was evaluated by qPCR after 24 h of treatment with the anti-
miR146a, demonstrating that in all uPAR KO cell lines EGFR
expression levels were strongly increased. Such a shift in EGFR
expression after the blockade of miR146a activity was also
evaluated and validated by flow cytometry (Supplementary
Figure 3).
DISCUSSION

Here we have exploited three uPAR KO cell lines, via a CRISPR/
Cas9 approach, to investigate the consequences of its total loss in
tumor progression. uPAR KO cells exhibited a lower proliferation
rate as expected (22) since uPAR plays an important role in the
stimulation of the PI3K/Akt and MAPK axis (6, 20, 38, 101)
(Supplementary Figure 4). We observed such diminished
proliferation both in vitro, exploiting canonical 2D and 3D cell
model techniques, and in vivo, through the subcutaneous injection
A

B

FIGURE 4 | (A) PLAUR 3’UTR was subjected to bioinformatical analysis via TargetScan software, to identify probable interacting miRNAs candidates and their
binding sites. (B) uPAR KO cells were tested for CD133 while colon carcinoma uPAR KO cells were tested for CD44 by FACS analysis. CD243 expression was
evaluated on all the three uPAR KO cell lines (n = 3). Values are mean ± SD; *p <0.01, ***p <0.0001, ns, not significant (One-Way ANOVA).
May 2021 | Volume 11 | Article 663225

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Biagioni et al. PLAUR 3UTR Hidden Properties
A

B

FIGURE 5 | (A) Cells were tested for EGFR expression by FACS analysis and Western Blotting (n = 3). (B) Total RNA isolated using Tri Reagent was subjected to
RT–PCR and qPCR, evaluating EGFR expression after anti-miR146a treatment for 24 h (n = 3). Values are mean ± SD; *p <0.01, **p <0.001, ***p <0.0001, ns, not
significant (One-Way ANOVA).
TABLE 2 | Analysis of predicted miRNAs.

miRNA Target Reference

miR-193-3p TGFBR3 (59)
miR-150-5p VEGFA/EGR2/c-Myb (60–62)
miR-127-3p KMT5a/CISD1 (63, 64)
miR-377-3p GSK‐3b/JAG1/XIAP/ZEB2 (65–67)
miR-1193 TM9SF3 (68)
miR-376-3p FGFR1/ARID2/SYF2/CCND1 (69–72)
miR-758-3p MDM2/mTOR/CBX5 (73, 74)
miR-335-5p CCNB2/MAPK10/LDHB/TPX2 (75–78)
miR-328-3p Girdin/ERMP1/MMP9/DDB2/MMP16 (79–83)
miR-532-3p PTPRT/CTNNB1/ETS1/CCR7/FOXP3 (84–89)
miR-411-3p Smurf2 (90)
miR-6720-5p Unknown
miR-5586-5p Unknown
miR-2116-3p MYC (91)
miR-3163 ADAM-17/Skp2 (92, 93)
miR-6509-3p GAS1 (probable) (94)
miR-380-3p SOX6/FOXO1/Nrf2 (95–97)
miR-3924 WNT5A (98)
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of uPAR KO cancer cells and cells that regained PLAUR
expression via stable transfection with a plasmid bearing its full-
length form (including the 3’UTR region). Our previous studies,
focused on the metabolic changes in uPAR KO cells, evidenced
that uPAR loss led to mitochondrial biogenesis deregulation and
the inhibition of the glycolytic pathway (18, 38). Such clues, i.e.
low proliferation rate, OXPHOS predominant metabolism paired
with mitochondrial biogenesis deregulation and high
mitochondrial membrane potential, are all typical features of
cancer stem cells and thus led us to investigate if uPAR KO cells
may have gained a stem-like profile (102–104). Indeed, uPAR KO
cell lines express stem-like cell markers otherwise not or partially
expressed in control cells. The analysis of Yamanaka’s factors (30)
revealed a confusing pattern as the only concordant gene which is
not expressed in all the three cell lines is c-myc, according to the
slower proliferation rate (49, 50). The discordant data about KLF-4
and Oct3/4 expression can be due to the fact that, besides
controlling cancer cell reprogramming (105), they also regulate
the epithelial-to-mesenchymal transition, modulating phenomena
such as migration and proliferation (106). Moreover, Nanog is
reported to play a fundamental role mainly in the maintenance of
the stem-like status (48). Analyzing the stem-related markers via
flow cytometer, we evaluated that, A375p PL1 and M6 A5 over-
expressed ALDHA1 and CD133 while HCT116 A3 up-regulated
CD44. CD243, involved in multidrug resistance, is over-expressed
in all uPAR negative cells. Moreover, using the ELDA analysis
software we also observed an increased self-renewal capability of
all the uPAR KO cells. These results are not in agreement with the
previous literature (23, 107), not complying with ongoing beliefs
on uPAR functions, that directed historical lines of research,
included our own and will need further investigations analyzing
more stem-related markers and exploiting other in vitro and in
vivo functional assays. While previous researches focused on the
blockade of uPAR functions via peptides or through short-term
silencing, in this work we permanently eradicated the entire
PLAUR mRNA expression by CRISPR/Cas9, leading to the loss-
of-function of all the untranslated regions of its transcript.
Importantly, restoring uPAR full-length expression or even only
transducing its 3’UTR sequence, the stem-like status was reverted.
We need to point out that for “uPAR rescue experiments”, we
decided to exploit an “old fashioned” Okayama-Berg plasmid
expressing a full-length cDNA uPAR, which also includes the
3’UTR as reported by Roldan et al. (108). Moreover, as
demonstrated by Debeb et al. and Montuori et al., HEK293T,
which is a human embryonal kidney-derived cell line commonly
used for adeno- and lentiviral particles preparation, is
characterized by stem markers such as ALDHA1 and CD44, but
does not express uPAR (109, 110). Taken together, such data
support the idea that the partial stem status induced by loss of
uPAR in cancer cells may confer to such cells the characteristics
required to give origin to the minimal residual disease (111). The
main features of such cancer stem cells must be the maintenance
of the stem state, resistance to chemotherapy and quiescence, all
characteristics that define a high hierarchical stemness grade. The
re-activation of quiescent CSCs is likely involved in tumor relapse,
an event that may occur even decades after disease remission (112,
Frontiers in Oncology | www.frontiersin.org 9
113). Our data suggest that in the absence of uPAR, a reactivation
of cell proliferation is impossible even for CSCs and further
experiments using fine reintroduction of uPAR at a genomic
level controlled by a physiologic promoter are required to
validate that uPAR expression might be one of the stem
compartment controllers. Indeed, as demonstrated in vitro and
in vivo, uPAR is mandatory for cell proliferation and therefore its
permanent loss does not allow to proper study many stem features,
as cells are incapable to demonstrated their tumorigenic potential
despite the stem-like phenotype. This assumption is further
sustained by the strong EGFR reduction that parallels uPAR KO
and leads to a non-proliferative state. Indeed, EGFR plays an
important role in the cell cycle and thus its decrease could likely
lead cells to a G0 state, meaning a drastic proliferation reduction as
reported by Lui et al. (114). The relationship between EGFR and
cell cycle has been primarily elucidated by examining the effects of
specific EGFR-targeting agents on cancer cells: attenuation of
EGFR growth signaling by various therapeutic agents (i.e. EGFR
antisense, monoclonal antibodies against EGFR, or specific
tyrosine kinase inhibitors) results in cell cycle arrest in many
tumor systems (115, 116). Moreover, EGFR regulates MYC
triggering the activation of the Ras/Raf/MEK/ERK pathway and
the PI3K-Akt axis (117). ERK activation induces cell proliferation
through transactivation of the cyclin D1 gene and c-myc (118).
Again, no evidence of a parallel reduction of EGFR following
uPAR KO or knockdown was previously reported. In our previous
works using uPAR clearing methods such as anti-uPAR ODN (19,
20) and miRNA (21), or exploiting uPAR inactivation specific
cleavage systems such as MMP-12 (28) or uncoupling agents (17),
we have never observed the induction of a stem-like profile. The
CRISPR/Cas9 approach is deeply different from the previous ones
because it acts on a genomic level eradicating from the cell not
only the protein but also the mRNA. PLAUR mRNA has been
reported (31) to bear a 3’UTR sequence which may act as a
molecular sponge for several miRNAs, that are incapable to
perform their actions when the uPAR transcript is strongly
expressed. uPAR loss may trigger the release of such miRNAs
inducing an undifferentiation process toward a more staminal
status. Being CSCs, a topic still not fully understood and with
many unclear molecular mechanisms, we were not able at the
current status to identify which miRNAs, released by uPAR loss,
may have triggered such stem-like conversion. From the analysis
performed on the probable miRNAs with an affinity for PLAUR
3’UTR, only miR-328-3p was reported to play stem-related
functions maintaining CSC properties in ovarian cancer and
enhancing metastasis via the downregulation of the DNA
damage binding protein 2 (DDB2). Moreover, it is important to
note that miR-6720-5p and miR-5586-5p are to date completely
unknown regarding their function and targets. However, it was
sufficient to provide to uPAR KO cells an anti-miR146a to revert
EFGR expression, almost to controls level. Indeed, it is well known
that miR146a is a master controller of EGFR expression in cancer
cells (99, 100). With our data, we were able to validate and prove
for the first time in solid tumors, that uPAR 3’UTRmight function
as a molecular sponge attracting miRNAs which were
consequently released by uPAR loss. We also evidenced that
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uPAR KOmediated by CRISPR/Cas9 is able to induce a stem-like
phenotype in melanoma and colon carcinoma cells,
overexpressing stem-related antigens and transcription factors
and enhancing their self-renewal capabilities. Finally, we were
able to observe that the molecular sponge mechanism, controlling
miR146a, is responsible for uPAR-mediated EGFR expression.
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Supplementary Figure 1 | Annexin V/PI assay on control and uPAR KO cells.
Values are mean ± SD; ns, not significant (n=3). (Student’s Test).

Supplementary Figure 2 | Total RNA isolated was subjected to Reverse
Transcriptase-PCR analysis of uPAR-3’UTR expression, and b2M was used as a
loading control (n = 3).

Supplementary Figure 3 | Cells were tested for EGFR expression by FACS
analysis after anti-miR146a treatment for 24h (n=3). Values are mean ± SD; ***p <
0.0001 (Student’s Test).

Supplementary Figure 4 | Cellular growth counting the total number of cells 24
and 48 h after the initiation of the culture. (n = 3). In all the three cell lines evaluated
the +3’UTR samples did not show any significant changes with respect to their KO
counterparts, demonstrating that only the rescue of PLAUR expression is able to
restore cell proliferation to control level.

Supplementary Figure 5 | Whole Western Blot picture reporting uncropped
bands.
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