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ABSTRACT Trinucleotide repeat expansion disorders are associated with the overexpansion of (CNG) repeats on the
genome. Messenger RNA transcripts of sequences with greater than 60–100 (CNG) tandem units have been implicated in trinu-
cleotide repeat expansion disorder pathogenesis. In this work, we develop a diagrammatic theory to study the structural diversity
of these (CNG)n RNA sequences. Representing structural elements on the chain’s conformation by a set of graphs and employ-
ing elementary diagrammatic methods, we have formulated a renormalization procedure to re-sum these graphs and arrive at a
closed-form expression for the ensemble partition function. With a simple approximation for the renormalization and applied to
extended (CNG)n sequences, this theory can comprehensively capture an infinite set of conformations with any number and any
combination of duplexes, hairpins, multiway junctions, and quadruplexes. To quantify the diversity of different (CNG)n ensem-
bles, the analytical equations derived from the diagrammatic theory were solved numerically to derive equilibrium estimates for
the secondary structural contents of the chains. The results suggest that the structural ensembles of (CNG)n repeat sequence
with n �60 are surprisingly diverse, and the distribution is sensitive to the ability of the N nucleotide to make noncanonical pairs
and whether the (CNG)n sequence can sustain stable quadruplexes. The results show how perturbations in the form of biases on
the stabilities of the various structural motifs, duplexes, junctions, helices, and quadruplexes could affect the secondary struc-
tures of the chains and how these structures may switch when they are perturbed.
SIGNIFICANCE Trinucleotide repeat expansion disorders are associated with the overexpansion of (CNG) repeats on
the genome. Messenger RNA transcripts of sequences with critical length greater than 60–100 (CNG) tandem units have
been implicated in trinucleotide repeat expansion disorder pathogenesis, though their structures remain poorly
characterized. The conventional view has tacitly assumed that conformations with maximal C:G basepairing dominate at
equilibrium, but here we demonstrate that (CNG) repeat sequences are characterized by diverse ensembles of structurally
heterogeneous folds and with a large variance of secondary structural contents. These results were based on a
diagrammatic approach to the ensemble partition function.
INTRODUCTION

Diagrammatic approaches for classifying RNA structures
have been used widely (1–12). Graphs provide an elegant
method for categorizing the many diverse conformational
structures that can be adopted by RNA sequences and may
be used to more easily recognize common topological fea-
tures in RNA structures that are otherwise difficult to deci-
pher from their two- or three-dimensional structures. Graphs
also provide an alternate space within which RNA second-
ary structures can be understood (13,14), and they are the
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basis of the algorithms (15,16) behind some of the most
widely used RNA secondary structure prediction tools
(17–19). Graphs also help elucidate the rich connection
between RNA structure and topology, enabling topological
interpretations to be used for annotating RNA structures
(20–25).

In this work, we employ diagrammatic methods to
compute the conformational diversity of trinucleotide repeat
RNA sequences. In a family of neurological diseases
known as trinucleotide repeats expansion disorders
(TREDs) (26–30), the onset of illness is associated
with the overexpansion of (CNG)n repeats in the genome
(29–31). Although most of these expanded repeats occur
in noncoding regions and do not appear to translate to aber-
rant proteins (30,31), the messenger RNA transcripts of
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these overexpanded templates may interfere with cellular
pathways, leading to cytotoxicity (32,33). At the same
time, (CNG)n expanded messenger RNA may also acquire
unintended functions in the cell (34). Ascertaining the struc-
tures of these sequences is therefore necessary for under-
standing their functions.

Examples of somepossible conformations of a short (CNG)
repeat with different secondary structures are shown in Fig. 1.
Because of their repeat structures, at least one-third of the nu-
cleotides on (CNG)n sequences cannot form canonical base-
pairs upon folding. Depending on the identity of the N
nucleotide, they may also interact with themselves or with
theGorCnucleotides. TREDdisease onset is often associated
with a critical expansion threshold of n > 60–100 (35). The
structures most often associated with the gain-of-function hy-
pothesis for CNG-expanded RNA sequences cited in the liter-
ature is a necklace-like structure composed of a long stretch of
successive two-way junctions interposed by shorts helices and
with a hairpin stem-loop cap (31,32,36–40), like the one
shown in Fig. 1 a. Many of the studies conducted are based
on short (CNG) repeats (31,32), and the structures
resolved are limited to those that can be isolated and crystal-
ized (38–41). As the length of the CNG repeats grows, the di-
versity of accessible structures could grow rapidly as well.
a

d

b

FIGURE 1 Examples of a 50-NG(CNG)8CN-30 repeat sequence in five differe

Structures with an asymmetric internal junction. (d and e) Structures with three-w

in which each 2-bp duplex is represented by a dot, hairpin loops are represented b

way junctions by circles with three dots, and an arc represents the two unpaired en

The basepair representation is shown below the dual graph of each example.
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Fig. 1 a illustrates a maximally canonically paired ‘‘neck-
lace’’ structure. To the right of it is shown its dual graph rep-
resentation. The length of each junction is specified in
number of nucleotides (nt). The basepair representation of
the structure is shown below the dual graph. The basepair
or ‘‘matrix’’ representation explicitly enumerates the
sequence positions of the nucleotides bound by canonical
interactions. Fig. 1, b and c show two other examples in
which one of the two-way junctions is asymmetric. These
two structures have one fewer helix and thus lower basepair
and stacking stability than Fig. 1 a. Their dual graph repre-
sentations are shown to the right of Fig. 1, b and c, suggest-
ing that their loop structures are topologically distinct from
Fig. 1 a. Different junction lengths also cost different
amount of conformational entropy for the sugar-phosphate
backbone. The loop entropies in the various secondary
structures must be accounted for to correctly determine their
free energies. In general, Fig. 1, b and c do not have the
same loop entropies even though they contain the same
number of nucleotides inside their loops (five 1-nt loops,
one 4-nt loop, and one 7-nt loop). This is because the 4 �
1 internal loops in Fig. 1 c adjacent to the hairpin may ste-
rically interface with each other and with the helices differ-
ently compared to the 1 � 1 internal loops in Fig. 1 b. Loop
e

c

nt conformations. (a) The maximal hairpin ‘‘necklace’’ structure. (b and c)

ay junctions. The dual graph representation is shown next to each example,

y circles with one dot, two-way junctions by circles with two dots, and three-

ds. In the graphs, the number adjacent to each edge indicates its length in nt.



Diagrammatic approaches to RNA repeats
entropies are therefore dependent on where and how they
appear on the structure relative to each other.

Fig. 1, d and e show two examples with three-way junc-
tions. In general, highermultiway junctions costmore entropy
because they represent a more stringent conformational
constraint for the sugar-phosphate backbone, and they also
experience more steric congestion for the helices around the
junction. The dual graph representation of each is shown to
the right. Even though Fig. 1, d and e are topologically equiv-
alent, they do not contain the same loop entropies because
their loops are arranged differently along the sequence.Notice
that although Fig. 1 e has identical junction lengths to Fig. 1, b
and c, the loop entropies of these three structures are also
intrinsically different.

Entropies of loops and junctions, or more precisely the
loss in their conformational entropies, arise from constraints
coming from the basepairs. An unfolded RNA is in a high-
entropy state. Its structures are characterized by a diverse
ensemble. If c denotes a chain conformation and P(c) its
probability, the total entropy content of this ensemble is
given by S ¼ �kB

P
cP(c)lnP(c). If the sequence spontane-

ously folds and develops secondary and/or tertiary struc-
tures, the conformational entropy of the chain is
suppressed because base complementarity and stacking in-
teractions produce constraints on the chain’s conformations.
Under these constraints, the new probability for each
conformation in the presence of these constraints P0(c) ¼
P(cjconstraints) incurs a penalty, and the loss of entropy is
given by

DS ¼ Sðwith constraintsÞ � Sðno constraintsÞ
¼ �kB

X
c

P0
c ln P

0
c � Pc ln Pc;

(1)
where the sum runs over all conformations. If one can deter-
mine how the constraints imposed by the secondary and ter-
tiary structures in the fold transforms P(c) / P0(c), DS can
be determined.

In general, the constraints imposed by secondary or ter-
tiary structures are correlated. ‘‘Factorizability’’ describes
how these constraints may break up into independent (or
approximately independent) subsets. For instance, if the
fold introduces four constraints A, B, C, and D but the effects
of A and B are separable fromC, which is also separable from
D, then P0(c) ¼ P(cjA, B, C, D) ¼ P(cjA, B) � P(cjC) �
P(cjD). Under this factorization, the entropy change in Eq.
1 would simply be equal to DS ¼ DS(with constraints A,
B) þ DS(with constraint C) þ DS(with constraint D).

Different approximations have been used to account for
loop entropies in RNA folding predictions. These range from
ignoring loop entropies all together (20,23,42,43) to treating
each loop in the secondary structure as independent and
approximating its value by additivity rules (13–15) to assign-
ing experimentally derived free energy to loops of specific
known sequences (44). The most sophisticated of these is
NNDB (45), which Mfold (17) is based on. NNDB employs
thermodynamic data to assign approximate functional forms
to interpolate experimentally measured loop free energies of
hairpins, bulges, internal loops, and multibranch junctions.
In one form or another, an intrinsic factorizability in the loop
entropies is assumed by all of these approaches. For example,
NNDB treats the loop entropies in multiway junctions higher
than two approximated by a sum in the form a þ b � u þ
c � h, where u is the number of unpaired nucleotides, h is
the number of branching helices, and the empirical constants
a, b, and c are parameters that were found by maximizing
the accuracy of secondary structure prediction (46). For
many RNA folding problems, this assumption may be well
justified because the thermodynamic driving force for the sec-
ondary structure comes from the stability of the pairing and
stacking of bases in the helices. But for (CNG) trinucleotide
repeat sequences, this may not be the case because each helix
is no more than a two-basepair stack of GCjCG, and they lack
the more substantial stacking free energy that stabilizes longer
helices (47). Indeed, experimental measurements suggest that
the helix free energy estimated from Mfold greatly overesti-
mates the stability of GCjCG stacks in (CNG) repeats (36).
Because of this, the role of the loop entropies, their factoriz-
ability, and how they influence the conformational diversity
of (CNG) repeats should be examined.

Using a large body of empirical data derived from Monte
Carlo (MC) conformational sampling (48,49), we have deter-
mined cases in which constraints are approximately indepen-
dent and provided quantitative metrics for their
factorizability. For example, in a two-way junction, the
loop entropies of the two junctions are correlated, but they
are largely independent from the loops on the other sides
of the helices. The same is true for hairpins and other multi-
way junctions. The topological reason behind this loop fac-
torizability is related to the secondary nature of these
features. Furthermore, (48,49) provide a self-consistent li-
brary of loop entropies derived from MC simulations. The
data library in (48,49) has been used in this study to more
accurately account for these loop entropy contributions in
conformational predictions for (CNG) repeats. In Materials
and methods, we show how this approximate factorizabilities
of the loop entropies can be expressed diagrammatically, and
in Results and discussion, we apply this to study the confor-
mational diversity of (CNG) repeat sequences.
MATERIALS AND METHODS

Graph representations

Tinoco et al. (50) used an adjacency matrix representation to denote the

canonically bound basepairs in RNA secondary structures. This representa-

tion is given in Fig. 1 to the lower right of each structure. Waterman et al.

(13,14,51) have described several equivalent representations, such as chord

diagrams and linear trees. Schlick et al. (1,5,9) employed dual graphs to

represent the same information, and examples of these are shown in Fig. 1
Biophysical Journal 120, 2343–2354, June 1, 2021 2345
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to the upper right of each structure. Though topologically equivalent, various

representations emphasize different aspects of the folding free energies. The

matrix representation and the chord diagrams, for example, emphasize the

paired bases, whereas dual graphs highlight the unpaired segments on the

loops and junctions, as pointed out by Liu and Bundschuh (44).

Because the focus of this work is on loops, we rely on dual graphs. In

the Introduction, we describe the approximate factorizabilities of certain

secondary structural features that were observed in the MC data in

(48,49). These factorizabilities can be expressed using diagrams. For

instance, the loop entropies of the unpaired segments in any two-way

junction are correlated, but they are largely uncorrelated with the loops

on the other sides of the helices exiting from the two-way junction.

Fig. 2 shows how this factorization works for the two structures in

Fig. 1, b and c. Each of the objects on the right side of Fig. 2 contain

loop entropies that can be retrieved from the data library in (48,49).

Similar factorizabilities exist for higher multiway junctions, and their

dual graph representations can also be used to express this in the same

way analogous to Fig. 2.

The composite probability of the graph on the left in Fig. 2 is given by

P1ðdÞP2ðb; f ÞP2ðc; eÞP0ðaÞP0ðgÞ½P , ð4Þ�3; (2)

where P1(x) is the probability associated with a hairpin loop (or a ‘‘one-way

junction’’) of length x, P2(x, y) is the probability of a two-way junction with

loop lengths x and y, P0(x) ¼ 1 is the probability associated with an open

strand, and P. is the probability of the duplex. For the loops in hairpin

and junctions, their probabilities are given by P ¼ eDS=kB, where DS is

the conformational entropy of a loop relative to an open strand. P.(4) ¼
eDS,=kB�DH,=kBT , the probability of a 2-bp (4-nt) duplex, has both enthalpic

and entropy contributions in it, which involve stacking and basepairing in-

teractions as well as the loss of conformational freedom suffered by the

backbone to stack. An example of all the decomposable factors of a neck-

lace diagram is given on the right side of Fig. 2.
Specializing to (CNG) repeat sequences

To specialize the formulation to apply to 50-NG(CNG)8CN-30 repeat se-
quences specifically, we take into account their repeat structure. By ‘‘repeat

structure,’’ we are referring to the periodicity of the nucleotide sequence. In

our calculations, we employ constructs with the following architecture:

5
0
-ðN-GCÞ-ðN-GCÞ-ðN-GCÞ-ðN-GCÞ-

ðN-GCÞ-ðN-GCÞ-.-ðN-GCÞ-ðN-GCÞ-N-30

with n repeating units of (NGC). Formally, this construct has l ¼ 3n þ 1

nucleotides instead of 3n. This is done to ensure that the 50 and 30 ends
FIGURE 2 Example showing factorization of the diagram on the left into

the factors on the right. The circle with one dot represents a hairpin loop of

size d. Circles with two dots represent two-way junctions. The two open

line segments represent open strands. The three filled dots represent 2-bp

(4-nt) duplexes. The corresponding expression for the composite probabil-

ity is given in Eq. 2.
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of the chain do not have to be treated differently, but it does not materially

alter the results or the formulation.

As described above, the periodicity of the sequence permits canonical

basepairing producing 2-bp duplexes only. Beyond that, the ability of the

N nucleotides to form noncanonical basepairs can favor different structures

depending on whether N ¼ A, C, G, or U. These noncanonical effects can

be captured by assigning an extra bias to the two-way junctions of those

sequences in which a noncanonical basepair or stacking can add stability

to the chain. Because of the repeat structure, unpaired segments on the

sequence are limited to lengths equal to 1, 4, 7, 11, . nt. To do this,

every loop length in the formulation is replaced by its length divided

by 3. For example, the lengths {a, b, . g} in Fig. 2 become {a0 ¼ a\3,

b0 ¼ b\3, . g0 ¼ g\3}, where \ denotes an integer division without

remainder. A loop with length a0 ¼ 0 is 1 nt long. A loop with a0 ¼ 1 is

4 nt long, etc. The only exception to this rule is a 2-bp (4-nt) duplex, which

is assigned a length of two repeat units instead of 1, and a quadruplex,

which is assigned four repeat units.

Bundschuh et al. (44,52) have applied a related diagrammatic method to

various trinucleotide repeats. They employed a diagrammatic recursion

relation for the partition function Z to study the crossover from asymptotic

scaling behavior to finite-length effects. They found that in the presence of

multiloop junctions, the crossover to the scaling regime is related to the

chain’s ability to make branches. For (GCA)n chains, their results show

that the scaling regime is reached with just a handful of repeats, whereas

for (GCC)n sequences, the crossover does not occur until the sequence is

hundreds of repeats long because of the extra pairing coming from the

N ¼ C nucleotides in the junctions with the G residues adjacent to them.

These studies suggest that the interaction of the N nucleotide in (CNG) re-

peats may play a significant role in determining their prevalent structures. In

our work, we have employed a graph renormalization scheme based on dia-

grammatic decomposition to study the concentrations of different structural

elements on the chain, whereas in the work of Bundschuh et al. (44,52),

their graph recursion on Z was better suited to studying the emergence of

repeat-length-dependent asymptotic behaviors. But the two methods share

common diagrammatic features.
Graph elements and loop entropy contributions

The secondary structural elements considered in this study are shown in

Fig. 3. A dot represents a GCjCG helix. Its probability P. contains the pair-

ing and stacking free energy, as well as the backbone entropy of the doublet.

Circles with one, two, or three holes represent the loops in a hairpin, a two-

way junction, and a three-way junction, respectively, and their probabilities

P1, P2, and P3 contain the loop entropies. Hairpins and two-way junctions

have been found in experimental thermodynamic studies (36) to be most

relevant for (CNG) repeat sequences. In this study, we also include three-

way junctions to assess their relevance. In addition to these, quadruplexes,

represented by the diagram with three loops emanating from a square core

in Fig. 3, have also been included because they have been observed in

experimental studies of other trinucleotide repeat sequences, noticeably

(AGG) and (UCC) (36). The core of each quadruplex contains a double-

deck tetrad structure with eight G nucleotides bound with Hoogsteen base-

pairs and is represented diagrammatically by a solid square. Its probability

Pq contains the pairing and stacking free energy as well as the backbone en-

tropy of the bases in the tetrad. Because only G can form tetrads, quadru-

plexes are possible only on the (CGG) repeat sequence. For multibranch
FIGURE 3 Dual graph representation of all structural elements included

in this study: helix, hairpin, two-way junction, three-way junction, loops in

a quadruplex, the quadruplex core, bridge, and unpaired ends.
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structures, although we have limited ourselves to a three-way junction in

this work, four-, five-, or any higher multiway junctions may be added

without complications, but the results will show that multiway junctions

are of less importance for (CNG) repeats. The 50 or 30 unpaired ends of

the chain, represented by the last diagram in Fig. 3, do not cost any extra

entropy compared to an open chain.

The loop entropies contained in each graph element are supplied by the

data library in (48,49). For example, the entropies of the two loops in a two-

way junction are dependent, but their total can be expressed as a function of

the sum of their lengths. The portions of the library relevant to (CNG) re-

peats are reproduced in Table 1 for total loop length in units of the number

of repeats n. Loop entropy data for all relevant elements in Fig. 3 are given

in Table 1.

The basic premise of this work considers free energies of the loops to be

a fundamental determinant of RNA structures. This is somewhat different

from the traditional view, in which basepairs in helices, triplexes, quadru-

plexes, or from tertiary interactions are considered the drivers. Both of

these factors are, of course, present in any RNA system, but in some prob-

lems paired structures are more important, whereas in others, loop en-

tropies may outweigh pairs. For the type of problem studied in this

work, in which the ensemble may be dominated by open instead of

strongly paired structures, careful consideration must be given to the

loop entropies. Our results will show that for the (CNG) repeats, treating

the loop entropies carefully is the key to understanding their conforma-

tional ensembles.
Stabilities of GCjCG helix doublets and G-
quadruplexes

The core thermodynamic stabilities of paired structures, such as the helices

and quadruplexes in Fig. 3, are taken from experiments. For example, to

determine the free energy contribution from each duplex, we used the

experimental DGexp data reported by Sobczak et al. for (CNG)20 oligomers

in 100 mM NaCl (36) for N ¼ A, C, G, and U. The only conformation that

was reported for (CNG)20 has the maximal hairpin structure, analogous to

that shown in Fig. 1 a. Using the loop entropy values from our library and in

conjunction with the experimentally observed DGexp for the maximal

hairpin, we determined the free energies of the helix cores in each of the

(CNG)20 repeats for N ¼ A, C, G, and U separately. The smallest came

from N ¼ C with DG0(duplex) ¼ �6.17 kcal/mol, followed by U

(�6.39 kcal/mol), A (�6.57 kcal/mol), and G (�6.62 kcal/mol). In the re-

sults below, we will use the N ¼ C DG0(duplex) value as the reference, as

this represents a lower bound to stability. The other results for N ¼A, G, or
TABLE 1 Contributions of loop entropies to the folding free

energy at 310 K

Feature (nickname)

Loop free energy as a function of total loop length

(kcal/mol)

n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n > 3

Hairpin (1wj) N 5.02 5.85 6.16 3.9 þ 1.08 ln

(3n þ 1)

Two-way

junction (2wj)

5.97 6.53 6.79 6.88 4.4 þ 1.08 ln

(3n þ 2)

Three-way

junction (3wj)

7.12 7.33 7/46 7.53 4.9 þ 1.08 ln

(3n þ 3)

Quadruplex (quad) 15.5 17.6 19.0 19.9 N

Contributions taken from the data library in (48,49) (RT¼ 0.616 kcal/mol).

Entropies of the loops in a multibranch junction are in general correlated,

but their sum scales with the total junction lengths. Loop entropies of the

junction internal to the branches are uncorrelated with the loops on the other

sides of the branches. Empirically, higher multibranch structures cost more

entropy.
U were obtained by applying the appropriate offset to the values for each

duplex. For quadruplexes, experimental data from Sobczak et al. (36) sug-

gest that (UGG)17 and (AGG)17 can form quadruplexes, but (CGG) repeats

cannot. To estimate the effects of including quadruplexes in the (CNG)n
repeat ensembles, we used the experimental free energies of (UGG)17
and (AGG)17 and determined the free energy of a quadruplex core using

the DGexp for (UGG)17 and (AGG)17 in 100 mM NaCl (36) These yielded

an approximation for the quadruplex core free energy ��20.4 kcal/mol

from (AGG)17 and (UGG)17. In our calculations, we varied the quadruplex

stability from zero up to and beyond these values to examine how the po-

tential formation of quadruplexes might affect the structures of (CNG)

repeats.

The values of the duplex free energies derived from the experimental data

of Sobczak et al. (36) using the method above are �3 kcal/mol weaker per

GCjCG helix compared to the nearest-neighbor model of Turner et al.

(45,53). Using Mfold (17) to calculate the free energy of a typical CNG

repeat produces exclusively the maximal hairpin structure analogous to

Fig. 1 a as the only significant conformation. But, using the helix free en-

ergies obtained according to the prescription in the last paragraph, structural

alternatives to the maximal hairpin become more competitive. In general,

non-maximally paired structures enjoy higher entropies because loop seg-

ments in hairpins and junctions are less constrained compared to paired ba-

ses. In the results below, we will see the tradeoff between higher entropy in

the more open structures versus the higher stability in the helices and quad-

ruplexes in compact structures produces a mixed diverse ensemble for most

(CNG) repeat sequences, rather than favoring a single dominant maximal

hairpin structure.
Diagrammatic renormalization

The graph approach described here shares many features with those

employed in field theory and in liquids, in which diagrammatic

techniques have been used extensively to manipulate graphs (54). Previous

work has also applied diagrammatic techniques to study RNAs

(13,15,20,23–25,44,52).

The canonical partition function of the ensemble Z(n) as a function of

the number of (CNG) repeats n is represented by diagrams. The gener-

ating function, Z(l) ¼ PN
n¼0Z(n)exp(�ln), which is the grand canonical

ensemble partition function allowing variable repeat lengths, can then

be expressed in terms of the generating functions of the probabilities

of the diagrammatic elements described above at 310 K. Standard re-

normalization allows the graphs to be re-summed, giving

ZðlÞ ¼ 1=½1� e�l �RðlÞ�; (3)

where the root function R is a sum over all irreducible diagrams. Recur-

sion relations similar to those in Eq. 3 have previously been described in

the context of RNA structural studies (13–15,20,23–25,42,44,52). Pills-

bury et al. reported similar recursion relations for RNA (42), as do

Reidys et al. (43), and the use of irreducible diagrams has been intro-

duced by Orland et al. (20,22,24,42) for studying RNA structures. The

root function satisfies the Dyson equation (20,22,24,42,55), which is

shown diagrammatically in Fig. 4. Including multibranch loops up to

three-way junctions, this self-consistent equation for the root function

R3(l) is quadratic. Recursion relations for Z have also been used by
FIGURE 4 Dyson equation for the root function R3 including hairpins

and two- and three-way junctions, as well as quadruplexes.
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Liu and Bundschuh (44) to examine how the partition function scales

with repeat lengths.

The inputs P.(l), P1(l), P2(l), P3(l), and Pq(l) were obtained from the

loop free energies of duplexes, hairpins, and two- and three-way junctions,

as well as quadruplexes and the duplex and quadruplex stabilities described

in the last subsection. The functional dependence of the loop free energies

on the loop lengths were extended beyond the finite-length data available

from the simulations by using the same scaling relationships that have

been adopted by Turner et al. in the nearest-neighbor model (45,56,57),

which was based on Stockmayer et al. (58), yielding the following expres-

sions at T ¼ 310 K:

P , ðlÞ ¼ e
�

�
2l� 6:17

0:616

�
; (4a)
P1ðlÞ ¼ e
�

�
lþ 5:016

0:616

�
þ e

�

�
2lþ 5:848

0:616

�
þ e

�

�
3lþ 6:159

0:616

�

þe
�

�
4lþ 5:086

0:616

�
� F

�
e�l; 1:75;

13

3

�
; (4b)
P2ðlÞ ¼ Q2ðlÞ � dQ2ðlÞ=dl; (4c)
� � � � � �

Q2ðlÞh e

� 5:970
0:616 þ e

� lþ 6:528
0:616 þ e

� 2lþ 6:797
0:616
þe
�

�
3lþ 6:880

0:616

�
þ e

�

�
4lþ 5:587

0:616

�
� F

�
e�l; 1:75;

14

3

�
;

(4d)
1
�

dQ3ðlÞ d2Q3ðlÞ
�

P3ðlÞ ¼
2

2Q3ðlÞ� 3
dl

þ
dl2

; (4e)
� � � � � �
FIGURE 5 Ensemble averages of the number of helices (solid line),
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plexes (squares) computed from the physically relevant solution for a

(CNG)60 repeat as a function of quadruplex stability (stable on the left, un-

stable on the right).
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where F is the Lerch transcendent (59).
RESULTS AND DISCUSSION

We have applied the calculations described in Materials and
methods to (CNG) repeats, where N ¼ A, C, G, or U, to
compute the ensemble average number of secondary struc-
ture features associated with the conformations of the chains.
The Dyson equation in Fig. 4 is quadratic in R3, and there are
in general two roots. In all of the cases studied, we found
only one of them to yield physical results, whereas the other
root produced a negative value for the partition function Z.
Results from the physically relevant solution are shown in
Fig. 5. Because (CAG), (CCG), and (CUG) repeat sequences
cannot physically produce quadruplexes but (CGG) repeats
may, we have plotted the results as a function of the stability
of the quadruplex core m0

q/RT. Although (CGG) repeat se-
quences can potentially form quadruplexes, experimental ev-
idence shows little to no quadruplex structures on (CGG)17
or (CGG)20 sequences (36). On the other hand, (AGG) re-
peats have been found to fold predominantly into quadru-
plex-rich structures (36). We have employed experimental
data for (AGG) repeats to establish an upper limit for how
stable a quadruplex could be if it were to exist in (CGG)
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repeats. This upper limit is on the left side of the graphs in
Fig. 5, and the quadruplex core stability decreases (i.e.,
m0
q/RT becomes more positive) moving to the right. (CAG),

(CCG), and (CUG) repeats are therefore associated with
the right side of Fig. 5. The expected structural features of
(CNG)60 chains are displayed as a function of m0

q=RT.
Before discussing the results, we point out that what have

been calculated are ensemble averages, and as such, they
may contain contributions from a large number of different
structures. When considering the data, it is therefore impor-
tant to not associate the averages with a single conforma-
tion, keeping in mind that there may be many structures
within each ensemble. For example, although the maximal
hairpin structure depicted in Fig. 1 amay be one of the prev-
alent structures in a (CNG) repeat ensemble, it may be only
one of many. In fact, the ensembles we have computed are
rather diverse, and the averages of all the structural features
vary smoothly across the entire parameter space studied.

Fig. 5 shows that the structural characteristics of (CNG)60
are strongly dependent on the ability of the chain to make
quadruplexes. When quadruplexes are unstable, the struc-
tures on the right side of Fig. 5 correspond to an ensemble
with largely open chains with high concentrations of bridges
and hairpin loops and some two-way junctions, but rela-
tively few three-way junctions and no quadruplexes. Inter-
estingly, the number of hairpin loops is almost identical to
the number of bridges on the right side of Fig. 5. This sug-
gests that the structures in this ensemble are dominated by
the ‘‘1 þ 2’’ diagrams, an example of which is illustrated
in Fig. 6. Furthermore, a large number of bridges is also
indicative of largely open structures, but the number of he-
lices observed here is somewhat less than the maximal num-
ber that could be sustained on a (CNG)60 repeat (the
theoretical maximum is 29). Instead of being driven by
the favorable enthalpy of formation of the helices, the for-
mations in this ensemble seem to be dominated by loop
entropies.

Next, focusing on the left side of Fig. 5, we examine how
the presence of quadruplexes alters the structural character-
istics of the ensemble. As the stability of the quadruplex is
increased (i.e., m0

q/RT going from right to left in Fig. 5), they
begin to displace the helices. This is revealed by a decrease
in the concentration of helices and a concomitant increase in
the concentration of quadruplexes. The number of bridges
on the chain also increases, whereas the number of two-
and three-way junctions decreases. These changes occur
because as the quadruplexes displace the helices, the chain
must dissolve other structures to give way to the quadru-
plexes, as quadruplexes have a larger footprint on the
sequence (one quadruplex takes up a minimum of four
CNG repeats, whereas a helix only takes up two). Dissolu-
tion of the other structures creates more bridge segments.
Based on these observations, we can conclude that the
most relevant graphs in the stable-quadruplex limit (left
side) of Fig. 5 are the ‘‘lei’’ diagrams in Fig. 6, where quad-
ruplexes are distributed along a largely open chain.
FIGURE 6 Diagrams illustrating some of the

structures observed in the results in Figs. 5 and 7.

Biophysical Journal 120, 2343–2354, June 1, 2021 2349



Mak and Phan
Experimental evidence shows little to no quadruplex for-
mation for short (CGG) repeat sequences (36). Based on this
and the results in Fig. 5, we can estimate that the stability of
a quadruplex on a (CGG) chain m0

q/RTmust be at least�6RT
lower than on an (AGG) chain. We indicate this estimate in
Fig. 5 by a vertical dotted line. This suggests that a quadru-
plex in (CGG) repeats must be approximately>3.7 kcal/mol
less stable than in (AGG) repeats.

Next, we examine the structures of (CNG) repeat in the
absence of quadruplexes. As we have seen already, even
though (CGG) repeats can form quadruplexes, quadruplexes
in (CGG) repeat are expected to be�3.7 kcal/mol less stable
than those in (AGG) repeats. The other (CNG) repeats,
N ¼ A, C, and U, cannot physically form quadruplexes. In
Fig. 7, we show results for these (CNG) repeats after placing
a large unfavorable bias against quadruplex formation on
the chains.

In actual (CNG) repeat sequences, the ability of the N nu-
cleotides to form noncanonical basepairs is expected to favor
different structures depending on whether N¼A, C, G, or U.
We can capture these effects in our model by assigning an ex-
tra bias to the two-way junctions of those sequences in which
a noncanonical basepair or stacking can add stability to the
chain. The bias is applied to every two-way junction regard-
less of size primarily to account for the propensity of stack-
ing a N nucleotide against either of the helices on the
junction. To easily ascertain these effects, the results in
Fig. 7 are reported as a function of this bias m2/RT, where
m2 is a chemical potential imposed on each two-way junction.
Negative value adds a bonus, and positive value assesses a
penalty. Approximate values of the bias for N ¼ G, A, U,
and C are indicated on the top of Fig. 7.

In the limit at which two-way junctions are very stable
(left side of Fig. 7), the structures are dominated by a large
number of helices and two-way junctions but very few hair-
FIGURE 7 Ensemble averages of features computed for a (CNG)60
repeat as a function of extra stability added to each two-way junction

(favorable on the left, unfavorable on the right).
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pins or bridges. This suggests that the ensemble is character-
ized by closed and compact structures. These conformations
correspond to the ‘‘necklace’’ diagrams in Fig. 6 that we
have discussed in Materials and methods.

Turning to the right side of Fig. 7, in the limit of a large
bias imposed against the formation of two-way junctions,
the solutions correspond to the ‘‘bubble’’ diagrams in
Fig. 6, and they are the hairpin-capped counterpart of the
lei diagrams. They have almost as many bridge segments
as hairpins, but the number of helices is far from the theoret-
ical maximum of 30. These chains are therefore largely
open, and they are dominated by the entropies of the loop
segments. Results from Fig. 7 suggest that noncanonical
basepairs or favorable stacking of the N nucleotide within
the junctions can produce a significant effect on the confor-
mations of (CNG) repeats. The values of the bias m2/RT used
to generate the results in Fig. 7 span a range of only
�3.1 kcal/mol, but within this very narrow range, the struc-
tures in these ensembles vary drastically.

Fig. 8 shows a ‘‘phase diagram’’ summarizing all the find-
ings from above, in which variations in quadruplex stability
from Fig. 5 are plotted along the vertical direction and vari-
ations in two-way junction stability from Fig. 7 are plotted
along the horizontal direction. On this phase diagram,
‘‘(AGG)’’ and ‘‘(CGG)’’ indicate the approximate quadruplex
stabilities in (AGG) versus (CGG) chains. Approximate
values of the stability of two-way junctions in (CNG) repeats
FIGURE 8 A ‘‘phase diagram’’ summarizing the results from Fig. 5 and

7. The horizontal axis indicates two-way junction stability, and the vertical

axis quadruplex stability. Phases that have been identified by the calcula-

tions are labeled. See Fig. 6 for their graphical representations. Phase

boundaries are approximate. Star shows position for which the scaling anal-

ysis in Fig. 9 was carried out.
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for N¼G, A, U, and C are also indicated on the top of Fig. 8.
Non-quadruplex-forming (CNG)60 repeat sequences occupy
the center of this phase diagram, with most of their structures
dominated by the 1 þ 2 and bubble diagrams illustrated in
Fig. 6, which are semiopen structures. A minor fraction of
the ensemble is also made up of necklace structures, which
are closed and compact. These results point to the existence
of many potential structures of similar prevalence with con-
tributions from both open and compact structures. Though
the crystallographic data of (CNG) repeats suggest the domi-
nance of hairpin structures (32,38,41), this leaves open the
question of how an ensemble of diverse structures could be
detected in solution. Techniques such as small-angle x-ray
scattering (60–63), ultraviolet melting (64), and Förster reso-
nance energy transfer (65) can all be used to probe the solu-
tion structure of RNA. Although the use of thermodynamic
data of Sobczak et al. (36) does provide a point of contact be-
tween the calculated free energies and experimental mea-
surements, the ensemble predicted by our results is diverse
enough that a one-to-one correspondence to specific struc-
ture(s) revealed by experiments is unlikely. Also important
is that multiway junctions seem to be of low abundance
because higher branching costs more entropy according to
the data in Table 1, so although multibranch structures higher
than three-way can be included in the calculations, they are
not likely to alter the results significantly.

The conformational ensembles are functions of the repeat
length. This repeat length dependence is illustrated in Fig. 9
for a point on the phase diagram marked by the star in Fig. 8.
Fig. 9 a shows divergence of the partition function Z(l)
when l approaches the singular point lc. The slope is
��1, suggesting that it is a simple pole. This result is ex-
pected because this problem is isomorphic to the enumera-
tion of all paths from the 50 to 30 end of the chain on the
space the folding problem is embedded in, and the gener-
a b

FIGURE 9 (a) Divergence of the partition function Z(l) when l approaches the

for each l. (b) Structural features as a fraction of the repeat length as a function o

very different structural compositions, and the crossover appears to occur betw
ating functions of paths all have the same dominant singu-
larity, which is a simple pole (66). The scale on the top of
Fig. 9 a shows the average repeat lengths hni for each l,
and repeat lengths approximately >60 appear to be in the
scaling region. Fig. 9 b shows how each of the features as
a fraction of the repeat length varies as a function of l, again
with the scale on the top mapping hni to l. Short repeats and
long repeats have very different structural compositions, and
the crossover appears to occur between 30 and 60 repeats.
Note that in the scaling limit, there are almost equal den-
sities of bridges, hairpins, and two-way junctions on the
chain, and the ensemble is dominated by largely open
structures.

Finally, because there is a significant discrepancy between
the stability of the GCjCG duplexes predicted by NNDB
compared to experimentally derived results collected specif-
ically from (CNG) repeat sequences, we want to know to
what extent the stability of the duplexes may have an effect
on the computed results. Fig. 10 shows the structural charac-
teristics of (CNG)60 as a function of a bias placed on the he-
lices, with more stable to the left and less stable to the right.
Toward the right, as the helices become less stable, they are
displaced by quadruplexes, which are the only structures
other than helices that can cap the end of a branch. These
map to the lei diagrams in Fig. 6. Toward the left, as the he-
lices become more stable, they seed an increasing number of
two- and three-way junctions in favor of hairpins. The result-
ing structures correspond to the necklace and ‘‘three-way
tree’’ structures in Fig. 6. Notice that �3RT on the left edge
of Fig. 10 corresponds to only�1.8 kcal/mol of extra stabil-
ity, and this small difference produces a significant change in
structural compositions. Therefore, a more accurate experi-
mental assessment of the thermodynamic stability of the
GCjCG duplexes may be important for understanding
(CNG) repeat structures.
singular point lc. The scale on the top shows the average repeat lengths hni
f l. The scale on the top maps hni to l. Short repeats and long repeats have
een 30 and 60 repeats.
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FIGURE 10 Ensemble averages of features computed for a (CNG)60
repeat as a function of extra stability added to each helix (favorable on

the left, unfavorable on the right).
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CONCLUSIONS

We have formulated a diagrammatic theory to study the
conformational ensembles of (CNG)n RNA sequences.
Transcripts of overexpanded microsatellites on the
genome containing 60–100 (CNG) repeats have been
implicated in a number of neurological diseases known
as TREDs. To understand the structures of these (CNG)
repeat sequences, we performed a series of calculations
aimed at characterizing their equilibrium ensembles.
With a diagrammatic representation of the partition func-
tion, our calculations are based on using graphs to anno-
tate structural motifs on the chains, and, in conjunction
with evidence from previous simulation studies, these dia-
grammatic representations allowed us to easily factorize
the graphs to re-express the free energy of each configura-
tion as a sum of independent terms. Using generating
function mathematics and diagrammatic re-summation
techniques, we were able to derive a closed-form expres-
sion for the partition function in terms of a renormalized
root function, which is the diagrammatic equivalence of
the sum over all self-contained circuit diagrams. Employ-
ing a simple approximation for this root function, we
derived analytical expressions for the partition function
and its corresponding thermodynamic observables.
Including hairpins, two- and three-way junctions, helices,
and quadruplexes in the root function, the partition func-
tion captures an infinite set of conformations with any
number and any combination of these structural elements.
Together with simulation data from a self-consistent li-
brary of entropic costs previously obtained for the various
graph elements, as well as experimentally derived free en-
ergies for the helices and quadruplexes, we solved the re-
sulting equations to arrive at numerical estimates for the
ensemble expectation values of the number of structural
features on the chain, including bridges; hairpin loops;
one-, two-, and three-way junctions; and quadruplexes.
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This enabled us to quantitatively characterize the struc-
tural diversity of different (CNG)n ensembles.

Whereas most studies in the field have implicitly assumed
that the ensemble of a (CNG)n sequence is dominated by a
single structure having the maximal number of paired bases
forming duplexes interposed by two-way junctions between
them, the results of this study suggest otherwise
(27,35,36,38,39). The data show that the structural ensem-
bles of (CNG)n repeat sequence with n �60 are surprisingly
diverse. The equilibrium number of duplexes, hairpins,
junctions, bridges, and quadruplexes on these sequences
indicate that their secondary structure contents are far
from the expected maximally paired conformation. To the
contrary, the ensemble is dominated by a mixture of open
and compact structures. We have mapped out the resulting
structures as a function of the ability of the N nucleotide
(N¼A, C, G, or U) in (CNG) repeats to make noncanonical
pairs, as well as their ability to sustain stable quadruplexes.
The ‘‘phase diagram’’ that emerges shows a diversity of
different structures across this parameter space, demon-
strating that ensembles of (CNG) repeat sequences can
potentially contain many alternate conformations. The re-
sults show how perturbations in the form of biases on the
stabilities of the various structural motifs—duplexes, junc-
tions, hairpins, and quadruplexes—could affect the second-
ary structures of the chains in either directions and how
these structures may switch when they are perturbed, e.g.,
when they interact with or bind other molecules. This
may, in turn, have implications on how these (CNG)n se-
quences could acquire unintended functions in the cell, lead-
ing to their cytotoxicity.
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