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Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) greatly improve
the survival and quality of life of non-small cell lung cancer (NSCLC) patients with EGFR
mutations. However, many patients exhibit de novo or primary/early resistance. In
addition, patients who initially respond to EGFR-TKIs exhibit marked diversity in clinical
outcomes. With the development of comprehensive genomic profiling, various mutations
and concurrent (i.e., coexisting) genetic alterations have been discovered. Many studies
have revealed that concurrent genetic alterations play an important role in the response
and resistance of EGFR-mutant NSCLC to EGFR-TKIs. To optimize clinical outcomes, a
better understanding of specific concurrent gene alterations and their impact on EGFR-
TKI treatment efficacy is necessary. Further exploration of other biomarkers that can
predict EGFR-TKI efficacy will help clinicians identify patients who may not respond to
TKIs and allow them to choose appropriate treatment strategies. Here, we review the
literature on specific gene alterations that coexist with EGFR mutations, including
common alterations (intra-EGFR [on target] co-mutation, TP53, PIK3CA, and PTEN)
and driver gene alterations (ALK, KRAS, ROS1, and MET). We also summarize data for
other biomarkers (e.g., PD-L1 expression and BIM polymorphisms) associated with
EGFR-TKI efficacy.

Keywords: non-small cell lung cancer, concurrent genetic alteration, epidermal growth factor receptor tyrosine
kinase inhibitors, PD-L1 expression, BIM polymorphism
INTRODUCTION

Lung cancer is the most prevalent cancer type and is one of the leading causes of cancer-related
death (1). The discovery of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs) and the fact that most patients with EGFR-mutant non-small cell lung cancer (NSCLC) can
benefit from TKI treatment have dramatically changed the therapeutic approach for NSCLC.
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EGFR mutations occur in approximately 10–35% of lung
adenocarcinomas (2), with a higher prevalence of about 40–
55% in East Asian patients (3). Because EGFR-TKIs, including
first-generation gefitinib, erlotinib, and icotinib, second-
generation afatinib and dacomitinib, and third-generation
osimertinib, have demonstrated higher objective response rates
(ORR) and prolonged progression-free survival (PFS) compared
to standard chemotherapy (4–7), they have become the first
choice for patients with advanced EGFR-mutated NSCLC.
However, approximately 20–30% of patients exhibit primary
resistance to EGFR-TKIs (4). Furthermore, even in patients
with an initial response, significant heterogeneous outcomes
have been observed. Some patients only respond for a few
weeks, while others may benefit for years without progression.

Comprehensive genomic profiling has allowed us to
understand various mutations and co-occurrence of genomic
alterations in NSCLC and explore their impact on clinical
outcomes. Many studies have demonstrated that concurrent
genetic alterations potentially impair TKI efficacy and partly
explain the heterogeneous patient outcomes (8–10). Hong et al.
(8) analyzed 58 EGFR-mutant patients with metastatic NSCLC
treated with first-line EGFR-TKIs. They demonstrated that
concomitant mutations are widespread and significantly
associated with reduced ORR and shorter overall survival (OS).
Sato et al. (11) found that PFS for EGFR-TKIs in EGFR-mutant
lung adenocarcinoma was associated with the number of
concurrent genomic alterations. Significantly poorer PFS was
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observed in patients with four or more genomic alterations. The
types of genomic alterations coexisting with EGFR mutations
may also be associated with EGFR-TKI efficacy. For instance,
Wang et al. (12) showed that patients with mutations in EGFR
and oncogenes have shorter PFS compared to those with
mutations in EGFR and tumor suppressor genes and patients
with EGFR mutations only (4.7 vs. 9.3 vs. 13.2 months), which is
consistent with other reports (13–15). In addition, EGFR
mutations are thought to be mutually exclusive with other
oncogenic drivers. However, recent studies have demonstrated
that although at a small percentage (16–18), additional driver
alterations coexist with EGFR mutations in TKI therapy-naïve
NSCLC and may impact EGFR-TKI efficacy and partly explain
the intrinsic resistance in some patients (19).

A greater understanding of the relationship between specific
concurrent genes and TKI efficacy is urgently needed and will
help predict clinical outcomes and guide clinicians in selecting
the best treatment strategies for patients with these concurrent
mutations. In this review, we describe the recent progress and
future perspectives in this area, focusing on common concurrent
genetic alterations [intra-EGFR (on target) co-mutation, TP53,
PIK3CA, and PTEN] and concurrent driver gene alterations
(ALK, KRAS, ROS1, and MET). Furthermore, we summarize the
data on other biomarkers (e.g., PD-L1 expression and BIM
polymorphisms) that appear to be associated with EGFR-TKI
efficacy (Figure 1). The main characteristics of the studies
described are summarized in Tables 1 and 2.
FIGURE 1 | Overview of EGFR concurrent alterations.
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COMMON CONCURRENT GENETIC
ALTERATIONS

Complex EGFR Mutations (Intra-EGFR
Co-Mutations)
In-frame deletion mutations in exon 19 (19del) and the
Leu858Arg (L858R) point mutation in exon 21 are two major
types of EGFR activating mutations with an ORR of 70–80% and
PFS of approximately 9–20 months for EGFR-TKIs. These
mutations are sensitive or classical (i.e., typical or common)
EGFR mutations (4–6, 44). Occasionally, complex mutations
occur, meaning a single tumor sample has two or more different
EGFR mutations (45–50). The frequency of complex mutations
is 3–7% (25, 26, 50–54). Theoretically, the introduction of an
additional mutation could change the molecular conformation of
the EGFR tyrosine kinase domain, leading to increased or
decreased TKI affinity that subsequently affects the clinical
outcome (55). Zhang et al. (25) identified 187 patients with
complex EGFR mutations out of 5898 EGFR-mutant NSCLC
patients. Fifty-one of these patients had advanced lung
adenocarcinoma and were treated with first-generation EGFR-
TKIs as first-line therapy. The median PFS was 9.5 months. A
total of 46 of the patients were evaluated for response. The ORR
was 52.2%, and the disease control rate (DCR) was 71.7%. These
patients were further divided into four groups: group A (n = 12),
patients with double classic mutations; group B (n = 15), patients
with classical mutations plus an atypical mutation; group C (n =
7), patients with double atypical mutations; group D (n = 12),
patients with complex mutations harboring a primary T790M
mutation or an exon 20 insertion. The ORRs for these four
groups were 75, 60, 71, and 8.3%, respectively. The PFS values
were 18.2, 9.7, 9.6, and 1.4 months, respectively. According to
these results, patients with double classic mutations (group A)
had the best ORR and PFS. Based on a literature review, the
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authors pooled 22 patients with concurrent 19del and L858R
mutations treated with TKIs. Their ORR and PFS were 80% and
13.9 months, respectively. Consistent with other studies, they
observed that patients harboring complex mutations with a
classic mutation had similar clinical outcomes to those with
single classical mutations (26, 27). In contrast, lower TKI efficacy
was observed in patients with uncommon complex mutations,
especially those with a primary T790M mutation or exon 20
insertions (27).

As the Zhang et al. (25) study showed, patients harboring
complex mutations with a primary T790M or exon 20 insertion
predominantly presented with primary EGFR-TKI resistance
accompanied by the poorest ORR and PFS. Similar results were
observed in other studies, which revealed that first and second-
generation EGFR-TKIs were ineffective in patients with primary
T790M mutations (PFS <3 months) (56, 57). Osimertinib showed
better efficacy, with a PFS and OS of 17.0 months (95% CI, 14.0–
20.0 months) and 29.9 months, respectively, for 18 patients with a
primary T790M mutation (58). Another study by Zhang et al. (59)
demonstrated that for 31 patients harboring compound EGFR
mutations with primary T790M or exon 20 insertion and
sensitive mutations, the median PFS for the patients treated with
osimertinib (n = 15) was longer than that for patients treated with
first-generation EGFR-TKIs (n = 16) (18.0 vs. 1.2 months;
p < 0.001).

Previous studies showed that first-generation EGFR-TKIs had
poor efficacy in patients with uncommon mutations (alone or as
part of a compound mutation) (60, 61), while second-generation
TKI afatinib had better activity (ORR 71.1%; median PFS 10.7
months) (57). Thus, afatinib has been approved by the United
States Food and Drug Administration as first-line treatment for
patients with uncommon EGFR mutations. A recent pooled
analysis confirmed the efficacy of first-line afatinib in patients
with uncommon compound mutations (n = 35), with an ORR of
TABLE 1 | Tyrosine kinase inhibitor responses of patients with concurrent alterations from literature review.

Case Source Gender Age Smoking
history

Histology Stage Genotype Targeted agents
(Treatment line)

Response PFS, mo Year

1 Benesova
(20)

Male 74 Yes Squ. IIIA EGFR 19del+KRAS Gefitinib PR 3 2010

2 Benesova
(20)

Male 65 No Ade. IV EGFR 19del+KRAS Gefitinib PR 7 2010

3 Benesova
(20)

Female 71 No Ade. IV EGFR L858R+KRAS Erlotinib PR 5 2010

4 Zhuang (21) Male 53 No NSCLC IV EGFR L858R+KRAS+ROS1 Crizotinib (Second) PD 2019
4 Zhuang (21) Male 53 No NSCLC IV EGFR L858R+KRAS+ROS1 Icotinib (Third) PR 27.5 2019
5 Zhuang (21) Male 52 Yes NSCLC IV EGFR L858R+KRAS+ROS1 Gefitinib (First) PR 12.7 2019
6 Lai (22) 62 No NSCLC EGFR L858R+MET

amplification
Erlotinib (First) PD <1 2019

6 Lai (22) 62 No NSCLC EGFR L858R+MET
amplification

Crizotinib (Second) PR 2019

7 Li (23) 68 Yes Squ. IV EGFR 19del+MET amplification Icotinib PD 2019
7 Li (23) 68 Yes Squ. IV EGFR 19del+MET amplification Crizotinib PR 2019
8 Gainor (24) 73 No Ade. IV EGFR L858R+MET

amplification
Erlotinib PD <1 2016

8 Gainor (24) 73 No Ade. IV EGFR L858R+MET
amplification

Erlotinib plus
crizotinib

PR 2016
December 2020
 | Volume 10
 | Article 61
PFS, progression-free survival; mo, months; Squ, Squamous cell carcinoma; PR, partial response; Ade, adenocarcinoma; NSCLC, non-small cell lung cancer; PD, progressive disease.
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TABLE 2 | Main characteristics of available studies.

DCR Median
PFS, mo

Median
OS, mo

Rebiopsy with
EGFR T790M

71.7% 9.5

100% 18.2
86.7% 9.7
85.7% 9.6
16.7% 1.4
93.8% 8.1

89.3% 11.9
8.1 22.4

12.7 24.7
4.9 12.3
8.1 16.4

12.5

14.7
70%

88%
42% 4.2 16.2
87% 12.5 32.3

4.2 7.6
16.8 NR
7 25 1/4 (25%)

15 32 3/5 (60% )
6.5 15.5 1/4 (25%)
19 NR 2/2 (100% )

96% 10 5/11(45%)

85% 16.8 9/13 (69% )
100%

88%
8.9 17.8

12.8 26.6

) 7.8 14.6
9) 11.1 14.5

83.3% 12 25.1

84% 8.8 21.4

(Continued)
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Source Year Targeted agents
(Treatment line)

Patients Group or subgroup N ORR

Complex EGFR mutations (intra-EGFR co-mutation)
Zhang (25) 2018 EGFR-TKIs (First) EGFRm advanced

lung ade.
Intra-EGFR mutations 46 52.2%

Group A (19del+L858R) 12 75%
Group B (19del/L858R+atypical mutations) 15 60%
Group C (double atypical mutations) 7 71%
Group D (with a primary drug-resistant pattern) 12 8.3%

Keam (26) 2013 Gefitinib/erlotinib EGFRm locally
advanced or
metastatic NSCLC

Intra-EGFR with classical mutation 16 68.8%

Single classical mutations (19del/L858R ) 269 74.8%
Wu (27) 2008 Gefitinib (≥First) EGFRm stage IIIB/

IV lung ade.
Intra-EGFR co-mutations 19 63%

Co-mutations with classical mutation (19del/L858R ) 12 83%
Co-mutations without classical mutation 7 29%
Single classical mutations (19del/L858R ) 168 73%

TP53
Kim (28) 2018 Gefitinib/erlotinib/

afatinib
EGFRm advanced
NSCLC

Concurrent TP53 mutations 43

TP53 wild type 32
Canale (29) 2017 Gefitinib/erlotinib/

afatinib/dacomitinib (First)
EGFRm NSCLC Concurrent TP53 mutations 37

TP53 wild type 86
Concurrent TP53 exon 8 mutations
TP53 exon 8 wild type
19del with TP53 exon 8 mutations
19del with TP53 exon 8 wild type

VanderLaan (30) 2017 Gefitinib/erlotinib/
afatinib

EGFRm stage IV
recurrent NSCLC

Concurrent TP53 mutations 7 71.4%

TP53 wild type 9 88.8%
19del with TP53 mutations 4 75%
19del with TP53 wild type 5 100%

Labbé (31) 2017 Gefitinib/erlotinib (First) EGFRm advanced
or recurrent NSCLC

Concurrent TP53 mutations 24 54%

TP53 wild type 36 67%
Labbé (31) 2017 Third generation

EGFR-TKIs
Acquired T790M Concurrent TP53 mutations 3 100%

TP53 wild type 8 88%
Kim (28) 2018 Third generation

EGFR-TKIs
Acquired T790M Concurrent TP53 mutations 50

TP53 wild type 32
PIK3CA
Eng (32) 2015 EGFR-TKIs EGFRm ade. Concurrent PIK3CA mutations 10 83% (5/6

PIK3CA wild type 32 62% (18/2
Wu (33) 2016 Gefitinib/erlotinib/

afatinib
EGFRm ade. Concurrent PIK3CA mutations 6 66.7%

PIK3CA wild type 338 78.7%

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 2 | Continued

ORR DCR Median
PFS, mo

Median
OS, mo

Rebiopsy with
EGFR T790M

2.6 13.2

10.3 24.3

80% 11.2
80% 11.2 18.5

65.5% 13.2 21.3
40% 1.9

73.9% 6.9 23.7
63.2% 10.3 36.2

62.1% 11.4 27.1
66.7% 11.1

65% 12.5 36.2

62.5% 8.2
9.6

16.7% 2.42
57.1% 11.09

7.6 16.8
15.9 33

74.4% 12.2
53.9% 13.1

35.7%
(5/14)

3.8

66.7%
(12/18)

6

67.3%
(35/52)

9.5

1.6 10.1
7.3 38.2

38.9% 5.9 1/10 (10%)
56.4% 12.8 5/14 (35.7% )
65.6% 12.5 36/67 (53.7%)

(Continued)
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Source Year Targeted agents
(Treatment line)

Patients Group or subgroup N

PTEN
Kim (28) 2018 Third generation

EGFR-TKIs
Advanced NSCLC with acquired T790M Concurrent PTEN mutations 3

PTEN wild type 79
ALK
Yang (34) 2014 EGFR-TKIs (First) Advanced NSCLC Concurrent EGFR and ALK alterations 13
Lou (35) 2016 EGFR-TKIs (First) EGFRm advanced

NSCLC
Concurrent EGFR and ALK alterations 10

Single EGFR mutation 84
ALK-TKIs (≥Second) Advanced NSCLC

with ALK
rearrangement

Concurrent EGFR and ALK alterations 5

Single ALK rearrangement 23
Zhao (36) 2019 First generation

EGFR-TKIs
EGFRm advanced
NSCLC

Concurrent EGFR and ALK alterations 19

Single EGFR mutation 95
Crizotinib Advanced NSCLC

with ALK
rearrangement

Concurrent EGFR and ALK alterations 12

Single ALK rearrangement 60
KRAS
Zhuang (21) 2018 EGFR-TKIs EGFRm NSCLC Concurrent EGFR and KRAS alterations 8

Single EGFR mutation 100
Rachiglio (37) 2019 EGFR-TKIs Advanced or

metastatic NSCLC
concurrent EGFR and KRAS alterations 14

VAF of KRAS higher than EGFR 6
VAF of KRAS lower than EGFR 8

MET
Noro (38) 2015 Gefitinib EGFRm ade. MET FISH positive 11

MET FISH negative 24
Lai (22) 2019 EGFR-TKIs (First) EGFRm NSCLC MET FISH high 39

MET FISH low 115
PD-L1
Su (39) 2018 EGFR-TKIs EGFRm advanced

NSCLC
PD-L1 strong expression

PD-L1 weak expression

PD-L1 negative expression

Hsu (40) 2019 EGFR-TKIs EGFRm ade. PD-L1≥50% 16
PD-L1<1% 86

Yang (41) 2020 EGFR-TKIs EGFRm ade. PD-L1≥50% 18
PD-L1 1-49% 39
PD-L1 0% 96
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77.1% and a median DOR of 16.6 months (62). In addition,
osimertinib demonstrated moderate efficacy with an ORR of 50%
and a median PFS of 8.2 months (62). Furthermore, some studies
found that these patients had a significantly lower incidence of an
acquired T790M mutation (63). Considering that patients with
complex EGFR mutations and a secondary T790M mutation
have a shorter PFS and OS when subsequently treated with
osimertinib (64), first-line osimertinib is a choice for these
patients. Additional studies on EGFR-TKIs efficacy focused
specifically on this subgroup of patients are needed.

Collectively, it is difficult to analyze the efficacy of EGFR-TKIs
in patients with uncommon complex EGFR mutations because
almost 200 EGFR mutation types have been identified so far, and
uncommon mutations have great heterogeneity (25, 65). It
appears that afatinib and osimertinib are better options for
these patients; however, more studies with larger populations
are needed. Osimertinib provided a great survival benefit for
patients harboring complex mutations with a primary T790M or
an exon 20 insertion that had de novo resistance to first and
second-generation TKIs and should be taken into consideration
for treatment for this subset of patients.

TP53 Mutations
p53 can induce cell cycle arrest, senescence, and apoptosis and,
thus, regulates the response to various cellular stress signals (66).
Mutations in the tumor suppressor TP53 gene, which encodes
p53, are found in 35–55% of NSCLC cases, more prevalent in
squamous cell carcinoma than adenocarcinoma (67), and highly
correlated with smoking habits (68). TP53 mutations may have a
negative prognostic effect for NSCLC (69).

TP53 is the most prevalent co-alteration observed in EGFR-
mutant NSCLC patients, with a frequency of 55–65% (8, 28, 70).
Preclinical studies have shown a link between TP53 status and
EGFR-TKI response (71–73). Apoptosis induced by gefitinib in
NSCLC cell lines requires wild-type p53, which can induce Fas
and caspase-dependent cell death, thus increasing TKI
sensitivity. In contrast, gefitinib-induced apoptosis is reduced
in mutated p53 cells (71). Some in vitro models of other tumor
types also demonstrated a correlation between TKI response and
TP53 mutation, especially in urothelial carcinoma (74, 75).
Several studies revealed that patients with coexisting TP53
mutations treated with EGFR-TKIs showed a trend toward
lower ORR, shorter PFS, and OS compared to patients with
wild-type TP53 that did not reach statistical significance (28–31,
68). However, a recent meta-analysis indicated significantly
poorer prognosis for patients with concurrent TP53 mutations
treated with first-line EGFR-TKIs (pooled HRs for PFS and OS of
1.69 and 1.94, respectively) (76).

Interestingly, a study focused on TP53 exon 8 mutations
demonstrated reduced responsiveness to EGFR-TKIs and worse
prognosis, mainly in patients harboring EGFR 19del (29). The
data showed that TP53 exon 8 mutations were associated with a
significantly lower DCR (42 vs. 87%; p < 0.001) and a trend
towards shorter PFS and OS compared to TP53 exon 8 wild-type
patients in the whole cohort. These differences in PFS and OS
became significant in the EGFR 19del subgroup (median PFS, 4.2
vs. 16.8 months; p < 0.001; median OS, 7.6 months vs. not
T

A
B
LE

2
|
C
on

tin
ue

d

S
o
ur
ce

Y
ea

r
T
ar
g
et
ed

ag
en

ts
(T
re
at
m
en

t
lin

e)
P
at
ie
nt
s

G
ro
up

o
r
su

b
g
ro
up

N
O
R
R

D
C
R

M
ed

ia
n

P
FS

,m
o

M
ed

ia
n

O
S
,m

o
R
eb

io
p
sy

w
it
h

E
G
FR

T
79

0M

B
ro
w
n
(4
2)

20
19

O
si
m
er
tin
ib

(F
irs
t)

EG
FR

m
N
S
C
LC

P
D
-L
1
po

si
tiv
e

28
79

%
18

.4
P
D
-L
1
ne

ga
tiv
e

26
85

%
18

.9
E
rlo

tin
ib
/g
efi
tin
ib

(F
irs
t)

EG
FR

m
N
S
C
LC

P
D
-L
1
po

si
tiv
e

24
71

%
6.
9

P
D
-L
1
ne

ga
tiv
e

28
82

%
10

.9
B
IM

Ta
ke

uc
hi

(4
3)

20
19

G
efi
tin
ib

+
V
or
in
os

ta
t
(≥

S
ec

on
d)

EG
FR

m
N
S
C
LC

C
on

cu
rr
en

t
w
ith

B
IM

de
le
tio

n
po

ly
m
or
ph

is
m

12
83

.3
%

5.
2

N
,n

um
be

r;
O
R
R
,o

bj
ec

tiv
e
re
sp

on
se

ra
te
;D

C
R
,d

is
ea

se
co

nt
ro
lr
at
e;
P
FS

,p
ro
gr
es
si
on

-f
re
e
su

rv
iv
al
;m

o,
m
on

th
s;
O
S
:o

ve
ra
lls

ur
vi
va
l;
TK

Is
,t
yr
os

in
e
ki
na

se
in
hi
bi
to
rs
;E

G
FR

m
,E

G
FR

-m
ut
an

t;
ad

e,
ad

en
oc

ar
ci
no

m
a;
N
S
C
LC

,n
on

-s
m
al
lc
el
llu

ng
ca

nc
er
;N

R
:n

ot
re
ac

he
d;

V
A
F:

va
ria
nt

al
le
lic

fre
qu

en
cy
.

December 2020 | Volume 10 | Article 610923

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Guo et al. Concurrent Genetic Alterations and EGFR-TKIs
reached; p = 0.006). In addition, patients with TP53 exon 8
mutations also showed a significantly higher risk of disease
progression or death than TP53 exon 8 wild-type patients in
this subgroup (HR for PFS, 6.99; 95% CI, 2.34–20.87; p = 0.006;
HR for OS, 4.75; 95% CI, 1.38–16.29; p = 0.013).

Labbé et al. (31) found that the PFS for patients with TP53
missense mutations was significantly shorter than for TP53 wild-
type patients. This study demonstrated that the patients with
concurrent EGFR and TP53 mutations who progressed on
EGFR-TKIs treatment (n = 24) were less likely to have a
secondary EGFR T790M mutation [45% (5/11) vs. 69% (9/13);
p = 0.41]. These data are similar to the recent work of
VanderLaan et al. (30) who also showed a trend towards a
decreased acquired T790M rate in tumors with concurrent
TP53 mutations. Among the patients with secondary T790M,
12 received third-generation EGFR-TKIs (11 were evaluable).
The ORR was not significantly different between TP53 mutant
and wild-type patients in this subset [100% (3/3) vs. 88% (7/8)]
(31). The influence of co-occurring TP53 mutations on the
efficacy of third-generation EGFR-TKIs in patients with
acquired T790M mutations following initial EGFR-TKI failure
has also been explored (28). Surprisingly, patients with TP53
mutations had a significantly shorter PFS and worse OS
compared to patients with wild-type TP53 (median PFS, 8.9 vs.
12.8 months; p = 0.029; median OS, 17.8 vs. 26.6 months; p =
0.007) in this cohort.

Coexisting of certain mutation sites (e.g., exon 8 mutations) or
certain types of TP53 mutations (e.g., missense mutations) may be
related to poor EGFR-TKI efficacy, and additional studies focusing
on these different types of TP53 mutations are needed to confirm
their prognostic impact. Nevertheless, it seems that EGFR-TKIs
have lower efficacy in patients with concurrent TP53 mutations. A
combination of EGFR-TKI with antiangiogenic therapy showed
encouraging efficacy for these patients. In the RELAY study,
ramucirumab plus erlotinib first-line therapy showed a superior
PFS benefit in patients with EGFR-mutant metastatic NSCLC
compared to erlotinib alone (19.4 vs. 12.4 months; HR, 0.591; p <
0.0001). Thus, this combination may be a better choice for these
patients. Indeed, significant PFS improvement was observed in
EGFR-mutant (19del/L858R) patients with concurrent TP53
mutations (77). In the ALTER-L004 study (NCT03736837),
anlotinib plus icotinib showed encouraging efficacy and good
tolerability for previously untreated, EGFR-mutant advanced
NSCLC patients. Fourteen patients with TP53 mutations had an
ORR of 78.5% and DCR of 100% (78). Moreover, in the ACTIVE
phase III study, apatinib plus gefitinib demonstrated superior PFS as
first-line therapy in patients with EGFR-activating mutations, and
patients with TP53 exon 8 mutations significantly benefited from
this combination (HR 0.24) (79).

PIK3CA Mutation
The PI3K/AKT pathway is a downstream signaling pathway of
the HER family that is important in oncogenesis and lung cancer
progression (80, 81). PIK3CA encodes the catalytic subunit, and
PIK3CA mutations can activate the PI3K/AKT pathway (82).
PIK3CA mutations are found in about 2–5% of NSCLC cases
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(83–85) and are considered rare oncogenic drivers in NSCLC.
The majority of mutations occur in exon 9 (E545K, E545Q,
E545G, E545A, Q546R, E542K, and T536I) and exon 20
(H1047R, H1047L, M1043L, G1007R, and Y1021C), with
E545K and H1047R being the most frequent mutations (32,
33, 86, 87). In contrast to the mutual exclusivity of many
oncogenic drivers in lung cancers, PIK3CA mutations
frequently coexist with other oncogenic driver mutations,
especially EGFR and KRAS (83, 88–90). Indeed, PI3KCA
mutations have been found in approximately 3.5% of EGFR
mutation-positive patients (91) and appear to be an indicator of
resistance and poor survival for NSCLC patients treated with
EGFR-TKIs (92). In a preclinical study, the introduction of an
activated PIK3CA p.E545K mutation in exon 9 into the EGFR
mutation-positive (19del) HCC827 cell line conferred resistance
to gefitinib (93).

The role of PIK3CA mutations in predicting the efficacy of
EGFR-TKIs was first investigated by Ludovini et al. (92, 94), who
reported that six patients with a PIK3CA mutation had a shorter
time to progression (TTP, median, 2.3 vs. 6.0 months; p = 0.01)
and OS (median, 9.9 vs. 30.2 months; p < 0.001) after treatment
with gefitinib or erlotinib. It should be mentioned that this study
included patients with an unselected EGFR mutation status, with
75.3% (125/166) having a wild-type EGFR. Only two of the six
PIK3CA-mutant patients had a concurrent EGFR mutation. One
patient had an EGFR S784F mutation in exon 20 and
experienced progressive disease (PD) on EGFR-TKI treatment.
The second patient with EGFR 19del showed a partial response
(PR) to erlotinib but experienced treatment failure after four
months of therapy.

Three studies directly compared the efficacy of EGFR-TKIs in
EGFR-mutant patients with or without concomitant PIK3CA
mutations. Eng et al. (32) found that patients with concurrent
PIK3CAmutations had a lower ORR (62% vs. 83%; p = 0.80) and
shorter median TTP (7.8 vs. 11.1 months; p = 0.84) to EGFR-
TKIs. However, these differences were not statistically significant,
and these two groups had the same median duration of EGFR-
TKI therapy (14.6 months; p = 0.65). A prospective study also
explored the impact of PIK3CA mutations on the clinical
characteristics and treatment response to EGFR-TKIs in lung
adenocarcinoma (33). Of the 344 patients enrolled, six had
coexisting PIK3CA mutations. These patients had a similar
response to EGFR-TKIs as patients with wild-type PIK3CA
(ORR, 66.7 vs. 78.7%; p = 0.476). Interestingly, these PIK3CA-
mutant patients showed a tendency of longer PFS (median, 12.0
vs. 8.8 months) and OS (median, 25.1 vs. 21.4 months) compared
to those with wild-type PIK3CA, although the differences were
not significant (p = 0.401 and p = 0.247, respectively). These data
are contrary to the Eng study described above (32). However, a
recent study analyzing eight patients with coexisting PIK3CA
mutations in a cohort of 54 EGFR-mutant advanced NSCLC
patients treated with first-generation EGFR-TKIs found that
concurrent PIK3CA mutations were significantly associated
with a longer PFS compared to wild-type PIK3CA (95).
Interestingly, further study revealed a domain-dependent effect
of the PIK3CA mutations on PFS. Mutations in the p85 binding
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domain (R88Q, R108H, and K111E) were associated with an
improved PFS, while mutations in the kinase (Y1021H and
H1047R), helical (E542K), and C2 (N345K) domains were
associated with a worse PFS (95). Although these findings need
to be validated in larger cohorts, they provide a clue for
understanding the controversial results of the described studies.

In summary, the available PIK3CA studies had limited sample
sizes and inconsistent results. Therefore, additional studies on
PIK3CA mutations in different domains and their impact on
EGFR-TKI efficacy in a larger population are needed. Based on the
present results, we believe that decision-making regarding whether
to initiate EGFR-TKI therapy in the clinic should not be affected
by the presence of a concurrent PIK3CA mutation.

PTEN Alterations
Gene of phosphate and tension homolog deleted on chromosome
ten (PTEN) is a tumor suppressor gene and master negative
regulator of the PI3K/AKT pathway (81, 96). PTEN inactivation,
which can be caused by several mechanisms (e.g., decreased
protein levels, mutations, loss of heterozygosity, and epigenetic
silencing (97)), plays an important role in lung cancer oncogenesis
and progression (81, 96). Indeed, it is a frequent event in NSCLC.
Such a loss in PTEN function can constitutively stimulate the
PI3K/AKT pathway and increase cellular proliferation (96) and
may be associated with EGFR-TKI sensitivity (98–100).

Loss of PTEN occurs in more than 40% of NSCLC cases and
is associated with poor clinical outcome (101–104). This
association appears to be true for EGFR-mutant patients
treated with EGFR-TKIs. Wang et al. (105) discovered that for
169 advanced NSCLC patients who harbored EGFR-sensitive
mutations treated with EGFR-TKIs, patients with concurrent
PTEN deletion had a shorter PFS and OS than those with intact
PTEN (HR for PFS, 3.64; 95% CI, 1.47–9.00; HR for OS, 2.86;
95% CI, 1.04–7.89). In addition, both PTEN deletion (HR, 4.29;
95% CI, 1.72–10.70) and low PTEN protein expression (HR,
1.96; 95% CI, 1.22–3.13) were independent predictors of worse
PFS for patients treated with EGFR-TKIs. In contrast, high
PTEN expression has been reported to be a significant
favorable prognostic marker (104). Endoh et al. (106) studied
78 patients with recurrent disease after surgical resection who
were treated with gefitinib, and found that high PIK3CA and
PTEN expression levels were associated with prolonged OS. In
addition, the longest OS was observed in EGFR-mutant patients
with concomitant high PTEN expression.

PTEN mutation is rare in NSCLC (2–5% of adenocarcinomas)
but also a poor prognostic factor for EGFR-TKI treatment. Kim
et al. (28) reported three patients with concurrent PTEN mutations
out of 82 patients who acquired the T790M mutation following
initial EGFR-TKI failure. They observed that the PTEN mutation
was associated with significantly shorter PFS (median, 2.6 vs. 10.3
months; p = 0.001) and worse OS (median, 13.2 vs. 24.3months; p =
0.005) for third-generation EGFR-TKIs.

These results provide some information about the efficacy of
EGFR-TKIs in patients with concurrent PTEN alterations; however,
further research is needed to confirm these findings to determine
whether they can assist clinical selection for EGFR-TKI treatment.
Frontiers in Oncology | www.frontiersin.org 8
CONCURRENT DRIVER GENE
ALTERATIONS

ALK Rearrangement
The anaplastic lymphoma kinase (ALK) rearrangement is an
oncogenic driver that occurs in approximately 5% of NSCLC
patients (107). ALK-TKIs are recommended as first-line therapy
for these patients. Early studies have suggested that ALK
rearrangements are mutually exclusive with EGFR mutations
(108). However, recent reports have described the incidence of
concomitant EGFR mutations and ALK rearrangement at a rate
of 0.45–1.6% in patients with NSCLC, accounting for 3.9–13.6%
of EGFR-mutant and 15.4–18.8% of ALK-rearranged patients
(17, 34, 36, 109). With the increased use of next-generation
sequencing (NGS)-based mutational profiling, the detection of
co-alterations is expected to increase.

EGFR-TKIs and ALK-TKIs play irreplaceable roles in treating
NSCLC patients with single oncogenic driver alterations; however,
their effects are controversial in double-positive patients. Yang
et al. (34) revealed that 13 out of 977 NSCLC patients had co-
altered EGFR and ALK. Ten patients received first-line EGFR-
TKIs, with an ORR of 80% and a median PFS of 11.2 months (95%
CI, 5.6–16.8). Four patients received crizotinib, with three of them
first receiving first-line EGFR-TKIs. Of these four patients, two
responded to EGFR-TKI but not to crizotinib, while one had de
novo resistance to the EGFR-TKIs but was responsive to crizotinib.
The fourth patient, who received first-line crizotinib, achieved a
PR and 15.1 months of PFS but did not respond to subsequent
EGFR-TKI treatment. The authors further found that the diverse
responses to the ALK- and EGFR-TKIs observed in the ALK/
EGFR co-altered patients were associated with phospho-EGFR
and phospho-ALK levels. Overall, it seems that patients with
EGFR/ALK co-alterations had more favorable responses to first-
line EGFR-TKIs in this study.

Lou et al. (35) showed that the ORR (p = 0.57) and median
PFS (HR, 0.95; 95% CI, 0.49–1.84; p = 0.87) were 80% and 11.2
months for EGFR/ALK-co-altered patients (n = 10) treated with
first-line EGFR-TKIs and 65.5% and 13.2 months for single
EGFR-mutant patients (n = 84). A less favorable result for
second or further-line crizotinib therapy was found for double-
positive patients (n = 5), with an ORR (p = 0.29) of 40% and a
median PFS of 1.9 months (HR, 0.40; 95% CI, 0.15–1.10; p =
0.08) compared to 73.9% and 6.9 months for single ALK-
rearranged patients (n = 23). The median OS for the single
EGFR-mutant, single ALK-rearranged, and EGFR/ALK co-
altered patients were 21.3, 23.7, and 18.5 months, respectively
(p = 0.06). There was a statistically significant difference in OS
between the single ALK-rearranged and EGFR/ALK co-altered
patients (p = 0.03). Five EGFR/ALK co-altered patients received
sequential treatment with both EGFR-TKIs and crizotinib. Of
the four patients that received EGFR-TKI treatment followed by
crizotinib, three had good responses and prolonged survival with
the first-line EGFR-TKIs but had primary resistance to
subsequent crizotinib. The patient that received crizotinib
followed by EGFR-TKIs benefited from the crizotinib
treatment, but not from the subsequent EGFR-TKI treatment.
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They also found that after developing resistance to the EGFR-
TKIs, activation of ALK may be lower than the EGFR signaling
pathway and the abundance of ALK rearrangement may be
lower, which could account for the lack of crizotinib efficacy in
EGFR/ALK co-altered patients. According to these two studies,
first-line EGFR-TKI seems to be a reasonable therapy for EGFR/
ALK co-altered patients and single ALK-TKI might be excluded
after progressing on EGFR-TKIs. However, these studies
contained a limited number of EGFR/ALK co-altered patients
who used ALK-TKI as first-line therapy.

A recent study by Zhao et al. (36) presented conflicting results.
They identified 26 cases (0.45%) of concomitant EGFR mutations
and ALK rearrangement among 5816 NSCLC patients. There
were no statistically significant differences in the ORR and PFS
for EGFR-TKI treatment between patients with EGFR mutations
alone and EGFR/ALK double-positive patients (ORR, 62.1% [59/
95] vs. 63.2% [12/19]; p = 0.93; median PFS, 11.4 vs. 10.3 months;
p = 0.87). Additionally, the ORR and median PFS for crizotinib
were 65% (39/60) and 12.5 months for ALK-rearranged alone
and 66.7% (8/12) and 11.1 months for double-positive patients,
respectively. No statistically significant differences were found
between these two groups (ORR, p = 1.00; HR for PFS, 1.39; 95%
CI, 0.69–2.80; p = 0.28). Furthermore, nine patients were treated
with both EGFR-TKIs and crizotinib, eight patients received
crizotinib after progression on EGFR-TKI treatment, and the
remaining patient received crizotinib before the first-generation
EGFR-TKIs. In this subgroup, the ORR was 55.6% (5/9) for
EGFR-TKIs and 66.7% (6/9) for crizotinib. A median PFS of 15.0
months was observed when crizotinib was used as a sequential
therapy after failure with EGFR-TKI. Crizotinib was
administered as first-line therapy in four patients (three
received crizotinib monotherapy, and one received crizotinib
combined with first-generation EGFR-TKI). The ORR in this
subgroup was 75.0% (3/4). These results demonstrated that first-
generation EGFR-TKIs and crizotinib in patients with
concomitant EGFR and ALK alterations were as efficacious as
in patients with single driver gene alterations. Furthermore,
contrary to the first two studies mentioned above, crizotinib
efficacy as a subsequent therapy after EGFR-TKI treatment failure
was not influenced by the EGFR-TKIs. Thus, sequential
treatment with EGFR-TKIs and crizotinib could be considered
in EGFR and ALK double-positive patients. However, a study in
Chinese patients found that EML4-ALK/EGFR and non-EML4-
ALK/EGFR co-alterations displayed different clinical
characteristics and responses to EGFR-TKIs. Non-EML4-ALK
co-alterations are likely to occur as a resistance mechanism
against the EGFR-TKIs, and dual-TKI therapy instead of
single-TKI therapy might be a better choice for this subset of
patients (110).

In summary, EGFR/ALK co-alterations can define a specific
subgroup with tumor heterogeneity and diverse responses. Given
the limited number of patients in these studies, it was not feasible
to determine the best treatment strategy. There are different
theories about the coexistence of EGFR mutations and ALK
rearrangement in NSCLC—the two gene alterations coexist in
different areas (i.e., different cells) of the tumor (111) or are
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present in the same tumor cells (112). These two scenarios can be
distinguished by fluorescence in situ hybridization (FISH) and
immunohistochemistry (IHC). If the two alterations exist in
different tumor cells, there might be a dominant driver clone.
Thus, which agent becomes more effective might depend on the
levels of the relevant gene alterations. Detection of the
abundance of EGFR mutations and ALK rearrangements,
levels of phosphorylation of EGFR and ALK and downstream
proteins, their dynamic changes, and re-biopsy after progression
might help guide the treatment selection and predict the efficacy
of TKIs in clinical practice (34, 35). If tumor cells carry both
EGFR and ALK alterations, a combination of both TKIs may be a
potentially reasonable choice. Still, it is a challenging issue and
requires detailed investigation.

KRAS Mutation
KRAS is one of the commonly detected gene mutations in
NSCLC and present in approximately 20–30% of lung
adenocarcinomas (113, 114). It rarely overlaps with other
driver mutations and is thought to cause inherent resistance to
EGFR-TKIs (114–117). However, studies have reported that 5.8–
35.8% of EGFR-mutant patients have concurrent KRAS
alterations (17, 118). Studies on the efficacy of EGFR-TKIs in
these double-positive patients have yielded conflicting results.

Zhuang et al. (21) observed an ORR to EGFR-TKIs of 62.5%
(5/8) for patients harboring EGFR/KRAS co-alterations and
receiving first-line EGFR-TKI therapy. There were no
significant differences in the PFS among patients harboring an
EGFR/KRAS co-alteration and those harboring a single EGFR
mutation (median, 8.2 vs. 9.6 months; p = 0.392). This result
suggested that KRAS mutations do not influence the efficacy of
EGFR-TKI therapy. However, Benesova et al. (20) identified
three patients with concurrent EGFR and KRAS mutations. They
all had an initial positive response to EGFR-TKI treatment;
however, the efficacy did not last long, resulting in PFS of 3, 5,
and 7 months. Rachiglio et al. (37) compared the response to
EGFR-TKI treatment between 14 patients with concurrent EGFR
and KRAS mutations, in which eight cases with dominant
variant allelic frequency (VAF) of EGFR mutations relative to
KRAS mutations. The patients with a dominant VAF of EGFR
mutations had significantly improved PFS (11.09 vs. 2.42
months; p = 0.0081) and ORR (57.1 vs. 16.7%) compared to
the remaining patients with a dominant VAF of KRAS mutations
relative to EGFR mutations.

The limited number of patients harboring double EGFR and
KRAS mutations does not allow us to draw definitive
conclusions. It can be speculated that KRAS and EGFR
mutations may be carried by two different clones, with the
initial response due to the elimination of the TKI-sensitive
clones by the targeted therapy. However, the growth of the
remaining KRAS-resistant clones may lead to a shorter PFS
(16). Overall, these studies suggested that EGFR-TKIs can be
considered as therapy for treating patients with EGFR/KRAS co-
mutations. Quantitative assessment of the allelic frequencies of
both the EGFR and KRAS mutations might better identify
patients who would benefit from EGFR-TKI treatment.
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ROS1 Rearrangements
Oncogenic ROS1 is a well-recognized and targetable driver in
NSCLC. ROS1 rearrangements occur in 1–2% of NSCLC patients
(119, 120). The triple ALK, ROS1, and MET-TKI crizotinib is
highly effective in ROS1-positive NSCLC patients (121, 122).
Patients with ROS1 rearrangements concomitantly with EGFR
are extremely rare, with a frequency of less than 1% (123). It
would be almost impossible to conduct a clinical trial to compare
the different therapeutic strategies in this subtype, although
isolated cases can provide some information.

Lambros et al. (124) identified ten patients with ROS1
rearrangements and concomitant EGFR mutations that were
treated with first-line EGFR-TKIs. Their responses included six
PR, two stable diseases (SDs), and two PDs. Second-line
crizotinib therapy was used in four patients with progressive
disease during EGFR-TKI therapy, with two PR, one SD, and one
PD observed. Interestingly, in the Zhuang study (21), two
patients harbored triple EGFR/ROS1/KRAS co-alterations. One
patient had PD after receiving second-line crizotinib and PR
after third-line icotinib (PFS: 27.5 months), whereas the other
patient had a PR after receiving gefitinib as first-line treatment
(PFS: 12.7 months).

Despite the limited data, recommending EGFR-TKI as the
first-line therapy for patients with dual EGFR and ROS1
alterations is reasonable, while crizotinib may be more useful
as a second-line treatment after EGFR-TKI progression.

MET Alteration
Mesenchymal-epithelial transition (MET) receptor is a
transmembrane tyrosine kinase. It can activate downstream
signaling pathways (e.g., RAS/RAF/MAPK and PI3K/AKT/
mTOR) by binding to the ligand hepatocyte growth factor. These
pathways play important roles in cell proliferation, survival,
migration, motility, and invasion (125–128). MET gene
amplification has been recognized as a common mechanism of
acquired resistance to EGFR-TKIs (129, 130), which encouraged
researchers to pay more attention to the role of MET in the intrinsic
resistance to these agents. In vitro studies have shown that MET
amplification in HCC827 lung adenocarcinoma cells, which harbor
EGFR 19del, mediates resistance to EGFR-TKIs (131). In addition,
the coexistence of positive MET FISH status and EGFRmutations is
associated with shorter DFS and OS after surgery in patients with
lung adenocarcinoma (132). However, the relationship between
MET FISH status and clinical outcomes for EGFR-TKI treatment
is unclear.

Two distinct processes (i.e., polysomy and amplification) lead
to MET copy-number gains (133). FISH, used to identify MET
status in many clinical trials, can distinguish polysomy and true
amplification. True MET amplification causes copy number
increases without an increase in centromeric region of
chromosome 7 (CEP7). Thus, the MET/CEP7 ratio increases.
In polysomy, a MET copy increase is associated with an increase
in the corresponding centromere. Therefore, polysomy has a
preserved MET/CEP7 ratio (133). No standard criteria for MET
positivity have been established. Two commonly used scoring
systems are PathVysion (MET/CEP7 ratio ≥ 2), which only
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includes amplification, and the Cappuzzo scoring system (≥5
MET signals per cell), which includes both polysomy and
amplification (132). MET amplification can be detected by
FISH, IHC, and NGS. Lack of platform harmonization and
thresholds for defining MET positivity has contributed to the
conflicting results.

Noro et al. (38) explored the correlations between pre-
treatment MET FISH status and OS and PFS in patients with
EGFR-mutant lung adenocarcinoma treated with gefitinib.
Eleven patients with MET FISH positivity (ten patients
exhibited high polysomy [mean MET per cell ≥5 copies]; one
patient exhibited amplification [MET gene/CEP7 ≥2 per cell])
had significantly shorter PFS and OS than 24 patients who were
MET FISH-negative (PFS, 7.6 vs. 15.9 months; p = 0.001 and OS,
16.8 vs. 33 months; p = 0.03). Thus, pre-gefitinib MET FISH
status may predict shortened PFS and OS.

Lai et al. (22) identified 52 patients with a high MET copy
number gain (CNG) using FISH (MET-high: ≥5 copies per nucleus;
polysomy: MET/CEP7 <2.0; amplification: MET/CEP7 ≥2.0) in 200
metastatic TKI-naive EGFR-mutant NSCLC patients. A total of 154
patients were treated with first-line EGFR-TKI monotherapy. The
ORR was 74.4 and 53.9% in MET-high and MET-low patients,
respectively (p = 0.033), while the median time-to-treatment failure
(TTF) was similar in these two groups (12.2 vs. 13.1 months).
However, all five patients with MET amplification had a poor or
short-lived response to the EGFR-TKI (median TTF, 5 months;
range, 1.0 to 6.4 months), suggesting that MET amplification
concurrent with CNG ≥5 affects the response to EGFR-TKI.
Furthermore, a patient harboring the EGFR L858R mutation and
a coexisting MET amplification with a CNG of 7.3 and MET/CEP7
of 3.4 experienced disease progression within four weeks after
starting erlotinib but showed significant regression of a
pulmonary lesion when treated with crizotinib monotherapy. Li
et al. (23) reported that a patient with coexisting EGFR 19del and de
novo MET amplification had disease progression after initial
treatment with icotinib, but the lung mass shrunk significantly
after switching to crizotinibmonotherapy. These data suggested that
primary MET amplification could be a possible mechanism of
intrinsic EGFR-TKI resistance, and patients harboring this genomic
alteration may benefit from MET inhibitors.

Preliminary data from several small studies demonstrated
crizotinib efficacy in patients with de novo MET amplification.
In 15 patients with de novo MET amplification (A MET/
centromere ratio [MET/CEN] ≥1.8), the ORR, PFS, and OS for
crizotinib were 73.3%, 6.5 months (95% CI, 2.7–10.3), and 31
months, respectively (134). In addition, MET and EGFR inhibitor
combination has had some effect in patients with EGFR-mutant
NSCLC that developed resistance to prior EGFR-targeted
therapies through MET gene amplification (127). A case report
revealed that this combination might also have efficacy in patients
with EGFR-mutant NSCLC and concomitant de novo MET
amplification (24). While the patient had primary resistance to
erlotinib, the tumor shrank after the addition of crizotinib to the
treatment strategy.

In summary, it is still uncertain whether MET positivity is
related to primary TKI resistance in patients with EGFR-mutant
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NSCLC, mainly due to the limited patient numbers and different
evaluating systems. Further study in larger patient populations
using uniform criteria to assess MET status is needed. MET
inhibitor monotherapy and combinations with EGFR-TKIs
appear to be potential treatment strategies for EGFR-mutant
patients with primary MET alterations but require
further validation.
OTHER BIOMARKERS

PD-L1 Expression
Programmed death-ligand 1 (PD-L1) is an immune checkpoint
protein expressed on tumor and tumor-infiltrating immune cells.
PD-L1 expression can be used as a predictive biomarker for PD-1
and PD-L1 blockade therapy (135–138). PD-1/PD-L1 antibodies,
including nivolumab, pembrolizumab, and atezolizumab, have been
approved for first- or second-line treatment of advanced NSCLC
(139). However, PD-1/PD-L1 inhibitors lack efficacy in most
NSCLC patients with EGFR mutations (140), even in those with
high PD-L1 expression (tumor proportion score [TPS] ≥50%)
(141). Positive PD-L1 expression (≥1%) occurs in about 50% of
EGFR-mutant tumors, while high PD-L1 expression (≥50%) occurs
in about 5%, which is less frequent compared to EGFR mutation-
negative tumors (42). In addition, low tumor mutational burden
and the lack of CD8+ tumor-infiltrating lymphocytes in the tumor
microenvironment in lung cancer with EGFR mutations may be
possible explanations for the lack of efficacy of PD-L1 inhibitors
(142). A potential relationship may also exist between PD-L1
expression and EGFR-TKI efficacy in EGFR-mutant lung
cancer patients.

Preclinical studies have demonstrated that EGFR activation
can facilitate immune escape by inducing PD-L1 expression
(143). Moreover, PD-L1 expression in EGFR-mutant NSCLC
cell lines can be downregulated by EGFR inhibitors (144). A
recent study revealed that EGFR-mutant NSCLC cell lines with
higher PD-L1 expression were less sensitive to gefitinib. In
addition, PD-L1 overexpression may induce epithelial-
mesenchymal transition through the activation of the TGF-b/
Smad canonical signaling pathway, leading to primary resistance
to EGFR-TKIs (145).

Earlier clinical studies that examined PD-L1 expression
generated conflicting results. Some studies showed that positive
PD-L1 expression was significantly correlated with a greater
DCR and longer PFS and OS after treatment with EGFR-TKIs,
while another study found no significant correlation between
PD-L1 expression and efficacy (146–148). Five recent studies in a
larger Asian population showed that PD-L1 expression was
associated with poor clinical outcomes in EGFR-mutant
patients treated with EGFR-TKIs. Both Soo et al. (149) and
Yoneshima et al. (150) (n = 90 and 71 EGFR-mutant NSCLC
patients, respectively) found that PD-L1 expression was
significantly associated with shorter PFS for EGFR-mutant
NSCLC patients treated with EGFR-TKIs. Three additional
studies revealed that high PD-L1 expression not only predicted
a poor response to EGFR-TKIs but was also related to primary
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resistance to these agents. In a study of 101 patients with EGFR-
mutant NSCLC, strong PD-L1 expression (TC3/IC3 ≥50% for
tumor cells [TC] or ≥10% for immune cells [IC]) was
significantly associated with decreased ORR and shortened PFS
compared to weak (TC1-2/IC1-2: 5–49% for TC or 5–9% for IC)
or negative (<5% for TC or IC) PD-L1 expression (ORR, 35.7 vs.
63.2 vs. 67.3%; p = 0.002; PFS, 3.8 vs. 6.0 vs. 9.5 months; p <
0.001), regardless of EGFR mutation (e.g., 19del or L858R) (39).
Furthermore, patients with de novo resistance to EGFR-TKIs had
a higher proportion of positive PD-L1 expression than those with
acquired resistance (66.7 vs. 30.2%; p = 0.009).

The study performed by Hsu et al. (40) included 123 EGFR-
mutant lung adenocarcinoma patients. The median PFS and OS for
the EGFR-TKIs were 1.6 months (95% CI, 1.1–2.0) and 10.1
months (95% CI, 6.4–13.8) in patients with a PD-L1 ≥50%, which
were clearly shorter than those for patients with a PD-L1 <1%
(median PFS, 7.3 months; 95% CI, 2.7–12.0; median OS, 38.2
months; 95% CI, 26.1–50.3). Therefore, higher PD-L1 expression
levels were associated with lower OS and PFS for patients with
EGFR mutations treated with EGFR-TKIs. The patients were
divided into two groups (primary resistance and disease control).
In the primary resistance group, 22.7 and 30.3% of the patients had
PD-L1 TPS ≥50 or ≥25%, respectively, while the frequencies were
only 1.8 and 3.5%, respectively, in the disease control group (both
p < 0.001). These results revealed that a higher PD-L1 expression
level was associated with a higher incidence of primary EGFR-
TKI resistance.

Yang et al. (41) performed a study with 153 EGFR-mutated lung
adenocarcinoma patients. The ORR for EGFR-TKI and PFS was
better in patients with PD-L1 expression <50% (ORR/PFS in PD-L1
0 vs. 1–49 vs. ≥50%: 65.6%/12.5 vs. 56.4%/12.8 vs. 38.9%/5.9
months, p < 0.05). The multivariate analysis showed that PD-L1
<50% was an independent prognostic factor for longer PFS (HR,
0.433; 95% CI, 0.250–0.751; p = 0.003). Furthermore, a significant
proportion of patients with TPS ≥ 50% had primary resistance to
EGFR-TKIs (44.4%). In addition, 91 patients were re-biopsied for
T790M testing upon disease progression. Tumors with higher PD-
L1 expression were less likely to develop an acquired T790M
mutation (T790M+ in PD-L1 0 vs. 1–49 vs. ≥50%: 53.7% (36/67)
vs. 35.7% (5/14) vs. 10% (1/10); p = 0.024).

Interestingly, a recent study by Brown et al. (42) revealed
that unlike with erlotinib or gefitinib, the clinical benefit offirst-
line osimertinib treatment in NSCLC patients with EGFR
mutations was unaffected by PD-L1 expression status (PFS:
PD-L1-positive (TC ≥1%) vs. PD-L1-negative patients (TC
<1%): 18.4 vs. 18.9 months). In addition, it can be inferred
from the Yang et al. study (41) that patients with higher PD-L1
expression have less of a chance to use osimertinib as
subsequent therapy because they are less likely to develop
acquired T790M mutations, suggesting that first-line
osimertinib may be a better choice for these patients.

Because immune checkpoint inhibitor (ICI) monotherapy
showed poor efficacy in patients with EGFR mutations,
different combinational strategies have been explored.
Combination therapy consisting of EGFR-TKI with ICIs or
sequential use of EGFR-TKI following ICI therapies are not
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proper choices because they showed increased grade three or
higher toxicities and increased the risk of severe immune-related
adverse events (142). Of note, in the IMpower-150 study (n = 124
EGFR-mutant NSCLC patients), atezolizumab plus bevacizumab
and chemotherapy (ABCP; n = 34) yielded a higher ORR (71 vs.
42%), DOR (11.1 vs. 4.7 months), PFS (10.2 vs. 6.9 months; HR,
0.61; 95% CI, 0.36–1.03), and OS (not evaluable [NE] vs. 18.7
months; HR, 0.61; 95% CI, 0.29–1.28) compared to bevacizumab
plus chemotherapy (BCP; n = 45) (151). In addition, toripalimab,
a PD-1 inhibitor, in combination with chemotherapy, showed
promising anti-tumor activity with a manageable safety profile in
a phase II prospective clinical trial (152). These results suggest
that chemotherapy and antiangiogenic therapy may be related to
EGFR cancer immunity; however, additional studies are required
to fully understand this relationship. Several Phase III
prospective clinical trials are ongoing to explore the efficacy
and safety of the combination of immunotherapy with
chemotherapy and/or antiangiogenic therapy in EGFR-mutant
NSCLC progressed on EGFR-TKIs, including KEYNOTE-789,
KEYNOTE-722, ORIENT-31, and JS001 study (NCT03924050).

BIM Polymorphism
BIM, also known as B-cell chronic lymphocytic leukemia/
lymphoma (Bcl-2)-like 11 (BCL2L11), is a BH3-only pro-
apoptotic member of the Bcl-2 family. BIM gene products
containing BH3 domains are required for the induction of
apoptosis by EGFR-TKIs (153–157). The BIM deletion
polymorphism is a 2,903-bp fragment deletion in intron 2 of
the BIM gene. It results in splicing of exon 3 over exon 4 in the
BIM pre-mRNA, generating an inactive BIM protein isoform
lacking the crucial BH3 domain. This BIM deletion
polymorphism occurs in 12–16% of lung cancer patients with
EGFR mutations (158, 159). It impairs EGFR-TKI-related
apoptosis and mediates intrinsic resistance to EGFR-TKIs in
EGFR-mutant NSCLC cell lines (154).

The impact of the BIM deletion polymorphism on the clinical
outcome of NSCLC patients with EGFR mutations treated with
EGFR-TKIs has been evaluated in multiple studies with
contradictory results. Some studies have shown that EGFR-
mutant NSCLC patients with the BIM deletion polymorphism
had inferior EGFR-TKI efficacy compared to those with wild-type
BIM (154, 160–164). Others found that EGFR-mutant patients
with and without the BIM deletion polymorphism had similar
clinical outcomes in response to EGFR-TKI treatment (165–168).
Several meta-analyses have indicated that the BIM deletion
polymorphism is associated with poor ORR (168–172),
consistent with other studies demonstrating that the BIM
deletion polymorphism is associated with shorter PFS in patients
with NSCLC harboring EGFRmutations who received EGFR-TKIs
(168–175). Only one study showed no significant association
between BIM status and the response to EGFR-TKIs (173).

These results suggested that BIM deletion polymorphism can
be used as a predictive biomarker for EGFR-TKI treatment.
Patients with the BIM deletion polymorphism may benefit less
from EGFR-TKI therapy. EGFR-TKI combination therapy with
histone deacetylase (HDAC) inhibitors may be one approach to
overcome the inferior outcomes conferred by the BIM deletion.
Frontiers in Oncology | www.frontiersin.org 12
A recent phase I study with 12 patients treated with the
combination of gefitinib and vorinostat (a small-molecule
HDAC inhibitor) revealed a DCR of 83.3% (10/12) at six
weeks, with a median PFS of 5.2 months (95% CI, 1.4–15.7)
(43). In addition, retrospective analysis revealed that EGFR-TKIs
plus chemotherapy conferred a significantly higher ORR (65.5 vs.
38.9%, p = 0.046), prolonged PFS (7.2 vs. 4.7 months; p = 0.008)
and a longer OS (18.5 vs. 14.2 months; p = 0.107) compared to
TKIs alone in advanced NSCLC patients with EGFR mutations
and BIM deletion polymorphism (176). The latter difference did
not reach statistical significance. Further studies are needed to
determine the clinical efficacy of these combined therapies.
CONCLUSIONS

This report described the many studies on the efficacy of EGFR-
TKIs in patients with EGFR-mutant NSCLC with coexisting intra-
EGFR or other gene mutations and molecular markers that may
predict EGFR-TKI efficacy. Most of these studies were retrospective
studies with controversial results and inconsistencies between
sample size, race, disease stage, and treatment line. In addition,
tumor heterogeneity and a combination of several concurrent genes
were not considered. Nevertheless, we presented additional
information in this field and have provided clues for clinicians to
identify which patients might be more effectively treated with
EGFR-TKIs, and those for which EGFR-TKIs would be less
effective, even though they have sensitive EGFR mutations. We
also described some available treatment strategies for patients who
might not benefit from EGFR-TKIs. To the best of our knowledge,
this is the first review on EGFR-TKI efficacy encompassing so many
specific concurrent gene mutations and other biomarkers. To
initiate appropriate therapies for each individual patient in the
future, the use of comprehensive genomic profiling should become
routine. In addition, larger populations with advanced NSCLC
stratified by uniform stage and therapy are needed to examine
these concurrent alterations and validate their importance as
prognostic factors for EGFR-TKI therapy in EGFR-mutant patients.
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