CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 17 April 2016
Accepted 24 April 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; m-xylylenediaminium; sulfate; hydrogen bonding; Hirshfeld surface analysis; fingerprint maps.

CCDC reference: 1476189

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis

Afef Guesmi, ${ }^{\text {a* }}$ Sofian Gatfaoui, ${ }^{a}$ Thierry Roisnel ${ }^{\text {b }}$ and Houda Marouani ${ }^{\text {a }}$

${ }^{\text {a Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, } 7021 \text { Zarzouna Bizerte, Université de Carthage, }}$ Tunisia, and ${ }^{\mathbf{b}}$ Centre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du, Général Leclerc, 35042 Rennes, France. *Correspondence e-mail: afefguesmi2016@yahoo.fr

The crystal structure of the title salt \{systematic name: [1,3-phenylenebis(methylene)]bis(azanium) sulfate\}, $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{SO}_{4}{ }^{2-}$, consists of infinite (100) sheets of alternating organic and inorganic entities The m-xylylenediaminium cations are linked to the sulfate anions by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and asymmetric bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds, generating a three-dimensional network. A weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ contacts.

1. Chemical context

m-Xylylenediaminum compounds have been intensively investigated due to their good antimicrobial activity against various antibacterial and antifungal species (Murugesan et al., 2015). Sequestration of carbon dioxide by m-xylylenediamine with formation of a crystalline adduct has been reported (Lee et al., 2013). In addition, polyamides of m-xylylenediamine possess dielectric properties (Murata et al., 1999). In this work, as part of our studies in this area, we report the synthesis, the structural investigation and the Hirshfeld surface analysis of a new organic sulfate salt, $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}\right) \mathrm{SO}_{4}$, (I).

2. Structural commentary

The asymmetric unit of (I) comprises one m-xylylenediaminium cation and one sulfate anion (Fig. 1). Both ammonium groups in the m-xylylenediaminium cation adopt a trans conformation with respect to the benzene ring. The same conformation has been observed in $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{Cl}^{-}$(Cheng \& Li, 2008), but in $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$(Gatfaoui et al., 2014) the cis conformation occurs. Thus, the cation conformation is modified when substituting sulfate or chloride anions by nitrates. Examination of the organic cations shows that the bond distances and angles show no significant differences from those in other compounds involving the same organic groups (Cheng \& Li, 2008; Gatfaoui et al., 2014). The aromatic ring of

Figure 1
A view of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
the cation is essentially planar with an r.m.s. deviation of $0.0014 \AA$.

In the sulfate anion, the $\mathrm{S}-\mathrm{O}$ bond lengths range from 1.4673 (12) to 1.4895 (11) \AA. Their similar values confirm the absence of a proton in this anion. It is worth noting that the $\mathrm{S}-\mathrm{O} 4$ distance is the longest because O 4 accepts three hydrogen bonds, one of which is considered to be strong (Blessing, 1986; Brown, 1976). The average values of the $\mathrm{S}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{S}-\mathrm{O}$ angles are $1.4799 \AA$ and 109.46°, respectively. Similar geometrical features have also been observed in other crystal structures (Marouani et al., 2011a,b). The calculated average values of the distortion indices (Baur, 1974) corresponding to the different angles and distances in the SO_{4} tetrahedron $[\mathrm{DI}(\mathrm{SO})=0.006, \mathrm{DI}(\mathrm{OSO})=0.008$, and $\mathrm{DI}(\mathrm{OO})=0.003$] show a slight distortion of the OSO angles if

Figure 2
The 12 -membered ring motif $R_{4}^{4}(12)$ in (I). C atoms have been omitted for clarity.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.88(2)$	$1.88(2)$	$2.7271(17)$	$160.1(19)$
$\mathrm{N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.88(2)$	$2.54(2)$	$3.1461(18)$	$126.1(16)$
$\mathrm{N} 1-\mathrm{H} 2 N 1 \cdots \mathrm{O} 1^{\text {ii }}$	$0.90(3)$	$1.85(3)$	$2.7191(17)$	$162(2)$
$\mathrm{N} 1-\mathrm{H} 3 N 1 \cdots \mathrm{O} 3^{\mathrm{iii}}$	$0.88(3)$	$2.03(2)$	$2.8264(17)$	$150(2)$
$\mathrm{N} 1-\mathrm{H} 3 N 1 \cdots \mathrm{O} 2^{\text {iii }}$	$0.88(3)$	$2.54(2)$	$3.1733(18)$	$129.4(18)$
$\mathrm{N} 2-\mathrm{H} 1 N 2 \cdots 4^{\text {iv }}$	$0.84(2)$	$1.97(2)$	$2.8096(17)$	$177(2)$
$\mathrm{N} 2-\mathrm{H} 2 N 2 \cdots \mathrm{O} 1^{\mathrm{v}}$	$0.80(3)$	$2.26(3)$	$2.9537(18)$	$145(2)$
$\mathrm{N} 2-\mathrm{H} 3 N 2 \cdots \mathrm{O} 3$	$1.00(3)$	$1.92(3)$	$2.9021(19)$	$168(3)$
$\mathrm{N} 2-\mathrm{H} 3 N 2 \cdots \mathrm{O} 4$	$1.00(3)$	$2.52(3)$	$3.0502(18)$	$113(2)$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3$	0.93	2.47	$3.3050(17)$	150

Symmetry codes: (i) $-x, y+\frac{1}{2},-z-\frac{3}{2}$; (ii) $x+1, y, z$; (iii) $-x, y-\frac{1}{2},-z-\frac{3}{2}$; (iv)
$-x-1,-y-1,-z-2 ;(\mathrm{v})-x-1,-y,-z-2$.
compared to the SO and OO distances. Hence, the SO_{4} group can be considered as a rigid regular arrangement of oxygen atoms, with the sulfur atom slightly displaced from the centre of gravity.

3. Supramolecular features

The packing of the title salt is dominated by hydrogen bonding, as detailed in Table 1. Ten distinct hydrogen bonds of types $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ involve all of the oxygen atoms of the sulfate anions as acceptors, However, only two of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are considered as strong according to the Blessing and Brown criteria (Blessing, 1986; Brown, 1976).

The packing for (I) generates rings with an $R_{4}^{4}(12)$ motif (Fig. 2) and the overall structure of the title compound consists of infinite sheets of organic and inorganic entities propagating parallel to (100). Each organic dication is connected to six different sulfate anions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional supramolecular network (Fig. 3).

Figure 3
Projection of (I) along the b axis. H atoms not involved in hydrogen bonding have been omitted.

Figure 4
Hirshfeld surface mapped over $d_{\text {norm }}$ showing hydrogen bonds with neighbouring sulfate groups. The surfaces are shown as transparent to allow visualization of the orientation and conformation of the functional groups. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are represented by red and blue dotted lines, respectively.

The inter-planar distance between nearby benzene rings in the crystal structure is in the vicinity of $4.63 \AA$, which is much longer than $3.80 \AA$, value required for the formation of $\pi-\pi$ interactions (Janiak, 2000).

4. Hirshfeld analysis

The three-dimensional Hirshfeld surfaces and two-dimensional fingerprint plots of (I) were prepared using Crystal-

Figure 5
Fingerprint plots of the major contacts: (a) $\mathrm{H} \cdots \mathrm{O},(b) \mathrm{H} \cdots \mathrm{H},(c) \mathrm{C} \cdots \mathrm{H}$ and (d) $\mathrm{O} \cdots \mathrm{O}$.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{SO}_{4}{ }^{2-}$
234.27

Monoclinic, $P 2_{1} / c$
150
12.841 (1), 6.0989 (5), 15.9642 (9)
125.791 (4)
1014.15 (13)

4
Mo $K \alpha$
0.32
$0.56 \times 0.44 \times 0.30$

Bruker APEXII

Multi-scan (SADABS; Bruker, 2014)
0.735, 0.910

10992, 2293, 2131
0.048
0.649
$0.038,0.114,1.14$
2293
160
H atoms treated by a mixture of independent and constrained refinement
$0.38,-0.61$

Computer programs: APEX2 (Bruker, 2014) and SAINT (Bruker, 2014), XPREP (Sheldrick, 2015), SIR97 (Altomare et al., 1999), SHELXL2014/7 (Sheldrick, 2015) and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012).

Explorer (Wolff et al., 2012) and are shown in Fig. 4 and Fig. 5, respectively.

The $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ contacts, which are attributed to $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, appear as two sharp symmetric spikes in the two-dimensional fingerprint maps with a prominent long spike at $d_{\mathrm{e}}+d_{\mathrm{i}}=1.8 \AA$. They have the most significant contribution to the total Hirshfeld surfaces (51.4%). The $\mathrm{H} \cdots \mathrm{H}$ contacts appear in the middle of the scattered points in the two-dimensional fingerprint maps with a single broad peak at $d_{\mathrm{e}}=d_{\mathrm{i}}=1 \AA$ and a percentage contribution of 32.1%. The 15.9% contribution from the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts to the Hirshfeld surface, generally slightly favoured in a sample of CH aromatic molecules, results in a symmetric pair of wings, Fig. 5c. The O $\cdots \mathrm{O}$ contacts, which represent only 0.2% of the Hirshfeld surface, Fig. 5d, are extremely impoverished in the crystal (enrichment ratio $E_{\mathrm{OO}}=0.03$) (Jelsch et al. 2014), as the oxygen atoms bound to sulfur and the SO_{4} group as a whole are electronegative, therefore the $\mathrm{O} \cdots \mathrm{O}$ contacts are electrostatically repulsive.

5. Synthesis and crystallization

Equimolar solutions of m-xylylenediamine dissolved in methanol and aqueous sulfuric acid were mixed together and stirred for about 1 h . Crystals of (I) were formed as the solvent evaporated over a few days at room temperature: these were
filtered off, dried and repeatedly recrystallized as colourless prisms to enhance the purity of the product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to N atoms were located from a difference map and were allowed to refine. The rest of the H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) or $0.97 \AA$ (methylene) with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education Scientific Research.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.

Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, H. \& Li, H. (2008). Acta Cryst. E64, o2060.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. \& Marouani, H. (2014). Acta Cryst. E70, o398-o399.

Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Jelsch, C., Ejsmont, K. \& Huder, L. (2014). IUCrJ, 1, 119-128.
Lee, S. W., Lim, S. W., Park, S. H., Ha, K., Kim, K. S., Oh, S. M., Lee, J. Y. \& Seo, G. (2013). Korean J. Chem. Eng. 30, 2241-2247.

Marouani, H., Rzaigui, M. \& Al-Deyab, S. S. (2011a). Eur. J. Chem. 8, 1930-1936.
Marouani, H., Rzaigui, M. \& Al-Deyab, S. S. (2011b). X-ray Struct. Anal. Online, 27, 25-26.
Murata, Y., Tsunashima, K. \& Koizumi, N. (1999). Jpn. J. Appl. Phys. 38, 5148-5153.
Murugesan, V., Saravanabhavan, M. \& Sekar, M. (2015). J. Photochem. Photobiol. B, 148, 358-365.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). CrystalExplorer. Perth: University of Western Australia.

supporting information

Acta Cryst. (2016). E72, 776-779 [doi:10.1107/S2056989016006940]
m-Xylylenediaminium sulfate: crystal structure and Hirshfeld surface analysis

Afef Guesmi, Sofian Gatfaoui, Thierry Roisnel and Houda Marouani

Computing details

Data collection: SAINT (Bruker, 2014) and XPREP (Sheldrick, 2015); cell refinement: APEX2 (Bruker, 2014) and SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and XPREP (Sheldrick, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).
[1,3-Phenylenebis(methylene)]bis(azanium) sulfate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{SO}_{4}{ }^{2-}$
$M_{r}=234.27$
Monoclinic, $P 2_{1} / c$
$a=12.841$ (1) Å
$b=6.0989$ (5) \AA
$c=15.9642(9) \AA$
$\beta=125.791$ (4) ${ }^{\circ}$
$V=1014.15(13) \AA^{3}$
$Z=4$

Data collection

APEXII, Bruker-AXS
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
CCD rotation images, thin slices scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\text {min }}=0.735, T_{\text {max }}=0.910$
$F(000)=496$
$D_{\mathrm{x}}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9927 reflections
$\theta=3.7-27.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.56 \times 0.44 \times 0.30 \mathrm{~mm}$

10992 measured reflections
2293 independent reflections
2131 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-16 \rightarrow 16$
$k=-7 \rightarrow 7$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.114$
$S=1.14$
2293 reflections
160 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S	$-0.43829(3)$	$-0.22666(6)$	$-0.83072(3)$	$0.01170(15)$
O1	$-0.57682(10)$	$-0.1916(2)$	$-0.88190(9)$	$0.0190(3)$
O2	$-0.36751(12)$	$-0.22945(19)$	$-0.71797(9)$	$0.0236(3)$
O3	$-0.38903(10)$	$-0.04803(18)$	$-0.86220(9)$	$0.0187(3)$
O4	$-0.41947(10)$	$-0.43848(17)$	$-0.86666(8)$	$0.0155(2)$
N1	$0.29551(12)$	$-0.2271(2)$	$-0.79401(10)$	$0.0131(3)$
C1	$0.16854(14)$	$-0.1870(4)$	$-0.89148(12)$	$0.0256(4)$
H1A	0.1423	-0.3180	-0.9338	0.031^{*}
H1B	0.1768	-0.0699	-0.9284	0.031^{*}
C2	$0.06392(13)$	$-0.1263(3)$	$-0.87945(11)$	$0.0158(3)$
C3	$0.06536(13)$	$0.0745(3)$	$-0.83697(10)$	$0.0161(3)$
H3	0.1357	0.1674	-0.8089	0.019^{*}
C4	$-0.03879(13)$	$0.1353(2)$	$-0.83668(11)$	$0.0147(3)$
H4	-0.0374	0.2689	-0.8080	0.018^{*}
C5	$-0.14527(12)$	$-0.0016(2)$	$-0.87887(10)$	$0.0125(3)$
H5	-0.2147	0.0417	-0.8789	0.015^{*}
C6	$-0.14779(13)$	$-0.2033(2)$	$-0.92106(11)$	$0.0114(3)$
C7	$-0.04235(14)$	$-0.2636(2)$	$-0.92037(12)$	$0.0150(3)$
H7	-0.0430	-0.3985	-0.9478	0.018^{*}
C8	$-0.25953(13)$	$-0.3597(2)$	$-0.96596(12)$	$0.0160(3)$
H8A	-0.2567	-0.4632	-1.0107	0.019^{*}
H8B	-0.2511	-0.4421	-0.9103	0.019^{*}
N2	$-0.38513(12)$	$-0.2467(2)$	$-1.02553(12)$	$0.0175(3)$
H1N1	$0.3194(19)$	$-0.114(4)$	$-0.7518(16)$	$0.020(5)^{*}$
H2N1	$0.350(2)$	$-0.234(3)$	$-0.8120(18)$	$0.027(6)^{*}$
H3N1	$0.299(2)$	$-0.352(4)$	$-0.7644(17)$	$0.029(6)^{*}$
H1N2	$-0.445(2)$	$-0.340(4)$	$-1.0567(16)$	$0.021(5)^{*}$
H2N2	$-0.387(2)$	$-0.161(5)$	$-0.064(2)$	$0.039(7)^{*}$
H3N2	$-0.399(3)$	$-0.172(5)$	$0.059(8)_{*}^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	$0.0084(2)$	$0.0123(2)$	$0.0163(2)$	$-0.00019(11)$	$0.00831(17)$	$-0.00144(11)$
O1	$0.0099(5)$	$0.0250(6)$	$0.0266(6)$	$0.0029(4)$	$0.0133(5)$	$0.0046(5)$
O2	$0.0256(6)$	$0.0229(6)$	$0.0167(6)$	$0.0027(5)$	$0.0092(5)$	$-0.0022(4)$

O3	$0.0199(5)$	$0.0146(5)$	$0.0308(6)$	$-0.0049(4)$	$0.0201(5)$	$-0.0037(4)$
O4	$0.0148(5)$	$0.0134(5)$	$0.0212(5)$	$-0.0007(4)$	$0.0122(4)$	$-0.0036(4)$
N1	$0.0098(6)$	$0.0150(6)$	$0.0167(6)$	$0.0016(4)$	$0.0091(5)$	$0.0017(5)$
C1	$0.0064(6)$	$0.0557(12)$	$0.0145(7)$	$-0.0006(7)$	$0.0061(6)$	$-0.0075(7)$
C2	$0.0066(6)$	$0.0296(8)$	$0.0114(6)$	$-0.0004(5)$	$0.0054(5)$	$-0.0016(6)$
C3	$0.0081(6)$	$0.0241(8)$	$0.0137(6)$	$-0.0050(5)$	$0.0050(5)$	$-0.0007(5)$
C4	$0.0129(6)$	$0.0159(7)$	$0.0138(6)$	$-0.0015(5)$	$0.0070(5)$	$-0.0016(5)$
C5	$0.0092(6)$	$0.0168(7)$	$0.0130(6)$	$0.0012(5)$	$0.0074(5)$	$0.0004(5)$
C6	$0.0063(6)$	$0.0161(7)$	$0.0122(6)$	$-0.0003(5)$	$0.0056(5)$	$0.0004(5)$
C7	$0.0088(6)$	$0.0209(7)$	$0.0151(7)$	$0.0006(5)$	$0.0069(6)$	$-0.0044(5)$
C8	$0.0079(6)$	$0.0138(7)$	$0.0247(7)$	$-0.0008(5)$	$0.0087(6)$	$-0.0035(6)$
N2	$0.0066(6)$	$0.0187(7)$	$0.0211(7)$	$-0.0022(5)$	$0.0047(5)$	$0.0051(5)$

Geometric parameters ($\hat{A},{ }^{\circ}$)

$\mathrm{S}-\mathrm{O} 2$	1.4673 (12)	C3-H3	0.9300
$\mathrm{S}-\mathrm{O} 1$	1.4756 (10)	C4-C5	1.3941 (19)
$\mathrm{S}-\mathrm{O} 3$	1.4871 (11)	C4-H4	0.9300
$\mathrm{S}-\mathrm{O} 4$	1.4895 (11)	C5-C6	1.393 (2)
N1-C1	1.4738 (19)	C5-H5	0.9300
N1-H1N1	0.88 (2)	C6-C7	1.3971 (19)
N1-H2N1	0.90 (3)	C6-C8	1.5100 (19)
N1-H3N1	0.88 (3)	C7-H7	0.9300
C1-C2	1.510 (2)	C8-N2	1.4787 (18)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700	C8-H8A	0.9700
C1-H1B	0.9700	С8-H8B	0.9700
C2-C3	1.395 (2)	N2-H1N2	0.84 (2)
C2-C7	1.395 (2)	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$	0.80 (3)
C3-C4	1.391 (2)	N2-H3N2	1.00 (3)
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 1$	111.24 (7)	C3-C4-C5	120.81 (14)
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$	110.02 (7)	C3-C4-H4	119.6
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 3$	108.67 (7)	C5-C4-H4	119.6
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 4$	109.80 (6)	C6-C5-C4	120.08 (13)
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 4$	109.08 (7)	C6-C5-H5	120.0
$\mathrm{O} 3-\mathrm{S}-\mathrm{O} 4$	107.96 (6)	C4-C5-H5	120.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	110.6 (13)	C5-C6-C7	118.71 (13)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1$	104.9 (15)	C5-C6-C8	122.29 (12)
H1N1-N1-H2N1	107.1 (19)	C7-C6-C8	119.00 (13)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 3 \mathrm{~N} 1$	112.8 (15)	C2-C7-C6	121.56 (14)
H1N1-N1-H3N1	112 (2)	C2-C7-H7	119.2
H2N1-N1-H3N1	109 (2)	C6-C7-H7	119.2
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	115.06 (13)	N2-C8-C6	112.76 (12)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.5	N2-C8-H8A	109.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.5	C6-C8-H8A	109.0
N1-C1-H1B	108.5	N2-C8-H8B	109.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.5	C6-C8-H8B	109.0
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.5	H8A-C8-H8B	107.8

supporting information

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$119.07(13)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	$109.8(15)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.14(14)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$	$108.8(18)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$119.50(15)$	$\mathrm{H} 1 \mathrm{~N} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2$	$112(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.76(13)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N} 2$	$109.3(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.1	$\mathrm{H} 1 \mathrm{~N} 2-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N} 2$	$105(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1	$\mathrm{H} 2 \mathrm{~N} 2-\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N} 2$	$112(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.88(2)$	$1.88(2)$	$2.7271(17)$	$160.1(19)$
$\mathrm{N} 1 — \mathrm{H} 1 N 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(2)$	$2.54(2)$	$3.1461(18)$	$126.1(16)$
$\mathrm{N} 1 — \mathrm{H} 2 N 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.90(3)$	$1.85(3)$	$2.7191(17)$	$162(2)$
$\mathrm{N} 1 — \mathrm{H} 3 N 1 \cdots \mathrm{O} 3^{\mathrm{iii}}$	$0.88(3)$	$2.03(2)$	$2.8264(17)$	$150(2)$
$\mathrm{N} 1 — \mathrm{H} 3 N 1 \cdots \mathrm{O} 2^{\mathrm{iii}}$	$0.88(3)$	$2.54(2)$	$3.1733(18)$	$129.4(18)$
$\mathrm{N} 2 — \mathrm{H} 1 N 2 \cdots 4^{i v}$	$0.84(2)$	$1.97(2)$	$2.8096(17)$	$177(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N 2 \cdots \mathrm{O}^{\mathrm{v}}$	$0.80(3)$	$2.26(3)$	$2.9537(18)$	$145(2)$
$\mathrm{N} 2 — \mathrm{H} 3 N 2 \cdots \mathrm{O} 3$	$1.00(3)$	$1.92(3)$	$2.9021(19)$	$168(3)$
$\mathrm{N} 2 — \mathrm{H} 3 N 2 \cdots \mathrm{O} 4$	$1.00(3)$	$2.52(3)$	$3.0502(18)$	$113(2)$
$\mathrm{C} 5 — \mathrm{H} 5 \cdots \mathrm{O} 3$	0.93	2.47	$3.3050(17)$	150

Symmetry codes: (i) $-x, y+1 / 2,-z-3 / 2$; (ii) $x+1, y, z$; (iii) $-x, y-1 / 2,-z-3 / 2$; (iv) $-x-1,-y-1,-z-2$; (v) $-x-1,-y,-z-2$.

