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Abstract: Coordination compounds containing dicyanoargentate(I) have remarkable biological potential due to their
therapeutic antibacterial, antifungal, antibiofilm, and anticancer properties. In this study, a new dicyanoargentate(I)-
based complex was synthesized and characterized by various procedures (elemental, thermal, FT-IR for complex) involv-
ing crystal analysis of the complex. In addition, the biological activity of this new compound on the acetylcholinesterase
(AChE) enzyme, an important enzyme for the nervous system, was investigated. When the infrared (IR) spectrum of
the complex is examined, the OH vibration peak resulting from H2 O molecules in the structure at 3948-3337 cm−1 and
at 2138 cm−1 , along with a CN peak coordinated to Ag, can be seen, indicating that the mass remaining in the thermal
degradation of the complex at 1000 ◦ C is the weight corresponding to the metal mixture consisting of K+Ag (calc.:
68.06). The crystal method revealed that the complex has a sandwich-like, polymeric chemical structure with layers
formed by K+ cations and [Ag(CN)2 H2 O]− anions. Therefore, the AChE enzyme has potential therapeutic uses in
improving ACh levels in brain cells, in reducing various side effects, and in improving cognitive impairment, especially
in advanced Alzheimer’s disease patients. In this study, the activity of this newly synthesized complex on AChE was
also investigated. As a result of this research, [Ag(CN)2 (H2 O)K] had 0.0282 ± 0.010 µM Ki values against AChE. The
compound was therefore a good inhibitor for the AChE enzyme. This type of compound can be used for the development
of novel anticholinesterase drugs.
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1. Introduction
Coordination polymers are compounds obtained by the linking of metal atoms with bridge ligands in an infinite
arrangement [1]. The choice of the ligand used in the synthesis of coordination polymers is of great importance
because coordination polymers have different structures and properties depending on the ligands they contain.
The most important feature of the ligands used for this purpose is the ability to bridge the metal centers.
Therefore, these ligand molecules should be multident ligands having two or more donor atoms and which
generally contain groups such as N-, O-, S-, or CN-, which have high donor properties. Examples of these bridge
ligands are SCN-, CO, N−

3 , NCX− (X: O, Se, S), I2 , NO−
3 , and CN− ligands. These ligands are preferred

because they can exhibit ambidentate properties and are extensively used in the synthesis of coordination
compounds [2,3].

In recent years, a number of cyanido complexes have been characterized by synthesizing a wide variety of
transition metals and cyanido ligands. In several comprehensive studies, [M(CN)4 ]2− (MII = Ni, Pd, Pt, Ag,
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and Au) anions, NiII , CuII , ZnII , and CdII secondary metal ions, as well as a series of bimetallic cyanido
containing auxiliary ligands with N and O donor atoms, have been used by researchers to synthesize the complex.
The structural characterizations of these complexes, catalysis applications, EPR properties of the d9 structure,
as well as biological properties, have been determined [4–16].

Silver compounds have been the subject of many studies attracting the attention of scientists because
of their many useful properties. When examined in terms of electron distribution, Ag+ ion, which is a d10

structure, can produce interesting coordination geometry with different supramolecular and molecular structures
[17–22]. Since ancient times, experimenting with and using the biological activity of silver has led to more and
more experiments and studies. The antibiotic effect of silver compared to conventional antibiotics has been
reported to be more effective in various studies [23,24]. Therefore, it may be an alternative for bacteria with
high antibiotic resistance [25,26]. Silver not only intitiates activity against bacteria but also affects nanoparticles
through antibiofilm action; compounds containing silver that exhibited antitumor activity have also been
reported in the literature [27–32]. Furthermore, AgI compounds have different applications as catalysts in
organic synthesis reactions [32,33]. The antibacterial, antibiofilm, antifungal, and anticancer properties of
dicyanidosilver(I) complexes have been investigated recently and their potential to be antiagents due to their
very good biological activity has been observed [12–14,30–32]. These substances are synthesized quickly, easily,
and with high efficiency, so their low cytotoxicity is of great importance for biological studies.

In this study, heteroleptic cyanidoargentate, i.e. the [Ag(CN)2 (H2O)K] complex to which the CN−

and H2O ligands are linked, has been successfully synthesized (Scheme). This novel heteroleptic complex was
characterized by elemental analysis, FT-IR, thermal analysis, and X-ray single crystal analysis. In addition,
the inhibition activities of [Ag(CN)2 (H2O)K] complex against acetylcholinesterase (AChE) metabolic enzyme
were obtained in this study.

Scheme. Complex consisting of a reaction of silver nitrate and potassium cyanide.

2. Experimental section

2.1. Synthesis and characterization

The synthesis was carried out in a water bath at 40 ◦C for 4 days. The KCN (153 mg, 1.175 mmol) was dissolved
in 20 mL of purified water. The previously dissolved water solution of KCN was added to AgNO3 solution (200
mg, 1.177 mmol) and dissolved in a mixture of ethanol (10 mL) and water (20 mL). The clear K[Ag(CN)2 ]
solution was then stirred for 4 h. The product was filtered and allowed to crystallize in a 40 ◦C water bath.
[Ag(CN)2 (H2O)K] crystals were obtained at a high yield 4 days later (yield: 79%). Elemental analysis of the
sample was taken according to the standard (C, N, H, and O values) method. The IR spectrum of the sample
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was taken as powder in the Shimadzu IRAffinity-1 spectrophotometer in the range of 4000–400 cm−1 . Thermal
degradation of the obtained complex was performed with a Hitachi STA 7300 TG/DTG thermal analyzer and
analyzed at 5 ◦C/min using a platinum crucible under nitrogen atmosphere at a heating speed in the 25–1000
◦C temperature range. X-ray single-crystal analysis was performed on a Bruker APEX-II CCD detector. The
crystal data and test conditions of the complex are presented in Table 1.

Table 1. Crystallographic data and structure parameters for the [Ag(CN)2 (H2 O)K] complex.

Empirical formula C2H2AgKN2O
Formula weight 217.03
Temperature [K] 296
Crystal size [mm] 0.11× 0.08 × 0.07
Crystal system Trigonal
Space group P31/c
a [Å] 7.3867 (13)
b [Å] 7.3867 (13)
c [Å] 17.598 (4)
α = β [◦] 90.00
γ [◦] 120
V [Å3] 831.6 (3)
Z 6
ρcalcd. [g/cm3] 2.588
µ [1/mm] 4.26
F(000) 606
θ range [◦] 3.2–26.4
Index ranges ±9, ±9, ±22

Reflections collected 3416
Reflections observed (>2σ) 525
Data/restrains/parameters 574/3/38
R1 (all) 0.052
wR2 CCDC No. 0.185 1958042
Kristolografi doi 10.5517/ccdc.csd.cc23qhn0

2.2. Inhibition studies of acetylcholinesterase

The inhibition potency of [Ag(CN)2 (H2O)K] novel complex on AChE activity was measured using Ellman’s
procedure (1961) with spectrophotometrically [34]. Acetylthiocholine iodide (AChI) was used as a substrate
of the enzymatic reactions and 5,5’ -dithio-bis(2-nitro-benzoic)acid (DTNB) for the estimation of the AChE
activities. The reaction mixture consists of 100 mM Tris-HCI (pH = 8), 10 mM AChI, 10 mM DTNB, 15 µL
AChE solution, and different concentrations of sample complexes. The absorbance change of the mixture was
read at a wavelength of 412 nm.
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3. Results and discussion
3.1. Elemental analysis

Elemental analysis data were found as follows; Anal. Calc. (%) for C2HN2OAgK: C, 11.12%; H, 0.47%; N,
12.97%; O, 7.41; found: C, 12.08%; H, 0.82%; N, 13.69%; O, 6.96%.

3.2. IR spectra
IR spectroscopy is a method used to characterize organic or inorganic compounds. The IR spectrum shows, for
example, the fingerprint with absorption peaks corresponding to the frequencies generated by the vibration of
the bonds between the atoms forming the substance. Each substance has its own spectrum [35,36]. The most
characteristic and distinctive peak in this cyanido complex is the vibration peak of the cyanido group. It is
known that free cyanide gives υ (C≡N) vibration peak at 2080 cm−1 . When the CN− group coordinates to a
metal, it gives electrons to the metal with the donor character σ and accepts electrons again by binding (π -
receptivity). Since the electron pair introduced to the metal moves away from the σ orbital of the nonbonding
(slightly weaker opposing bond character) carbon, the σ -transmittance υ (CN) while the electrons coming back
by binding are located in the orbital molecule π*, the π -back binding causes υ (CN) to fall. Since the σ -donor
character of the CN group is more dominant than the π -acceptor character, it shifts to higher frequencies in
coordinated cyanido groups. In addition, depending on the electronegativity of the metal, the oxidation step
and the number of coordinations of the vibration frequency υ (C≡N) shifts to a higher area. If both bridges and
end cyanido groups are present in the structure, υ (CN) is split in half. The cyanido group, which has a higher
wavenumber than the peaks, belongs to the cyanido group, while the cyanido groups that do not participate in
the bridge formation are observed at a lower wavenumber [37].

In light of this information, the stretching vibration of the CN peak, which shows chelate, is seen as a
sharp peak at 2086 cm−1 (Figure 1). The peaks seen in the 1400–1600 cm−1 range are thought to belong to
the bending vibrations of the CN group.

When the IR spectrum of the complex in Figure 2 is examined, the OH vibration peaks at 3288 cm−1

and at 2137 cm−1 the CN peak coordinated to the metal can be seen. The peaks seen in the 1400–1600 cm−1

range are thought to belong to the bending vibrations of the CN group. In addition, the peaks at 600–400
cm−1 are thought to be related to the υ (Ag-C), υ (K-N), and υ (Ag-O) vibrations. The presence of this peak
in the spectrum and free cyanide observed in our complex shows the formation of shear.

Figure 1. IR spectrum of KCN. Figure 2. IR spectrum of the complex.
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3.3. Thermal analyses

Thermal analysis is a method by which certain physical changes in the sample are recorded as a function
of temperature or time when heating or cooling according to a predetermined schedule. Thermogravimet-
ric/thermogravimetric derivative–differential thermal analysis (TG/DTG−DTA) measurements of the complex
also support the crystal composition as shown in Figure 3.

Figure 3. Thermal analyses curves of complex.

The TG/DTG curves of the complex are followed by a process in which a two-step weight loss is observed
from 30 ◦C to 1000 ◦C. The sharp peak at 160–480 oC in the thermal decomposition graph of complex
corresponds to an H2O ligand. The H2O molecule is attached to the silver atom by a σ bond. Therefore,
the bond breaks down, and the decomposition of the water molecule also takes place at higher temperatures.
The H2O ligand is degraded in the initial steps of the thermal decomposition, which is followed by the thermal
degradation of the cyanido ligand. Finally, the final stage of the thermal decomposition is the temperature at
which the inorganic components corresponding to the metal residues are located. Experimental data indicate
that the mass remaining in the thermal degradation of the complex at 1000 ◦C is the weight corresponding to
the metal mixture consisting of K+Ag (calc.: 68.06; found: 67.9).

3.4. Crystal structure of complex

X-ray crystallography is used to determine the atomic or molecular structure of a crystal. Since salts, metals,
minerals, semiconductors, as well as various inorganic, organic and biological molecules can form crystals, X-ray
crystallography is important in many scientific fields. The structure of the substance we obtained in our study
was illuminated by X-ray crystallography. During single crystal analysis, a heterobimetallic complex (K-Ag)
appeared. In addition to the CN ligand in the structure, it formed a heteroleptic dicyanidoargentate complex
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by binding to Ag(I) as a ligand in the water molecule. The CN ligand acts as a bridge between the Ag and K
atoms. Crystal structure analysis reveals that the complex is formed by [Ag(CN)2 (H2O)K] units (Figure 4).
Ag(I) was coordinated with 2 C atoms of bridging cyanido ligands and the O atom of 2 water molecules.

Potassium atoms are connected together in the form of cubes intertwined by the binding of N atoms
above and below the plane (Figure 5). Here, the K atoms exhibited a structure similar to the 6 coordinated K
complexes in the literature [38–40].

Figure 4. Crystal structure of [Ag(CN)2 (H2 O)K] as obtained by low temperature X-ray crystallography.

Figure 5. Sandwich-type topology of the complex.

Again, the K atoms above and below the plane are connected to each other by Ag(CN)2 bridges
(sandwich-like). Between the K layers, hexagonal intermediate structures consisting of 3Ag + 3O made
interesting contributions to the stacking of the complex (Figure 6). The K-N bond distance with 6 coordinated
octahedral geometry ranges from about 2.80 to 2.90 Å (Table 2). The angles between N1-K1-N1 and N1-K2-N1
vary between 83.9 (3) and 96.2 (2).

Although the geometry around Ag(I) is a linear structure formed by the linkage of the bridge CN groups,
a geometry near the “T shape” emerges as a result of the binding of H2O molecules.
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Figure 6. 3D configuration view of the complex.

Table 2. Selected bond lengths [Å] and angles [◦ ] for complex.

Bond lengths
Ag1-C1 2.054(10) C1-K1i 3.468 (11)
Ag1-O1 2.070(11) K1-N1iv 2.823 (9)
K1-N1 2.824(9) K1-N1i 2.906 (9)
K2-N1 2.868(8) O1-H1 0.84 (2)
Ag1-C1ii 2.054(10) N1-K1i 2.906 (9)
Ag1-O1iii 2.070(11) K1-N1v 2.823 (9)
Bond angles
N1-C1-Ag1 175.6(10) N1vii-K1-K2 42.05 (16)
N1-C1-K2 51.8(6) N1i-K1-K2 89.35 (17)
Ag1-C1-K2 125.0(5) C1i-K1-K2 94.4 (2)
N1-C1-K1i 51.7(7) C1vii-K1-K2 51.32 (17)
Ag1-C1-K1i 126.0(4) C1vi-K1-K2 119.9 (2)
K2-C1-K1i 76.5(2) K2viii-K1-K2 119.953 (4)
C1ii-Ag1-C1 179.8(6) N1-K2-N1vi 83.8 (2)
C1ii-Ag1-O1 110.5(3) N1xii-K2-N1 96.2 (2)
O1-Ag1-O1iii 116.2(11) C1-K2-C1xi 71.6 (3)
C1-N1-K1 139.0(9) N1iv-K1-N1v 98.4 (2)
C1-N1-K2 110.1(8) N1iv-K1-N1vi 83.9 (3)
K1-N1-K1i 96.3(2) N1-K1-C1i 98.8 (3)
K2-N1-K1i 95.2(3) N1v-K1-C1vi 159.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+y, y, −z+1/2;

(iii) −x+y, −x+1, z; (iv) −y+1, x−y, z; (v) −x+y+1, −x+1, z;

(vi) x−y+1, x, −z+1; (vii) y, −x+y, −z+1; (viii) x+1, y, z;

(ix) x+1, y+1, z; (x) x−y, x, −z+1; (xi) −x+y, −x, z; (xii) −y, x−y, z;

(xiii) −x, −y, −z+1; (xiv) −y+1, x−y+1, z.

The deviation in T geometry was impaired by the small angle at 69.7(3)◦ , which is thought to be caused
by steric repulsion and H-bond formation between water molecules (Table 2). The Ag-C bond length of the
complex (2.054 Å) is similar to those of dicyanidoargentate(I) complexes observed in the literature [12,30,31].
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Intermolecular interaction analysis shows that cyanide N atoms occur between H atoms of the water
molecules (Table 3). The formation of the H-bond contributes to better packaging of the structure by providing
extra stability to the structure.

Table 3. Selected intermolecular distances [Å] and angles [◦ ] of C3.

D−H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) D–H· · ·A
O1–H1..· · ·N1xv 0.84 (2) 2.60 (3) 3.182 (8) 128 (4)

Symmetry code: (xv) −y+1, −x+1, −z+1/2.

3.5. AChE enzyme results
AChE is found in the brain and in erythrocytes at high concentrations, and it is a crucial enzyme for the nervous
system. AChE inhibitors are used in the treatment of several neuromuscular diseases and in the treatment of AD
[41]. The half-maximal inhibitory concentration (IC50 ) values of the novel compound demonstrated 50% inhibi-
tion of AChE calculated after suitable dilutions. The Ki value of the new compound was determined for AChE.
Ki is defined as the binding affinity constant of the novel compound to AChE. To demonstrate the nonallosteric
nature of the enzymatic reaction, an enzymatic activity curve (Michaelis–Menten) was first generated. After
Vmax stabilization, Lineweaver–Burk graphic studies were performed using inhibitory concentrations of the
complex. To determine the Ki values, the novel compound was tested at 3 different concentrations. Michaelis–
Menten and Lineweaver–Burk curves were drawn in detail as described previously [41,42]. For descriptions
of inhibitory effects, researchers have often used an IC50 value; however, the Ki constant is a more suitable
parameter. Ki values were calculated from Lineweaver–Burk graphs (Figures 7 and 8). The novel complex
exhibited inhibitory effects on AChE, and the inhibition effect is shown in Figure 6. The Ki constant of AChE
was found to be 0.0282 ± 0.010 mM, and IC50 values of the compound against AChE were noted as 1.32 mM
(r2 : 0.99). In addition, tacrine (TAC) was used as positive control AChE inhibitor, and it had Ki values corre-
sponding to 392.18 ± 66.28 µM. The IC50 values of these natural compounds and standard (tacrine) showed
the following order: TAC (409.10 µM, r2: 0.9601) < compound (1.32 mM, (r2: 0.99)) for AChE (Table 4).
The inhibition type of the complex is competitive against AChE enzyme activity because, while looking at the
inhibition mechanism in the presence of the complex, it is possible to say that it shows a competitive inhibition
mode from the specific rate graph. Acetylcholinesterase inhibitors (AChEIs) like TAC are commonly used in
therapies related to Alzheimer’s disease [43]. Recently, the biological activity of various molecules and metal
complexes has been investigated, and research efforts have focused on developing new candidate complexes to
investigate their biological potency. As a result, it has been reported that the novel complex worked for the
first time, and it has an in vitro inhibitory effect on the AChE enzyme. The inhibitory effect of this molecule
on other enzymes should therefore be investigated in different studies.

4. Conclusion
In summary, the [Ag(CN)2 (H2O)K] complex, consisting of linear CN groups of Ag cations with an electronic
configuration of 4d10 , was synthesized and characterized. X-ray spectra exhibited an interesting 3D, sandwich-
like structure by hexagonal [Ag(H2O)] clusters connecting the infinite [K(CN)2 ] layers of the complex. It was
observed from complex TG analysis that it showed a two-step degradation between 30 and 1000 ◦C. The H2O
ligand is disrupted in the early stages of thermal decomposition, followed by thermal disruption of the cyanido
ligand. After thermal decomposition, a residue corresponding to the Ag + K metal mixture remained in the
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Figure 7. Effect of [Ag(CN)2 (H2 O)K] on AChE enzyme inhibition (Michaelis–Menten).

Figure 8. Effect of [Ag(CN)2 (H2 O)K] on AChE enzyme inhibition (Lineweaver–Burk).

medium. Coordination polymers containing dicyanoargentate(I) have remarkable biological activities because
of their therapeutic properties due to their pharmaceutical properties. Silver-bearing cyanide complex affects
the inhibition of the enzyme that plays a role in biochemical reactions that are important for the quality of
human life. In this study, we investigated AChE. As a result, the compound showed inhibition at the millimolar
levels (1.32 mM, (r2: 0.99)) against the AChE enzyme. The compound was a good inhibitor for the AChE
enzyme. This type of compound can therefore be used for the development of novel anticholinesterase drugs.
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Table 4. Inhibition results of acetylcholinesterase (IC50 and Ki values).

Complex

Enzymes AChE (mM)
IC50 1.32
r2 0.99956
Ki+std 0.0282 ± 0.010
Enzymes AChE (µM)

Standard (tacrine for AChE) IC50 409.10
r2 0.9601
Ki+std 392.18 ± 66.28
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