
sensors

Article

A Cross-Layer Routing Protocol Based on
Quasi-Cooperative Multi-Agent Learning
for Multi-Hop Cognitive Radio Networks

Yihang Du 1, Chun Chen 2,*, Pengfei Ma 2 and Lei Xue 1

1 National University of Defense Technology, Shushan District, Hefei 230000, China;
yuri_wolfdyh@163.com (Y.D.); xwdxh1965@163.com (L.X.)

2 Army Academy of Artillery and Air Defense, Shushan District, Hefei 230000, China; xiaoma.2002@163.com
* Correspondence: chen641610939@163.com; Tel.: +86-551-6592-1276

Received: 7 November 2018; Accepted: 28 December 2018; Published: 3 January 2019
����������
�������

Abstract: Transmission latency minimization and energy efficiency improvement are two main
challenges in multi-hop Cognitive Radio Networks (CRN), where the knowledge of topology and
spectrum statistics are hard to obtain. For this reason, a cross-layer routing protocol based on
quasi-cooperative multi-agent learning is proposed in this study. Firstly, to jointly consider the
end-to-end delay and power efficiency, a comprehensive utility function is designed to form a
reasonable tradeoff between the two measures. Then the joint design problem is modeled as a
Stochastic Game (SG), and a quasi-cooperative multi-agent learning scheme is presented to solve the
SG, which only needs information exchange with previous nodes. To further enhance performance,
experience replay is applied to the update of conjecture belief to break the correlations and reduce
the variance of updates. Simulation results demonstrate that the proposed scheme is superior to
traditional algorithms leading to a shorter delay, lower packet loss ratio and higher energy efficiency,
which is close to the performance of an optimum scheme.

Keywords: cognitive radio; cross-layer routing protocol; experience replay; quasi-cooperative
multi-agent learning; stochastic game

1. Introduction

Cognitive radio is a technology that is used to settle the problem of spectrum scarcity by enabling
secondary users (SUs) to access the licensed spectrum of primary users (PUs) in a dynamic and
non-interfering manner. It mediates the contradiction between the regulation and frequency utility
via time and spatial multiplexing [1]. One of the major challenges in the design of cognitive radio
networks (CRNs) is radio resource management, which efficiently handles the spectrum mobility
and quality of service (QoS) requirements of different services and different nodes [2]. Consequently,
techniques for resource management have been receiving considerable attention [3,4].

However, most research in the CRN field has focused on the direct transmission network.
The research community has focused on applying the cognitive paradigm in multi-hop networks to
supply more spectrum resources for a range of applications [5,6]. To fully study the characteristics
of multi-hop CRN, it is critical to coordinate route selection with radio resource management and
design a cross-layer routing protocol for high-spectrum utility. The regional difference in a multi-hop
path leads to the difference in the frequency band for all SUs [7]. The design of efficient and robust
spectrum-aware routing protocol is challenging due to the absence of topology information and
spectrum dynamics in CRNs.

Traditional protocols used decompose the cross-layer design problem into two sub-problems
including route selection and resource management. The sub-problems were optimized separately
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to reduce the system calculation complexity. Ding et al. [8] proposed a distributed and localized
scheme for joint relay selection and channel assignment. A cooperative strategy for the optimization
problem based on real-time decentralized policies was studied. However, full cooperation was difficult
to achieve for SUs in CRN due to its uncertainty. A centralized routing protocol was proposed by
Lai et al. [9], which expanded the paths hop-by-hop and discarded unnecessary paths. Then the
resource management problem was formulated into an optimization problem with the aforementioned
objective and restriction. Nevertheless, the centralized method was more complex in calculation and
less flexible than distributed schemes. An economic framework was presented by Amini et al. [10]
that integrated route selection and spectrum assignment for the improvement of QoS performance
in cognitive mesh networks. The decomposed model allowed for a decentralized implementation of
routing and spectrum allocation, which increased the robustness of the algorithm. These works aimed
at finding a fixed path from the source nodes to the destination nodes [11]. However, fixed routing
strategies have two disadvantages: priori knowledge of topology and spectrum dynamics is required,
which is hard to obtain in multi-hop CRN, and fixed protocols may become invalid due to the dynamic
and uncertain nature of frequency.

In order to realize real cognition, a cognitive radio (CR) should be capable of learning and
reasoning [12]. Machine learning technology has been widely used to address dynamic channel
statistics in CRNs. Raj et al. [13] proposed a two-stage reinforcement approach to select a channel
via a multi-armed bandit, and then predict how long the channel would remain unoccupied. Its
sensing was more energy efficient and achieved higher throughput by saving on spectrum detection.
Al-Rawi et al. [14] developed the cognitive radio Q-routing algorithm, which adopted reinforcement
learning (RL) method to enable flexible and efficient routing decisions. Single-agent reinforcement
learning with limited capacity was adopted by Raj et al. [13] and Al-Rawi et al. [14]. Nevertheless,
learning strategy with multiple agents is more suitable for solving complicated problem in multi-hop
CRNs. Multi-agent learning approaches in CRN have drawn the interest of researchers for their
superior performance. A conjecture-based multi-agent Q-learning scheme was presented by Chen et
al. [15] to execute power adaption in a partially observable environment. However, route selection
in multi-hop CRN was not considered in this work. Pourpeighambar et al. [16] modeled the routing
problem as a stochastic game (SG). Then, the SG was solved through a non-cooperative multi-agent
learning method in which each secondary user (SU) speculated other nodes’ strategies without
acquisition of global information. The current conjecture belief was determined only by the last one
in [16], which caused strong correlations between the samples. Power adaption was not considered
when solving the routing problem, which would influence power efficiency and the routing decision.

In our previous work [17], we designed a single-agent based intelligent joint routing and resource
assignment scheme for CRN to achieve the maximum cumulative rewards. In this paper, we adopt a
quasi-cooperative multi-agent learning scheme for routing and radio resource management, which is
more efficient than the single-agent strategy in multi-hop CRN. The scheme tries to achieve the
lowest end-to-end delay and improve energy efficiency with finite information exchange between
competing SUs. Our contributions are summarized as follows:

(i) In order to jointly capture the end-to-end latency and power efficiency, a comprehensive utility
function is designed to form a reasonable tradeoff between the two as well as accommodate the
maximal transmission latency requirement. Queuing theory is adopted to analyze single-hop
latency and provide a theoretical basis for our cross-layer routing protocol design.

(ii) A quasi-cooperative multi-agent learning framework is presented to solve the cross-layer design
problem where every SU node speculates other nodes’ strategies from finite information exchange
with the previous nodes. The convergence of the quasi-cooperative learning scheme is proven.

(iii) For the purpose of further enhancing performance, experience replay is applied to the update of
conjecture belief, which allows for greater data efficiency by using the historical conjectures and
breaks the correlations to reduce the variance of updates.
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The remainder of this paper is organized as follows: the system model is presented in Section 2.
Section 3 models the cross-layer design problem as a SG. The quasi-cooperative multi-agent learning
scheme for the cross-layer routing protocol is proposed in Section 4. Section 5 demonstrates the
simulation results. Finally, the paper is concluded in Section 6. In addition, summary of acronyms
used in this paper is listed in Table 1.

Table 1. List of Acronyms.

Abbreviation Full Name

SUs Secondary Users
PUs Primary Users
CRN Cognitive Radio Networks
QoS Quality of Service
CR Cognitive Radio
SG Stochastic Game

DTC Data Transmission Channel
CCC Common Control Channel
PDF Probability Density Function
TL Transmission Latency

PCR Power Consumption Ratio
AWGN Additive White Gaussian Noise
SINR Signal-to-Interference plus Noise Ratio

RL Reinforcement Learning
MSNE Mixed-Strategy Nash Equilibrium

PLR Packet Loss Ratio

2. System Model

A multi-hop CRN comprising M PUs and N SUs is considered. Specific spectrum bands are
assigned to PUs according to the fixed spectrum allocation regulation. SUs occupy no licensed
channels and transmit data opportunistically when finding that frequency bands are not held by
the PUs. Every SU node ni has a set of available channels that consist of Data Transmission Channel
(DTC) and Common Control Channel (CCC). The DTC is used for data transmission and SU ni’s DTC
is represented as Ci = {c1, c2, . . . , cm}; whereas the CCC is used by SUs to exchange the negotiation.
At any time, a directed communication link can be constructed between SU ni and nj if at least one
common DTC c ∈ Ci ∩ Cj exists. The network model is shown in Figure 1. In the networking scenarios,
the multi-hop CRN coexists with two centralized Primary User (PU) networks. As Figure 1 shows,
the source SU generates data packets and sends them to the destination node in multi-hop manner
through intermediate SUs. Each PU communicates with the PU base station using a licensed frequency,
and intermediate SUs in each hop transmit data via the PU channel when the spectrum band is idle.Sensors 2019, 19, x FOR PEER REVIEW  4 of 22 
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Figure 1. Multi-hop cognitive networking scenarios. 
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We assume that every node in the multi-hop CRN maintains a queuing buffer for the storage
of SU packets. For data flow f generated from source node ns, packet arrivals are considered as a
stationary Bernoulli process with mean λ

f
s that is independent and identical at all time slots [18].

In addition, every SU node has respective queues for each traffic flow, and the packet arrival process
of every data stream is independent from each other.

The PUs’ occupation model is considered as an ON/OFF process [19]. The probability density
function (PDF) of the OFF periods (when PUs do not occupy the channel) is shown as follows:

f (t) =

{
θde−θdt t ≥ 0

0 t < 0
, (1)

where θd is departure rate of the PU, and f (t) represents the idle probability of PU channel at time
step t. Accordingly, the probability that idle period of PU channel is longer than duration τ is denoted
as:

P(t ≥ τ) =
∫ ∞

τ
f (t)dt = e−θdτ , (2)

where τ is the duration that PU channel is idle. Then, the probability of the collision between PU and
SU in the duration τ (i.e., the probability of PU reoccupying the spectrum band in the duration τ) is
given by:

Pcollision = 1− P(t ≥ τ) = 1− e−θdτ . (3)

We use the analysis described in [20] to calculate the PU departure rate θd(µ, σ) with expected
mean µ and deviation σ. The spectrum statistic that is parameterized in [21] changes slowly so that it
is assumed to be almost static in this work. Every SU can only locate its own position through some
positioning equipment.

3. Formulation for Joint Design Problem

In this section, to minimize transmission latency and ensure power efficiency, a comprehensive
utility function is designed to create a reasonable tradeoff between the two with a delay constraint.
Then a measurement called responsibility rating is introduced for power assignment and reducing the
action space of agents. On the basis of the above considerations, the cross-layer routing problem is
modeled as a SG.

3.1. Comprehensive Utility Function

To guarantee the QoS performance of cross-layer routing, a comprehensive utility function is
applied to integrate transmission latency and energy efficiency. A multi-hop network must reduce
the transmission latency so that the packet loss rate decreases and the routing stability improves.
In addition, the requirement of high power efficiency is also a critical factor for energy-sensitive
applications. For instance, grid monitoring and control applications only have limited data to send but
demand real-time delivery [22]. Energy-constrained networks that traditionally operate powered by
batteries are sensitive to power consumption and thus face an inherent challenge in energy efficiency,
but are not sensitive to latency. However, some high-level services such as video and audio demand
both real-time data transmission and high power efficiency [23]. Low transmission latency demands
high power consumption, whereas excessive energy conservation may cause poor QoS performance
and result in a long end-to-end delay. There is an inherent tradeoff between the transmission latency
and energy consumption. Therefore, a utility function is designed that jointly captures the end-to-end
delay and energy efficiency while making a reasonable tradeoff between the two. The resultant design
is as follows:

rt
i = − log2(α · uTD,i + β · uPCR,i), (4)
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where uTD,i accounts for the single-hop transmission latency (TL), and uPCR,i denotes power
consumption ratio (PCR) for SUi, which will be elaborated in following sections; and α and β are
parameters that adjust the tradeoff between transmission delay and energy efficiency, respectively.
A larger α increases the weight of the transmission delay in the utility function, whereas larger β

emphasizes the power consumption, and vice versa. The logarithmic operation is used for compressing
large values of α · uTD,i + β · uPCR,i to a relatively small range. We can see from Equation (4) that the
larger the TL or PCR is, the lower the utility function rt

i becomes. This results in little reward for the
agent so that it will explore more efficient actions to achieve minimal latency and energy expenditure.

3.1.1. Transmission Delay

The transmission delay consists of queuing waiting time and data transmission time. Firstly,
the queuing waiting time is computed based on the packet arrival and service rates of every SU in
a multi-hop CRN [18]. The calculation method of queuing waiting time δi was proposed in [24],
where the packet arrival and service rates of every SU were used to compute the queuing waiting time.
In our work, we further combine this method with the concept of strategy ζk(sk, ak) in RL to obtain
the latency for queuing in SU’s buffer. A packet from flow f is placed in the SU ni’s queuing buffer at
time step t if:

(1) One of the node ni’s neighboring nodes selects node ni as its next hop and transmits data via an
available channel c;

(2) Channel c is idle during time step t, and
(3) There is at least one packet in the queue of the preceding SU node to communicate with node ni

Therefore, the arrival rate at SU ni is the joint probability of all events above, which can be
represented as the product of these events’ probabilities due to the independence among themselves:

λt
i = ∑

f∈F
∑

k∈Li

∑
c∈Ck

ζk(sk, ak) ·
λ f

µ f
· αc ·

(
1− Pout

ki
)
, (5)

where F is the set of all data streams; Li is the set of SUi’s previous nodes that select node ni as their
next hop; Ck is the set of available channels of node nk ∈ Li; ζk(sk, ak) is the strategy of node nk ∈ Li,
i.e., the probability of node nk choosing action ak, which corresponds to the next intermediate node
ni and the operating channel c ∈ Ck; λ f is the arrival rate of data flow f ; and µ f is its service rate.
The probability that the queue has at least one packet can be represented as λ f /µ f according to the
theory of discrete time Markov chain. αc is the probability that channel c is idle and Pout

ki represents the
outage probability of the link between node nk and ni.

Like the arrival rate, the service rate is equal to the probability of transmitting a packet successfully
at SU ni, which occurs if:

(1) SUi selects node nj as its next hop and transmits data via an available channel c′, and

(2) Channel c′ is idle during time step t.

Accordingly, the service rate at SU ni can be calculated as the product of these two events’
probability:

µt
i = ∑

f∈F
∑

j∈Ni

∑
c′∈Ci

ζi(si, ai) · αc ·
(

1− Pout
ij

)
, (6)

where Ni is the set of SUi’s neighboring nodes; Ci is the set of node ni’s available channels; ζi(si, ai) is
the strategy of node ni, i.e., the probability of node ni choosing action ai, which corresponds to the
next intermediate node nj and the data transmission channel c′ ∈ Ci; and Pout

ij represents the outage
probability of link between node ni and nj.



Sensors 2019, 19, 151 6 of 21

As discussed above, the arrival and service processes of every SU are Bernoulli processes with rates
λt

i and µt
i , respectively. This queuing system is modeled as a Geo/Geo/1 queue [25]. Consequently,

the queuing waiting time of SU ni is calculated as:

δi =
λt

i
µt

i
(
µt

i − λt
i
) . (7)

Large packet size, interference of PUs and bandwidth constraint will lead to limited channel
capability. So, the data transmission time has to be considered. The data transmission time of SU ni is
defined as:

τi = Rpacket

/[
B · log2

(
1 +

hijc pi

ϑ + φPU
ijc

)]
, (8)

where Rpacket is the packet size, B is the bandwidth of DTC, hijc represents the channel gain between
the node ni and nj, φPU

ijc denotes the PU-to-SU interference at the receiver node ni, and ϑ is the additive
white Gaussian noise (AWGN) power. Consequently, the transmission delay is calculated as:

uTD,i = δi + τi =
λt

i
µt

i
(
µt

i − λt
i
) + Rpacket

/[
B · log2

(
1 +

hijc pi

ϑ + φPU
ijc

)]
. (9)

3.1.2. Power Consumption Ratio

The power consumption ratio (PCR) is the energy consumption when obtaining unit throughput.
It is proposed to describe power efficiency. A low PCR means that the cognitive node expends less
energy when transmitting the same size of SU packet data, which represents high energy efficiency.
PCR is given by:

εi = pi

/
B · log2

(
1 +

hijc pψi

ϑ + φPU
ijc

)
, (10)

where pi is the transmission power for node ni.

3.2. Responsibility Rating

For power efficiency and PU protection, power assignment is considered in this work. However,
the action space will be fairly large if we treat power assignment as actions in the joint optimization
problem. Huge action space results in intensive computation complexity and low learning efficiency
due to the maximum calculation in Q-value updating [17]. In this case, the concept called responsibility
rating was introduced in our previous work [17].

SU should improve the transmitting power in its next transmission for reducing the average TL if
much time has been wasted in the current transmission. If the latency of the current data transmission
is sufficiently short, then the power should be lessened at the next time step to decrease energy
expenditure. Based on this principle, the responsibility rating of SU ni at time step t is given by:

ψt+1
i =

{
ψt

i + 1 uTD,i > Λ∗i,t
ψt

i − 1 uTD,i ≤ Λ∗i,t
, (11)

where responsibility rating ψt
i is a nonnegative integer corresponding to one of the transmission power

levels. In addition, if ψt
i = max

{
ψt

i
}

and uTD,i > Λ∗i,t, then ψt+1
i = ψt

i ; if ψt
i = 0 and uTD,i ≤ Λ∗i,t,

then ψt+1
i = 0. uTD,i denotes the single-hop TL of SU ni, and Λ∗i,t is the average value of uTD,i at time

step t, which can be calculated in a progressive form via historical information:

Λ∗i,t = Λ∗i,t−1 +
1
t
(
uTD,i −Λ∗i,t−1

)
. (12)
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Every responsibility rating ψt
i matches a transmission power pi (pmin ≤ pi ≤ pmax), and the

association is given by:

pi
(
ψt

i
)
=

(
1−

ψt
i
|Ψi|

)
pmin +

ψt
i
|Ψi|

pmax, (13)

where |Ψi| represents the size of
{

ψt
i
}

, and pmin and pmax are the minimal and maximal value of the
transmit power, respectively. The responsibility rating not only adjustments transmitting power for
high energy efficiency but compresses huge action space to reduce the computation load.

3.3. Problem Definition

In this part, the cross-layer design problem is formulated as stochastic learning processes featured
by quasi-cooperative games. The quasi-cooperative game is defined by a tuple 〈Si, Ai, Ti, Ri〉Ni=1,
where Si is SU ni’s state space, Ai represents SU ni’s actions space, Ti is the state transferring probability
set, and Ri : Si × Ai 7→ < specifies the reward received by SU ni at si ∈ Si when taking action ai ∈ Ai.
SU’s states, available actions and instantaneous reward are precisely defined as follows:

3.3.1. States

For SU ni, the node state at time step t is defined as:

st
i =

{
ρi, ψt

i
}

, (14)

where ψt
i is the responsibility rating of SU ni, and ρi ∈ {0, 1} is the Signal-to-Interference plus Noise

Ratio (SINR) indicator that indicates whether the SINR γi of SU ni is above or below the threshold γth:

ρi =

{
1, if γi ≥ γth
0, otherwise

, (15)

where γi = hijc pψi /
(

ϑ + φPU
ijc

)
, pψi is the transmitting power of SU ni, hijc represents the channel gain

between node ni and nj, φPU
ijc denotes the PU-to-SU interference at ni, and ϑ is the AWGN power.

In addition, a learning episode of SU ni terminates when ρi = 0, i.e., st
i =

{
0, ψt

i
}

is the terminal state
in the Markov chain.

3.3.2. Actions

For the joint route selection and resource management problem, an action at time step t is defined
as at

i =
{

nj, ci, pψi

}
, where nj is the next relay node in SU ni’s neighboring nodes set, ci ∈ Ci denotes

the DTC of node ni, and pψi is the transmission power described in Equation (13). Assume that the size
of neighboring node set is J, the DTC of node ni consists of C channels, and the transmitting power
is divided into P levels. The size of state space is 2 (ρi = 0 or 1) and action space is J × C× P if the
power assignment is set as the action. By applying the responsibility rating to the cross-layer design,
the size of state rises to 2× P, while the action space size becomes J × C× 1. Therefore, a tradeoff
occurs between the size of state space and action space, which reduces the calculation complexity
when updating the Q-values by compressing huge action space while controlling the size of state space
in case of dimension curse.

3.3.3. Rewards

Rt
i(si, ai, a−i) is the instantaneous reward when SU ni performs action ai in si and other competing

SUs execute actions a−i. The considered reward function at time step t is calculated as follows:

Rt
i(si, ai, a−i) =

{
rt

i (si, ai, a−i), if uTD,i ≤ κth
0, otherwise

, (16)
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where a−i = (a1, . . . , ai−1, ai+1, . . . , aN) ∈ A−i = ∏
j∈N\{i}

Aj is other SUs’ action vector, rt
i (si, ai, a−i)

is the utility function defined in Equation (4), and κth represents the maximal transmission delay
threshold between SU nodes. If TL is smaller than the maximal delay threshold, the transmission is
effective and the instantaneous reward is equal to the utility function. Otherwise, the agent will receive
no reward.

As described in Equations (5) and (6), SU ni needs its own strategy ζi(si, ai) and the strategies
of the previous nodes ζk(sk, ak) to calculate the transmission delay and the average reward.
Since every SU node only needs local observations and information exchange with the previous
nodes instead of mutual information sharing between competing SU nodes, the problem is formulated
as quasi-cooperative stochastic games, which is formally defined as:

max
ai∈Ai

Rt
i(si, ai, a−i)

s.t. uTD,i ≤ κth

(17)

Every agent chooses the action of route selection and spectrum access in terms of the strategy
ζi(si, ai), which matches the definition of mixed-strategy game. Moreover, each SU cannot acquire the
global information of competing SUs due to the uncertainty of multi-hop CRN. One of the significant
characteristics in Mixed-Strategy Nash Equilibrium (MSNE) is that the players cannot obtain their
opponents’ strategies in advance. In other words, MSNE is a rational countermeasure when the
strategies of other players are uncertain. Therefore, MSNE is adopted to solve the quasi-cooperative
stochastic game [26].

Definition. A set of M strategies (a∗i , a∗−i) is an MSNE if, for every SU ni ∈ M:

Ri(a∗i , a∗−i) ≥ Ri(ai, a∗−i), f or all ai ∈ Ai. (18)

In the following part, we study the method of speculating competing SUs’ strategies only using
information exchange with the previous nodes for SU ni, and solve quasi-cooperative stochastic game
through multi-agent Q-learning.

4. Joint Routing and Resource Management with Conjecture Based Multi-Agent Q-Learning

In order to introduce the quasi-cooperative multi-agent learning scheme, a brief introduction
to multi-agent Q-learning is provided in Section 4.1. In Section 4.2, the Equal Reward Time-slots
based Conjectural Multi-Agent Q-Learning (ERT-CMQL) is presented to solve the cross-layer routing
problem. Then, the analysis and proof of its convergence is outlined in Section 4.3.

4.1. Multi-Agent Q-Learning

Among various algorithms in the RL framework, Q-learning is a practical approach adopting
Q-value. Q-value is the total expected discounted reward for the pair of state-action and describes the
value of choosing a particular action in a given state. It weights and ranks the probabilities of different
actions, i.e., the action with a higher Q-value is more valuable and given higher selection probability,
and vice versa. To achieve this object, the Boltzmann distribution is used to calculate the probability of
choosing action ai at time slot t:

ζt
i (si, ai) =

eQt
i (si ,ai)/η

∑b∈Ai
eQt

i (si ,b)/η
, (19)

where Qt
i(si, ai) is the Q-value for the pair of state-action (si, ai) at time step t, η is a positive number

called the temperature. The larger the temperature is, the more balanced the probability of action
selection becomes, and vice versa.
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M players are considered and every player is fitted with a Q-learning agent that learns its own
strategy through limited cooperation with other agents. Thus, the Q-value is updated according to
multi-agent Q-learning rule:

Qt+1
i (si, ai) = (1− α)Qt

i(si, ai) + α

[
E[Ri(si, ζi, ζ−i)] + βmax

bi∈Ai
Qt

i(s
′
i, bi)

]
= Qt

i(si, ai) + α

[
E[Ri(si, ζi, ζ−i)] + βmax

bi∈Ai
Qt

i(s
′
i, bi)−Qt

i(si, ai)

] (20)

where α ∈ [0, 1) is the learning rate, and β is the discount factor, and E[Ri(si, ζi, ζ−i)] is the expected
reward for SU ni at time slot t considering other M− 1 competing SUs. The variation of Q-value is
proportional to the expected reward plus the difference between the target and evaluated Q-value.
The detailed definition of E[Ri(si, ζi, ζ−i)] is given by:

E[Ri(si, ζi, ζ−i)] = ∑
(ai ,a−i)∈A

Ri(si, ai, a−i) ∏
j∈M\{i}

ζ j(sj, aj)

, (21)

where ∏
j∈M\{i}

ζ j(sj, aj) represents the joint probability of SUi’s competing SUs choosing actions a−i

in their respective states. From Equations (20) and (21), in multi-agent Q-learning, the agent needs
not only its own transmission strategy but also the complete information of competing SUs’ strategies
ζ j(j ∈ M\{i}) to update the Q-value of SU ni. However, it is not always practical to observe other SUs’
private information in multi-hop CRN with finite cooperation. Therefore, designing a quasi-cooperative
multi-agent learning scheme, which only needs private strategy and information exchange with its
previous nodes, is challenging.

4.2. Equal Reward Time-Slots Based Conjectural Multi-Agent Q-Learning

Multi-agent learning strategy is more practical for solving the joint design problem in
multi-hop CRN. The main drawback of establishing a multi-agent learning framework is the demand
for complete information of competing SUs. Due to high communication overhead and topology
complexity, it is impractical for SU nodes to cooperate with competing SUs and share their private
information in multi-hop CRN. To resolve this contradiction, a conjecture-based multi-agent learning
scheme with quasi-cooperative scenario is proposed, where each SU node conjectures other SUs’
behavior strategies without full coordination among agents.

Specifically, from Equations (20) and (21), the mixed-strategies for other competing SUs is defined
as ϕt

i(si, a−i) = ∏j∈M\{i} ζt
j(sj, aj), which represents the joint probability that competing SUs perform

strategy vector ζ−i =
{

ζt
j(sj, aj)

}
j∈M\{i}

at time slot t. In other words, estimating ϕt
i(si, a−i) becomes

the key challenge when applying the multi-agent Q-learning framework. To combat this, the conjecture
belief ϕ̃t

i(si, a−i) is introduced to approximate ϕt
i(si, a−i), and the ERT-CMQL is proposed to

asymptotically determine ϕ̃t
i(si, a−i) without complete network information. The probability that the

agent chooses ai in state si while other competing SUs execute action vector a−i is given by:

δi = ζt
i (si, ai) · ϕt

i(si, a−i). (22)

SUi receives expected reward Ri(si, ai, a−i) when the agent of SUi performs action ai, while other nodes
select action vector a−i in state si. That is, the probability that SUi acquires Ri(si, ai, a−i) is δi. n is the
number of time steps between any two moments in which SUi achieves the same return Ri(si, ai, a−i).
Each n is independent of the others and follows the same distribution of δi. The average value of n is
denoted as n, which can be obtained via the private information from historical observation. Then we
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have the approximate equation δi ≈ 1/(1 + n) [15], i.e., ζt
i (si, ai) · ϕt

i(si, a−i) ≈ 1/(1 + n). Since every
SU knows its own transmission strategy ζt

i (si, ai), the agent can estimate ϕt
i(si, a−i) via:

ϕ̃t
i(si, a−i) =

1
(1 + n) · ζt

i (si, ai)
. (23)

After obtaining the expression of ϕ̃t
i(si, a−i) using local information shown in Equation (23),

the updating rule of the conjecture belief is explored. In quasi-cooperative learning scenarios, agents
update their conjecture belief based on new observations. Since n is a stationary stochastic process in
the time dimension, its mean value n is a constant. Specifically, the quotient of the conjecture belief at
time slot t − 1 and t can be calculated as:

ϕ̃t
i (si ,a−i)

ϕ̃t−1
i (si ,a−i)

= 1
(1+n)·ζt

i (si ,ai)

/[
1

(1+n)·ζt−1
i (si ,ai)

]
=

ζt−1
i (si ,ai)

ζt
i (si ,ai)

(24)

Then, the conjecture belief is updated as follows:

ϕ̃t
i(si, a−i) = ϕ̃t−1

i (si, a−i) ·
ζt−1

i (si, ai)

ζt
i (si, ai)

. (25)

Since ϕt
i(si, a−i) = ∏j∈M\{i} ζt

j(sj, aj) ≈ ϕ̃t
i(si, a−i), the updating rule in Equation (20) can be

rewritten as:

Qt+1
i (si, ai) = (1− α)Qt

i(si, ai) + α

 ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)ϕ̃t
i(si, a−i) + βmax

bi∈Ai
Qt

i(s
′
i, bi)

. (26)

Equation (26) shows that every SU node only uses private strategy and limited information
exchange with its previous nodes to update its Q-value. SUi conjectures the mixed-strategies for other
competing SUs on the basis of their variations in response to their own strategy.

However, strong correlations exist between ζt
i (si, ai) and ζt−1

i (si, ai), which may cause the
parameters to easily stick in a poor local optimum and then make ζt−1

i (si, ai)/ζt
i (si, ai) close to

1 infinitely. Since the updating rule of ϕ̃t
i(si, a−i) is fractional which has a strong reliance on

ζt−1
i (si, ai)/ζt

i (si, ai), the conjecture belief is also inclined to fall into the local optimal solution. To avoid
the shortage and further improve the system performance, experience replay is applied to the conjecture
based multi-agent learning scheme. From long-term-observations, n is a constant value due to the time
stationarity of n. So the probability that SUi receives an expected reward Ri(si, ai, a−i) (i.e., agents
perform action vector (ai, a−i) in state si) is approximately equal to the reciprocal of mean time interval
regardless of time step, that is:

ζt
i (si, ai) · ϕt

i(si, a−i) ≈
1

1 + n
≈ ζv

i (si, ai) · ϕv
i (si, a−i), (27)

where t and v represent any two time slots. Thus we have ζt
i (si, ai) · ϕ̃t

i(si, a−i) = ζv
i (si, ai) · ϕ̃v

i (si, a−i).
ζi(si, ai) and ϕ̃i(si, a−i) at each time step are stored as the agent’s experience at each time slot,
and pooled over many episodes into a replay memory [27]. During learning, we randomly sample the
experience ϕ̃k

i (si, a−i) and ζk
i (si, ai) from memory pool to update the conjecture. Then the update of

conjecture belief at time step t is given by:

ϕ̃t
i(si, a−i) = ϕ̃v

i (si, a−i) ·
ζv

i (si, ai)

ζt
i (si, ai)

. (28)
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This approach has several advantages over consecutive updating rule in Equation (25). First, each
time-step of the strategy is potentially used in the update of conjecture, which improves data efficiency
instead of updating directly from consecutive samples. Second, strong correlations between ζt

i (si, ai)

and ζt−1
i (si, ai) may result in a local optimal. Randomizing the samples breaks these correlations and

reduces the variance in the updates.
The details of ERT-CMQL are obtained as described in Algorithm 1.

Algorithm 1 Equal Reward Time-Slots Based Conjectural Multi-Agent Q-Learning

1: Initialize:
2: Set t = 0 and memory size N.
3: For each SUi Do
4: For each si ∈ Si, ai ∈ Ai Do
5: Initialize transmission strategy ζt

i (si, ai), conjecture belief ϕ̃t
i (si, a−i),

Q-value Qt
i (si, ai), and replay memory D =

{
ϕ̃t

i (si, a−i), ζt
i (si, ai)

}
.

6: End For
7: End For
8: Repeated Learning:
9: For each SUi Do
10: For eposide = 1, M do
11: Initialize state s1

i .
12: Loop
13: Select action at

i according to the strategy ζt
i (si, ai).

14: Execute action at
i , and obtain strategies of previous nodes ζk(sk, ak)

and the SINR indicator ρi.
15: Observe reward Rt

i (si, ai, a−i) and state st+1
i according to (14) and (16).

16: Update Qt+1
i (si, ai) based on ϕ̃t

i (si, a−i) according to (26).

17: Update the strategy
{

ζt+1
i (si, ai)

}
ai∈Ai

according to (19).

18: Sample experience ϕ̃v
i (si, a−i) and ζv

i (si, ai) from D.
19: Update the conjecture belief ϕ̃t+1

i (si, a−i) according to (28).
20: Store ϕ̃t+1

i (si, a−i) and ζt+1
i (si, ai) in D.

21: si = st+1
i

22: t = t + 1
23: Until si is the terminal state
24: End For
25: End For

4.3. Analysis of ERT-CMQL

Littleman [28] provided the convergence proof of the standard Q-learning. Based on the theory,
the convergence of ERT-CMQL is investigated in this section.

Lemma. Suppose there is a mapping P : Q→ Q , and Q denotes the set of all SUs’ Q functions.
The updating rule Qt+1 = (1− α)Qt + α · P

(
Qt) converges to Q∗ with probability of 1, if:

(1) Q∗ = E[P(Q∗)]
(2) A number 0 < σ < 1 exists such that ‖P

(
Qt)− P(Q∗)‖ ≤ σ‖Qt −Q∗‖ for all Qt ∈ Q.

To apply the lemma in the convergence proof of our proposed ERT-CMQL, the definition is given
as follows:
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Definition. Let Qt =
(
Qt

1, . . . , Qt
M
)
, where Qt

i ∈ Qi for i ∈ M, and Q = ∏i∈M Qi. Then the mapping
P : Q→ Q is defined as P

(
Qt) = [P(Qt

1
)
, . . . , P

(
Qt

M
)]

, where:

P
(
Qt

i(si, ai)
)
= ∑

(ai ,a−i)∈A
Ri(si, ai, a−i)ϕ̃t

i(si, a−i) + βmax
bi∈Ai

Qt
i(s
′
i, bi). (29)

In addition, for any Q, Q′ ∈ Q, the definition of the distance between Q-values is given as:

‖Q−Q′‖ = max
i∈M

max
si∈Si

max
ai∈Ai

∣∣Qi(si, ai)−Qi
′(si, ai)

∣∣. (30)

Firstly, we prove the first condition in Lemma 1 for ERT-CMQL.

Proposition 1. Q∗ is equal to the expectation of its map P(Q∗), i.e., Q∗ = E[P(Q∗)], where Q∗ =
(
Q∗1, . . . , Q∗M

)
.

Proof. According to the Bellman’s optimality equation [29], we have the following expression:

Q∗i (si, ai) = E
[
Ri(si, ai, ζ∗−i)

]
+ β ∑

s′ i∈Si

Psi ,s′ i (ai, ζ∗−i) max
bi∈Ai

Q∗i (s
′
i, bi), (31)

Since the reward Ri(si, ai, ζ∗−i) is irrelevant to s′ i, then Equation (31) can be modified as:

Q∗i (si, ai) = ∑
s′ i∈Si

Psi ,s′ i (ai, ζ∗−i)

{
E
[
Ri(si, ai, ζ∗−i)

]
+ β max

bi∈Ai
Q∗i (s

′
i, bi)

}
= ∑

s′ i∈Si

Psi ,s′ i (ai, ζ∗−i)

{
∑

(ai ,a−i)∈A
Ri(si, ai, a−i) ∏

j∈M\{i}
ζ j(sj, aj) + β max

bi∈Ai
Q∗i (s

′
i, bi)

} (32)

Based on the previous analysis in Section 4.2, we have ϕt
i(si, a−i) = ∏j∈M\{i} ζt

j(sj, aj). Then we
prove that Q∗i (si, ai) = E

[
P
(
Q∗i (si, ai)

)]
. �

Proposition 2. There is a number 0 < σ < 1 such that ‖P
(
Qt)− P(Q∗)‖ ≤ σ‖Qt −Q∗‖.

Proof. In accordance with the definition of the distance between Q-values, we have:

‖P(Q)− P(Q′)‖ = max
i∈M

max
si∈Si

max
ai∈Ai

∣∣P(Qi(si, ai))− P
(
Qi
′(si, ai)

)∣∣
= max

i∈M
max
si∈Si

max
ai∈Ai

∣∣∣∣∣∣∣∣
∑

(ai ,a−i)∈A
Ri(si, ai, a−i)

[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]
+β

[
max
bi∈Ai

Qi(s′ i, bi)−max
bi∈Ai

Q′ i(s′ i, bi)

]
∣∣∣∣∣∣∣∣

≤ max
i∈M

max
si∈Si

max
ai∈Ai

∣∣∣∣∣ ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]∣∣∣∣∣
+max

i∈M
max
si∈Si

max
ai∈Ai

β

∣∣∣∣max
bi∈Ai

Qi(s′ i, bi)−max
bi∈Ai

Q′ i(s′ i, bi)

∣∣∣∣
≤ max

i∈M
max
si∈Si

max
ai∈Ai

∣∣∣∣∣ ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]∣∣∣∣∣
+max

i∈M
max
si∈Si

max
ai∈Ai

[
max
bi∈Ai

β|Qi(s′ i, bi)−Q′ i(s′ i, bi)|
]

= max
i∈M

max
si∈Si

max
ai∈Ai

∣∣∣∣∣ ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]∣∣∣∣∣+ β‖Q−Q′‖

(33)

where the second equation is derived from Equation (29), and the first inequality is obtained
according to the transformation |A + B| ≤ |A| + |B|. It can be easily proven that
|maxA−maxB| ≤ max|A− B|, so we can attain the second inequality. Since ai is unrelated
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to Qi(s′ i, bi) − Q′ i(s′ i, bi), max
i∈M

max
si∈Si

max
ai∈Ai

[
max
bi∈Ai

β|Qi(s′ i, bi)−Q′ i(s′ i, bi)|
]

can be rewritten as

max
i∈M

max
si∈Si

max
bi∈Ai

β|Qi(s′ i, bi)−Q′ i(s′ i, bi)| and the last equation is attained using Equation (30).

Next, we apply Equation (23) to the item ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]
, and the

expression can be rewritten as:

∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]
= ∑

(ai ,a−i)∈A
Ri(si, ai, a−i) ·

[
1

(1+n)ζi(si ,ai)
− 1

(1+n)ζ ′ i(si ,ai)

]
= ∑

(ai ,a−i)∈A
Ri(si, ai, a−i) ·

[
ζ ′ i(si ,ai)

(1+n)ζi(si ,ai)ζ ′ i(si ,ai)
− ζi(si ,ai)

(1+n)ζi(si ,ai)ζ ′ i(si ,ai)

]
= ∑

(ai ,a−i)∈A
Ri(si, ai, a−i)·

ζ ′ i(si ,ai)−ζi(si ,ai)
(1+n)ζi(si ,ai)ζ ′ i(si ,ai)

(34)

where Ri(si, ai, a−i) is the reward when SUi selects action ai in state si, while other nodes select
action vector a−i, n is the average number of time steps between any two moments in which SUi
achieves the same return Ri(si, ai, a−i), and ζi(si, ai) and ζ ′ i(si, ai) are the strategies of SUi in state si at
different time-step.

When η is sufficiently large, we have:

eQi(si ,ai)/η = 1 +
Qi(si, ai)

η
+

((
Qi(si, ai)

η

)2
)

= 1 +
Qi(si, ai)

η
+ ω

(
Qi(si, ai)

η

)
, (35)

and:

∑
b∈Ai

eQi(si ,b)/η = |Ai|+ ∑
b∈Ai

[
Qi(si, b)

η
+ ω

(
Qi(si, b)

η

)]
, (36)

where ω
(

Qi(si ,ai)
η

)
is a polynomial of order

((
Qi(si ,ai)

η

)2
)

. By applying Equations (35) and (36) to

Equation (19), it can be verified that:

ζi(si, ai) =
1
|Ai|

+
1
|Ai|
· Qi(si, ai)

η
+ v

({
Qi(si, b)

η

}
b

)
, (37)

and:

ζ ′ i(si, ai) =
1
|Ai|

+
1
|Ai|
· Q′ i(si, ai)

η
+ v

({
Q′ i(si, b)

η

}
b

)
, (38)

where v
({

Qi(si ,b)
η

}
b

)
is a polynomial of order smaller than

({
Qi(si ,ai)

η

}
b

)
.

Substituting Equations (37) and (38) into Equation (34), we have:

∑
(ai ,a−i)∈A

Ri(si, ai, a−i)·
ζ ′ i(si ,ai)−ζi(si ,ai)

(1+n)ζi(si ,ai)ζ ′ i(si ,ai)

= − ∑
(ai ,a−i)∈A

Ri(si ,ai ,a−i)
(1+n)ζi(si ,ai)ζ ′ i(si ,ai)

 1
η|Ai |
· [Qi(si, ai)−Q′ i(si, ai)]

+v
({

Qi(si ,b)
η

}
b

)
−v

({
Q′ i(si ,b)

η

}
b

) 
= − ∑

(ai ,a−i)∈A

Ri(si ,ai ,a−i)
η(1+n)ζi(si ,ai)ζ ′ i(si ,ai)

· 1
|Ai |
· [Qi(si, ai)−Q′ i(si, ai)] + v

({
Qi(si ,b)

η

}
b

)
−v

({
Q′ i(si ,b)

η

}
b

) (39)

A sufficiently large η can be taken so that:∣∣∣∣ Ri(si, ai, a−i)

η(1 + n)ζi(si, ai)ζ ′ i(si, ai)

∣∣∣∣ ≤ 1− β. (40)
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Then we have the following inequality:∣∣∣∣∣∣ ∑
(ai ,a−i)∈A

Ri(si, ai, a−i)
[
ϕ̃i(si, a−i)− ϕ̃′i(si, a−i)

]∣∣∣∣∣∣ ≤ 1− β

|Ai|
·
∣∣Qi(si, ai)−Q′ i(si, ai)

∣∣, (41)

which leads to:

‖P(Q)− P(Q′)‖ ≤ max
i∈M

max
si∈Si

max
ai∈Ai

1−β
|Ai|
· |Qi(si, ai)−Q′ i(si, ai)|+ β‖Q−Q′‖

≤ 1−β
υ ‖Q−Q′‖+ β‖Q−Q′‖ = 1−β+βυ

υ ‖Q−Q′‖
(42)

where υ = min
i∈N
|Ai| > 1. Then we have υ · (1− β) > 1− β, so that υ− βυ > 1− β, which leads to

1−β+βυ
υ < 1. Consequently, condition (2) is satisfied in the Lemma, and ERT-CMQL is proven to

converge if η is large enough for all agents.

5. Simulation Results

In this section, the performance of our quasi-cooperative multi-agent learning scheme is evaluated
using an event-driven simulator coded in Python 3.5. The network model and learning framework are
built based on the Python packages Networkx and Numpy, respectively. The results of the proposed
ERT-CMAQL are compared with (1) Cooperative Multi-Agent Q-Learning (CMAQL) which is the ideal
scheme and has complete information of the competing SUs; (2) Conjectural Multi-Agent Q-Learning
without Experience Replay (CMAQL-ER); (3) Fixed Power- based Conjectural Multi-Agent Q-Learning
(FP-CMAQL) proposed in [16] which transmits data with a fixed power level; (4) a single agent
Q-learning scheme called Q-routing presented in [14] and (5) Prioritized Memories Deep Q-Network
(PM-DQN) based joint design scheme proposed in our previous work [17].

In the multi-agent learning framework, we initialize the conjecture belief ϕ̃0
i (si, a−i) = 1,

the Q-value Q0
i (si, ai) = 0, and the transmission strategy ζ0

i (si, ai) = 1/|Ai| for each si ∈ Si, ai ∈ Ai.
Other system parameters are given in Table 2.

Table 2. System Parameters.

Parameters Values

Link Gain h = εG(r/r0)
−m, for r > r0 [15]

Available Spectrum 56 MHz − 62 MHz
Bandwidth, B 1 MHz

AWGN power, ϑ 10−7 mW
PU-to-SU interference, φPU

ijc φPU
ijc ∼

[
10−7, 10−6] mW

Packet Size, Rpacket 2× 105 bit
Mean of PU Departure Rate, µ 0.1

Deviation of PU Departure Rate, σ 0.05
SINR threshold, γth 60 dBm

Outage probability, Pout
ij Pout

ij ∼ N(0.1, 0.05)
Data flow arrival rate, λ f 0.4
Data flow service rate, µ f 0.6

Maximal transmission delay, κth 200 ms
Discount factor, β 0.9
Learning rate, α 0.1
Time step size, t 500 ms
Temperature, η 0.005

To verify the performance of algorithms, a small CRN containing 10 SUs and 4 PUs is simulated
at first. SUs in CRN are uniformly deployed in a 300 × 300 m region. In addition, the available
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transmitting power consists of five levels: {50, 100, . . . , 250 mW}. The network topology is shown
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Without loss of generality, SU 6 is taken as an example. The single-node performance of SU 6
for different algorithms is shown in Figures 3 and 4. Figure 3 illustrates the average reward of SU
6 versus the iteration index. The expected reward firstly rises and then stays almost steady for all
schemes. Furthermore, we find that, when converged, CMAQL outperforms all other algorithms.
The reward of ERT-CMAQL is slightly lower than CMAQL, followed by the CMAQL-ER scheme,
and FP-CMAQL obtains the lowest reward. This occurs mainly because, in the CMAQL scheme, agents
have true strategies of competing SUs through global information exchange. In ERT-CMAQL, each
agent approximates mixed-strategies of other SUs via the conjecture belief that may be not sufficiently
accurate. We can see that the reward of CMAQL-ER is slightly higher than that of ERT-CMAQL before
200 iterations, and afterward, that ERT-CMAQL is superior to CMAQL-ER. The reason for this is that
at first few samples are stored in replay memory and the correlation is weak between the samples,
so that experience replay is inefficient compared to the consecutive updating rule. At the later stage
the advantage of experience replay is fully demonstrated when samples are abundant. In addition,
FP-CMAQL obtains the lowest average reward, which illustrates the importance of power allocation.
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The effectiveness properties of transmission latency and power efficiency are demonstrated in
this part. In Figure 4a, single-hop latency declines in the beginning and flattens after about 700
iterations for all kinds of protocols. CMAQL achieves the lowest transmission latency, which is a
little shorter than that of ERT-CMAQL. The expected delay of ERT-CMAQL is about 32% lower than
CMAQL-ER, which benefits from experience replay to avoid a poor local minimum and enhace data
efficiency. The transmission delay of FP-CMAQL is much longer than the other three schemes because
it fails to adjust the transmission power with channel status causing larger overall latency. Figure 4b
shows the average power consumption versus iteration index. The PCR of the four algorithms, in
increasing order, is as follows: CMAQL, ERT-CMAQL, CMAQL-ER and FP-CMAQL. The reason for
this is the same as in Figure 4a. Consequently, the results illustrate that the energy efficiency of proposed
ERT-CMAQL is close to the optimum scheme, and holds a clear advantage over other algorithms.

Figure 5a shows the expected one-hop delay of different SU nodes for CMAQL, ERT-CMAQL,
and CMAQL-ER schemes. The transmission delay of CMAQL is the lowest compared with the other
two algorithms, the latency of ERT-CMAQL is slightly higher than that of CMAQL, and CMAQL-ER
achieves the longest one-hop delay for all SU nodes in the network. This illustrates the effect of
experience replay, which makes the performance of ERT-CMAQL close to the optimum, demonstrating
a clear advantage over the schemes applying the consecutive updating rule.
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In addition, we find that SU 6 achieves the longest expected one-hop delay of all SUs, while the
transmission latency of SU 4 and SU 7 is relatively low on average. This is due to SU 6 being the closest
SU to the destination node so that data flows pass through it with higher probability. The locations
of SU 4 and SU 7 are relatively isolated, so the arrival packets are scarce. SU 5 is the destination
node and no packet is transmitted forward so that its transmission delay is 0. Comparison of PCR
for the three kinds of protocols varying in the SU index is shown in Figure 5b. We can find that
the PCR of ERT-CMAQL is close to CMAQL for all SUs. CMAQL-ER achieves the highest PCR of
the three schemes for all SU nodes, which consumes 46% more power per throughput on average
than ERT-CMAQL. The reason for this is similar to the reason for the results in Figure 5a. Therefore,
the proposed ERT-CMAQL achieves relatively low transmission latency and power consumption close
to the optimum for every SU node in the network. Figure 6 illustrates the effect of PU arrival probability
on expected end-to-end delay and system PCR. As shown in Figure 6a, it is found that the transmission
latency of the four algorithms grows as the PU arrival probability increases. This is because the
larger PU arrival probability results in more interruption and transmission failure, which causes
longer delays for data retransmission. CMAQL achieves the lowest transmission delay, followed by
ERT-CMAQL. The latency of CMAQL-ER is higher than that of ERT-CMAQL, and FP-CMAQL has the
longest expected end-to-end latency. This demonstrates the advantage of our proposed ERT-CMAQL,
which produces performance closest to the ideal value. Furthermore, the transmission latency values
of the four algorithms are relatively close when PU arrival probability is low. However, they differ
considerably as PU arrival probability increases. When the probability of PU arrival is low, there is
little conflict between PUs and SUs so the four algorithms achieve almost the same latency. Since
CMAQL and ERT-CMAQL can better avoid conflicts with PU, CMAQL and ERT-CMAQL are capable
of maintaining relatively low latency when PU arrival probability increases. However, in CMAQL-ER
and FP-CMAQL, the data transmission of SUs is often interrupted by PU arrival so the transmission
latency is high. The effect of PU arrival probability on PCR shown in Figure 6b has a similar trend to
Figure 6a, which will not be detailed here.
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Next, for a more general case, a networking scenario comprising 20 SUs and 10 PUs uniformly
deployed in a 500 × 500 m area is considered. The available transmit power contains ten levels:
{50, 100, . . . , 500 mW}. The network topology of the second experiental scenario is shown in Figure 7.
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The comparison of system performance for different kinds of experimental environments is
illustrated in this section. Figure 8 depicts the expected end-to-end latency of six algorithms in
networks with 10 SUs and 20 SUs. It can be seen that with increasing number of routes, the end-to-end
delay sharply declines and then remains steady for all algorithms in both networking scenarios.
When converged, CMAQL achieves the lowest end-to-end delay due to the complete information,
which helps agents make more accurate and comprehensive decisions. Given the conjecture belief
and experience replay, the total transmission delay of ERT-CMAQL is close to CMAQL. CMAQL-ER,
with its consecutive updating rule, consumes more time transmiting packets from the source to
the destination than ERT-CMAQL, followed by FP-CMAQL. The transmission latency of the two
single-agent schemes is particularly larger because, in these two schemes, all the information and
computations are processed by a separate agent, which is inherently less efficient than multi-agent
schemes. PM-DQN produces a longer end-to-end delay than Q-routing in the network with 10 SUs,
but its performance is superior to Q-routing in a large network. This illustrates the advantage of
PM-DQN in the networking scenarios with large state space.
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(b) 20 SU nodes, 10 PU channels.

By comparing the performance of the two networking scenarios, we can find that the end-to-end
latency of all protocols in the network with 20 SUs is relatively longer than in the small-scale network,
and the latency of single-agent schemes increases more apparently than in other algorithms. The reason
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for this is that the links of the route increase with increasing SUs in the network, so that the accumulated
single-hop latency along the route, i.e., the end-to-end delay, grows as well. Single-agent schemes are
more sensitive to the number of SUs, which leads to longer latency in total. Furthermore, it is observed
that the convergence speed of multi-agent schemes remains almost the same in both networking
scenarios. However, Q-routing and PM-DQN converge at around 1700 routes in the first experiment,
and nearly 3000 routes in the second. From the theoretical analysis, we find that multi-agent learning
schemes are not affected by network scale because each SU equips an agent and follows the same
learning rule. The calculation load rises as the number of SUs grows, which has heavy impact on
single-agent schemes with only one agent in the network.

We further investigate the packet loss ratio (PLR) of the six protocols for different networking
scenarios in Figure 9. In both experimental environments, CMAQL has the lowest PLR, followed
by the proposed ERT-CMAQL. The PLR of Q-routing and PM-DQN is obviously higher than other
multi-agent learning schemes, which illustrates the reliability of using multiple agents. Comparing
Figure 9a,b, we find that the PLR of Q-routing is larger than PM-DQN in the first network, whereas
PM-DQN is more robust than Q-routing in large-scale networks. This is because PM-DQN has higher
efficiency in networks with large state space due to the capability of the neural network. In addition,
the PLR of all multi-agent schemes remains almost the same, which demonstrates that the routing
reliability is not affected by network scale for multi-agent learning algorithms. The reason for this
finding is that, in multi-agent collaboration schemes, every SU node equips an agent regardless of the
network size, which improves the robustness as the number of SUs increases.
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6. Conclusions

In this paper, we developed a quasi-cooperative multi-agent learning scheme for multi-hop CRN
called ERT-CMAQL. The simulation results show that ERT-CMAQL reduces the expected end-to-end
latency, guarantees the robustness of routing and achieves higher power efficiency compared to
traditional learning algorithms, and its performance is close to CMAQL using complete information.
In this paper, every SU agent learns the information of topology and channel statistics by itself.
However, self-learning faces two crucial challenges: it requires a large number of interactions between
agents and environment, which takes considerable time, and some energy-constraint applications
cannot afford to the large power expenditure due to the trial and error manner of RL. Unlike general
learning strategies, apprenticeship learning allows newly-jointed SUs to learn from the expert nodes
with mature experience, which makes the joint optimization algorithm converge faster and achieve
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better performance. Our future work will aim to adopt the apprenticeship learning strategy to
accelerate the learning process in CRN.
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