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Simple Summary: Cumulus, Cumulus-percent, Altocumulus, Cirrocumulus, and Cumulus-white are
mammogram risk scores (MRSs) that predict a woman’s risk of breast cancer based on mammo-
graphically dense areas when defined by different levels of brightness. We measured these MRS
for 593 monozygotic (MZ) and 326 dizygotic (DZ) female twin pairs and 1592 of their sisters. We
estimated how much these MRSs were correlated in relatives (ρ), how much of the differences be-
tween women were due to genetic factors (heritability), and how much these MRS explained why
breast cancer runs in families. The ρ estimates ranged from: 0.41 to 0.60 for MZ pairs, 0.16 to 0.26 for
DZ pairs, and 0.19 to 0.29 sister pairs, respectively. Heritability estimates were 36% to 69%. Genetic
factors explain most of why twins and sisters are similar in their MRS, and these genetic factors
explain one-quarter to one-half as much breast cancer risk as to the current best genetic risk score.

Abstract: Cumulus, Cumulus-percent, Altocumulus, Cirrocumulus, and Cumulus-white are mammogram
risk scores (MRSs) for breast cancer based on mammographic density defined in effect by different
levels of pixel brightness and adjusted for age and body mass index. We measured these MRS from
digitized film mammograms for 593 monozygotic (MZ) and 326 dizygotic (DZ) female twin pairs and
1592 of their sisters. We estimated the correlations in relatives (r) and the proportion of variance due
to genetic factors (heritability) using the software FISHER and predicted the familial risk ratio (FRR)
associated with each MRS. The ρ estimates ranged from: 0.41 to 0.60 (standard error [SE] 0.02) for
MZ pairs, 0.16 to 0.26 (SE 0.05) for DZ pairs, and 0.19 to 0.29 (SE 0.02) for sister pairs (including pairs
of a twin and her non-twin sister), respectively. Heritability estimates were 39% to 69% under the
classic twin model and 36% to 56% when allowing for shared non-genetic factors specific to MZ pairs.
The FRRs were 1.08 to 1.17. These MRSs are substantially familial, due mostly to genetic factors that
explain one-quarter to one-half as much of the familial aggregation of breast cancer that is explained
by the current best polygenic risk score.
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1. Introduction

Conventionally, mammographic density refers to the white or bright areas on a mam-
mographic image. These regions are critical for breast screening because they are used by
radiologists to identify potential cancers, but at the same time, they can make it difficult to
detect existing cancers (i.e., they have a masking effect). The extent of mammographically
dense regions on a breast image is also associated with a woman’s risks of being diagnosed
with breast cancer: (i) at the time of screening, (ii) in the interval before the next regular
screen, and (iii) at a future screen [1].

There are many paradoxes involved here, not the least being that because masking
increases the risk of missing cancer at mammographic screening, it reduces, not increases,
the incidence of screen-detected breast cancer [1]. Another complication is that the mam-
mographic dense area, especially when considered a percentage of the total breast area,
decreases with age and with increasing weight and body mass index (BMI) [2]. However,
breast cancer risk increases with age and—at least post-menopause—with weight and BMI.
The latter issues can be addressed by adjusting analyses for age and BMI, but this is often
reduced to a footnote in Tables and not appreciated when these adjustments are in effect
ignored (due to imprecise language) when the results are interpreted.

Therefore, we define a mammogram risk score (MRS) as the residual of a mam-
mographic measure (transformed to approximate normality if needed) after making an
adjustment for age and BMI based on the analysis of controls or another sample to represent
the population and then standardizing it to have mean = 0 and variance = 1. This approach
allows the simple estimation of the odds ratio per adjusted standard deviation (OPERA),
where adjusted standard deviation refers to the standard deviation of the adjusted measure,
not of the unadjusted measure [3]. The log(OPERA) is equal to ∆ = the difference between
cases and controls in the mean of the MRS and is related to the area under the receiver
operating characteristic curve (AUC) by the formula AUC = ϕ(∆/2

1
2 ) [4].

Conventionally, mammographic density is defined at the area of the breast covered by
white or bright regions and can be measured using the computer software CUMULUS [5].
We name the raw density measure based on this definition Cumulus density, and for the
MRS obtained by transforming, adjusting, and standardizing Cumulus density, we name
it Cumulus.

Over the last few years, we introduced other mammographic density measures based
on defining density at, in effect, higher pixel brightness thresholds [6–9]. We name Altocu-
mulus density the area of density defined as the bright regions, and Cirrocumulus density,
the area of density defined as the brightest regions. Altocumulus and Cirrocumulus are the
transformed, adjusted, and standardized MRSs based on these two measures, respectively.
Therefore, Cumulus is the MRS for Cumulus, Altocumulus is the MRS for Altocumulus. and
Cirrocumulus is the MRS for Cirrocumulus.

From a series of studies of Australian and Korean women, we consistently found
that Altocumulus and Cirrocumulus provide more information on risk than Cumulus [6–10].
Furthermore, the risk association for Cumulus attenuates and often becomes null after ad-
justing for Altocumulus or Cirrocumulus [1]. An exception is the risk of interval breast cancer,
for which the conventional Cumulus measure (as a percentage) is a consistent predictor
of risk, even without adjusting for age and BMI (likely due to its role in masking) [10].
Nevertheless, all three measures have a role to play in predicting breast cancer risk.

The potential role of familial, if not genetic, factors in explaining variation in the MRS
has been considered for more than two decades. In 2001, a joint Australian–Canadian
study of Cumulus-percent, based on Cumulus as a percentage of the total breast area
and adjusted for age and BMI, found that the correlations for monozygotic (MZ) twin
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pairs were about 0.6, whereas they were about one-half of this (about 0.3) for dizygotic
(DZ) twin pairs. The twin pair correlations and total variances did not differ between
countries. Given the strong correlation of >0.9 between Cumulus and Cumulus-percent, this
is consistent with additive genetic factors explaining about 60% of the variation in both
Cumulus and Cumulus-percent [11]. Based on Hopper and Carlin [12], we predicted that
these conventional mammographic density MRSs explain, in a statistical sense, around 10%
of the overall familial risk of breast cancer.

We more critically addressed the causes of familial variation in Cumulus by enlarging
the Australian twin data set and recruiting sisters of these twin pairs [2]. We found similar
results with the larger twin sample. We also found no difference in the correlation between
DZ pairs and sister pairs (both share, on average, half their genetic variants). Under the
equal environments assumption of the classic twin study, this is consistent with genetic
factors fully explaining the familial correlations, and there is no evidence that non-genetic
factors shared by twins and sisters have a detectable influence on variation.

In this study, we aimed to estimate the familial correlations of all the MRS and again
try to decompose the variance into genetic and non-genetic components. We used the
enlarged twins and sisters data set to consider MRS based on Cumulus, Cumulus-percent,
Altocumulus, and Cirrocumulus, but this time the MRS were measured by a different set
of measures.

Here we introduced a new mammogram risk score called Cumulus-white, based on
transforming, adjusting, and standardizing the difference between the raw Cumulus density
measure and the raw Altocumulus density measure. This new measure represents the
white but not bright areas on a mammogram.

We again considered the extent to which the familial aspects of these MRSs explain
the familial aggregation of breast cancer based on their published risk gradients. We
also compared the proportion of familial aggregation in breast cancer explained by these
MRS with that of the latest polygenic risk score (PRS) based on 313 single-nucleotide
polymorphisms (SNPs) [13].

2. Materials and Methods
2.1. Sample

We used data from the Australian Mammographic Density Twins and Sisters Study [2].
Briefly, female twin pairs aged 40–70 years without a prior diagnosis of invasive breast
cancer were recruited through Twins Research Australia. Participating twins completed a
questionnaire and gave permission to access their mammograms. They were also asked
to seek permission from any eligible sisters to be invited to participate in the study. We
recruited 3430 twins and sisters from 1578 families, including 593 MZ and 326 DZ twin pairs
and 1592 non-twin sisters. All participants gave written informed consent, and the study
was approved by the Human Research Ethics Committee of the University of Melbourne.

2.2. Risk Factor Questionnaire

Telephone-administered questionnaires were used to record demographic information
and self-reported weight, height, smoking history, alcohol consumption, reproductive
history, onset and cessation of menstruation, use of oral contraceptives, use of hormone
replacement therapy, and personal and family history of cancer. For twin pairs, zygosity
was determined from genome-wide analysis study data [14].

2.3. Mammographic Density Measurements

All available episodes of mammograms were retrieved with the participants’ written
consent, mostly from Australian BreastScreen services, but also from private clinics and
private hospitals. We also retrieved mammograms from the participants themselves.
The craniocaudal views for left and right breasts were selected and digitized using the
Lumysis 85 scanner at the Australian Mammographic Density Research Facility. For each
woman, the most recent right breast craniocaudal view was selected for mammographic
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density measurement, and the left breast craniocaudal view was selected if the right breast
mammogram was missing or unavailable. Mammographic measurements of total area
and dense area were performed using CUMULUS 4.0, a computer-assisted thresholding
technique, after randomization and blind to information, by three independent measurers
(TLN, HNT, CFE) with high repeatability; see for example [15]. Dense area (DA) and
percent dense area (PDA), defined as DA divided by total area expressed as a percentage,
were measured. We also subtracted the Altocumulus DA measure from the Cumulus
DA measure to create Cumulus-white, which refers to the white, not bright, areas on
a mammogram.

2.4. Statistical Methods

The Box–Cox procedure was used to test the normality of the distributions of the
mammographic density measures and, if necessary, select an appropriate power transfor-
mation. We present the MRSs based on both the absolute density measure and the percent
density measure, Cumulus and Cumulus-percent, even though these are highly correlated,
due to both measures often being reported in the literature. For Altocumulus density
and Cirrocumulus density, we reported only the MRSs based on the absolute density
measures. To create Cumulus, the absolute density measure was cube root transformed,
while for Cumulus-percent, the percent density measure was square-root transformed. To
create Altocumulus, the absolute density measure was cube root transformed and to create
Cirrocumulus, the absolute density measure was log-transformed. For Cumulus-white, the
difference between the Cumulus and Altocumulus absolute density measures was log-
transformed. All transformed measures were adjusted for age and the inverse of BMI,
and the residuals were standardized to generate unit variance to create the MRS. This
was performed using linear regression applied to data for controls only to estimate the
two regression coefficients and the constant term and thereby the expected value as a
function of age and BMI and the variance of the residuals for controls. For both cases
and controls, their observed transformed values were then subtracted from their expected
values based on the regression analysis of controls above to derive the residuals, which
were then divided by the variance of the residuals for controls. We previously found that
breast cancer risk factors measured by questionnaire, other than age and BMI, explained, at
most, a slight percentage of variance in the conventional density measure, Cumulus, and
this was trivial compared with the variance explained by age and BMI [2]. We also found
that the same applies to the new density measures, Altocumulus and Cirrrocumulus. These
statistical transformations were conducted using R version 4.0.2 software [16].

We applied a multivariate normal model for pedigree analyses fitted using the software
FISHER, with statistical inference based on asymptotic likelihood theory, to estimate the
correlation between pairs of relatives and to fit the variance components models [17,18].
This approach assumes that, after adjusting the mean for specified measured variables, the
residuals follow a multivariate normal distribution with a covariance structure that can be
flexibly parameterized. The approach allows the estimation of correlations separately for
MZ and DZ twin pairs and or for sister pairs (including a twin and her non-twin sister).

We also fitted models estimating independent genetic and environmental components
of variance to represent additive genetic factors (A), environment factors shared by twins
and sisters (C), and individual specific environmental factors and measurement error (E),
where A + C + E = total residual variance (V). MZ pairs share all their genes while DZ pairs
and sister pairs share, on average, half their genes, so the correlation in additive genetic
factors is 1.0 for MZ pairs and 0.5 for DZ and sister pairs [19]. Under the assumption of
the classic twin study, that the effects of non-genetic (i.e., environmental) factors shared
by twins and sisters are independent of zygosity and the same for twins and sisters, the
correlation between a pair will be (2ϕijA + δC)/V where 2ϕij = 1 if MZ else 0.5 and δ = 1
for all pairs.

We also fitted a model in which C was defined as an MZ pair-specific shared non-
genetic environmental factor, which we refer to as CMZ, so that the correlation between a
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pair will be (2ϕijA + δCMZ)/V, where δ = 1 for MZ pairs, otherwise it is 0. Finally, we also
fitted a purely genetic model which did not include any shared environmental factors but
instead included a term D to represent dominance genetic factors such that the correlation
between a pair is (2ϕijA + δD)/V, where δ = 1 if MZ, otherwise it is 0.25 [19]. Note that, for
all models, the sum of the variance components is 1; therefore, it is not necessary to report
the E estimates. Note that heritability, the proportion of variation explained by genetic
factors, is given by A, or A + D, and the proportion of variation due to familial factors is
A + C or A + D, respectively.

We estimated the proportion of familial aggregation in breast cancer explained by the
familial correlations in the MRS and PRS by reference to Table 1 of Hopper and Carlin [12],
in which RR is the inter-quartile risk ratio and ρ is the pair correlation. These results are
consistent with those of Aalen [20] and the Supplemental Material of Clayton [21]. Based
on the inter-quartile risk ratio of the risk score and its correlation between MZ twin pairs,
we estimated the familial risk ratio (FRR) for MZ pairs.

Table 1. Characteristics and measures of study sample by twin status for monozygotic (MZ) and
dizygotic (DZ) twins. BMI = body mass index.

Characteristics
and Measures

Total
(n = 3430)

MZ Twins
(n = 1186)

DZ Twins
(n = 652)

Non-Twins
(n = 1592)

Breast cancer risk factors, mean (standard deviation)

Age (years) 53.7 (8.4) 54.1 (8.2) 53.5 (9.0) 53.4 (8.4)

BMI (kg/m2) 26.2 (5.3) 25.7 (4.9) 26.5 (5.2) 26.5 (5.5)

Mammogram measures, median (inter-quartile range)

Cumulus 27.4
(17.0–41.2)

28.3
(17.7–41.1)

28.8
(18.2–42.7)

26.4
(15.6–40.5)

Cumulus-
percent

28.1
(15.1–41.8)

29.9
(16.8–43.1)

28.4
(15.5–42.1)

26.9
(13.5–40.7)

Altocumulus 10.9
(6.4–16.4)

11.1
(6.7–16.1)

11.0
(6.2–16.9)

10.7
(6.3–16.4)

Cirrocumulus 1.7
(0.8–3.2)

1.6
(0.7–3.0)

1.6
(0.7–3.2)

1.8
(0.8–3.5)

Cumulus-white 15.9
(9.4–25.3)

16.6
(10.1–19.8)

16.9
(10.7–20.3)

15.1
(8.5–24.3)

3. Results
3.1. Correlations between Relatives

Table 1 show that the summary statistics for MZ twins, for DZ twins, and for non-twins
did not differ substantially from one another.

Table 2 show that, numerically, all the MRS correlations were higher for MZ pairs
than for the other two categories of relatives and that the correlations did not differ greatly
between DZ pairs and sister pairs; see Model 1. Comparison of the (independent) MZ and
DZ pair correlations and their standard errors shows that they differ from one another for
every MRS (all p < 10−4). Model 2 constrains the DZ pair and sister correlations to be the
same, and comparisons of the log-likelihoods with those of Model 1 show that for no MRS,
there is evidence that the DZ pair and sister-pair correlations differed.
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Table 2. Correlations in mammogram risk scores (standard errors in parentheses) for categories of
relatives under unconstrained (model 1) and constrained models (model 2: DZ = sister; model 3:
MZ = DZ = sister; model 4: DZ = sister = 0.5MZ) with p-value for designated comparison of model
fits based on log-likelihoods.

Relative Pairs Cumulus Cumulus-percent Altocumulus Cirrocumulus Cumulus-white

Model 1

MZ twin pairs 0.70
(0.02)

0.63
(0.02)

0.61
(0.02)

0.41
(0.03)

0.61
(0.02)

DZ twin pairs 0.25
(0.06)

0.26
(0.05)

0.20
(0.05)

0.16
(0.05)

0.22
(0.05)

Sister pairs 0.29
(0.03)

0.27
(0.03)

0.25
(0.03)

0.19
(0.03)

0.23
(0.03)

Log-likelihood 1464.084 −1522.568 −1535.675 −1637.656 −1522.304

Model 2

MZ twin pairs 0.70
(0.02)

0.63
(0.02)

0.61
(0.02)

0.40
(0.03)

0.61
(0.02)

DZ twin pairs 0.28
(0.02)

0.27
(0.02)

0.24
(0.02)

0.18
(0.03)

0.23
(0.02)

Sister pairs 0.28
(0.02)

0.27
(0.02)

0.24
(0.02)

0.18
(0.03)

0.23
(0.02)

Log-likelihood 1464.318 −1522.579 −1536.126 −1637.811 −1522.322

P cf. Model 1 0.49 0.88 0.34 0.58 0.85

Model 3

MZ twin pairs 0.38
(0.02)

0.36
(0.02)

0.33
(0.02)

0.24
(0.02)

0.33
(0.02)

DZ twin pairs 0.38
(0.02)

0.36
(0.02)

0.33
(0.02)

0.24
(0.02)

0.33
(0.02)

Sister pairs 0.38
(0.02)

0.36
(0.02)

0.33
(0.02)

0.24
(0.02)

0.33
(0.02)

Log-likelihood 1550.395 −1576.761 −1590.299 −1652.067 −1585.007

P cf. Model 1 10−38 10−24 10−24 10−6 10−27

P cf. Model 2 10−39 10−25 10−25 10−7 10−29

Model 4

MZ twin pairs 0.69
(0.02)

0.62
(0.02)

0.59
(0.02)

0.39
(0.03)

0.59
(0.02)

DZ twin pairs 0.34
(0.02)

0.31
(0.01)

0.29
(0.01)

0.20
(0.01)

0.29
(0.01)

Sister pairs 0.34
(0.02)

0.31
(0.01)

0.29
(0.01)

0.20
(0.01)

0.29
(0.01)

Log-likelihood −1468.855 −1524.455 −1539.647 −1638.075 −1526.902

P cf. Model 1 0.01 0.15 0.02 0.7 0.01

P cf. Model 2 0.003 0.05 0.008 0.5 0.002

The estimates for the best fitting models are shown in bold.

Model 3 constrains all pair correlations to be the same, and comparisons of the log-
likelihoods with those of Model 1 show that there is highly significant evidence that this
model is not consistent with the data; a similar statement applies to comparisons with
Model 2. Therefore, we conclude that the MZ pair correlations are greater than those for
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the DZ pairs and sister pairs, which are similar to one another. Model 4 constrains the
MZ pair correlation to be twice the correlation for DZ and sister pairs combined, and the
comparison of the log-likelihoods with those of Model 2 shows that, except for Cirrocumulus,
there was at least nominally significant evidence that the MZ correlations were more than
twice the corresponding correlations for DZ and sister pairs combined (all p ≤ 0.05). The
best-fitting models were Model 2 for Cumulus, Altocumulus, and Cumulus-white, and Model
4 for Cumulus-percent and Cirrocumulus.

3.2. Variance Conponents

We considered the extent to which the familial correlations accorded with different
variance components models; see Table 3. Model 1 shows that when the ACE model was
fitted, the C estimate was zero (the lower bound for a variance component), and the additive
genetic components were essentially the same as the corresponding MZ pair correlations in
Table 1. Model 2 shows that when C was replaced by CMZ, the estimates of CMZ were all
positive, and nominally so, except for Cirrocumulus. These significant CMZ estimates ranged
from 0.10 to 0.15, and the corresponding A estimate was reduced by a similar amount when
compared with their estimates using Model 1.

Table 3. Variance components for mammogram risk scores (standard errors in parentheses) for ACE
(Model 1) and AE + CMZ (Model 3) with p-values for designated comparisons of model fits based on
log-likelihoods.

Variance
Components Cumulus Cumulus-percent Altocumulus Cirrocumulus Cumulus-white

Model 1

Additive genetic 0.69
(0.02)

0.62
(0.02)

0.59
(0.02)

0.39
(0.03)

0.59
(0.02)

Common
environment

0
(NA)

0
(NA)

0
(NA)

0
(NA)

0
(NA)

Log-likelihood −1468.86 −1524.46 −1539.65 −1638.08 −1526.90

Model 2

Additive genetic 0.56
(0.05)

0.53
(0.05)

0.48
(0.02)

0.36
(0.03)

0.46
(0.05)

MZ-specific
environment

0.15
(0.05)

0.10
(0.05)

0.14
(0.02)

0.04
(0.03)

0.15
(0.05)

Log-likelihood −1464.32 −1522.58 −1536.13 −1637.81 −1522.32

P cf. Model 1 0.003 0.05 0.008 0.5 0.002

The estimates for the best fitting models are shown in bold. NA = not applicable because the parameter estimate
had hit the bound of 0.

When the ADE model was fitted, the estimates of A and D (all standard errors ~0.10)
were: 0.41 and 0.30 for Cumulus; 0.43 and 0.20 for Cumulus-percent; 0.34 and 0.27 for Altocu-
mulus; 0.32 and 0.08 for Cirrocumulus; and 0.30 and 0.31 for Cumulus-white, respectively. The
correlations between the A and D estimates were approximately −0.98. These model fits
had the same log-likelihoods as their corresponding ACE fits.

3.3. Explaining Familial Aggregation

The inter-quartile risk ratio for the MRSs as predictors of breast cancer are in the range
of 2.5 for Cumulus, consistent across studies, and up to 5.0 for Altocumulus and Cirrocumulus
from some studies [1]. We found above that the MZ pair correlations are about 0.6 for the
former and 0.4 for the latter. Based on Table 1 in Hopper and Carlin [12] (see Statistical
Methods), we predict that the FRR for breast cancer generated by the MRSs is about 1.08
for Cumulus, and up to 1.12 or 1.17 for Altocumulus and Cirrocumulus, respectively.
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In comparison, for the current best PRS, which has an inter-quartile risk ratio of 3.5 [13]
and is perfectly correlated in MZ twin pairs, the FRR for breast cancer generated is about
1.3. Therefore, on the log(FRR) scale, the MRSs individually explain about one-quarter to
one-half as much of the familial aggregation of breast cancer as explained by the PRS.

4. Discussion

The familial correlations in the MRSs are substantial. In particular, the correlations for
MZ twin pairs are in the range of about 0.4 to 0.7, which means that about half or more of
the variance of these MRSs is familial. The MZ pair correlations are clearly greater than
those for DZ pairs and sister pairs, while the latter correlations are generally similar to one
another. Therefore, the correlations are related to the genetic similarity of relative pairs.

In terms of heritability, under the equal environments assumption of the classic twin
model, extended to become that all twins and sister pairs share, to the same extent, all of
the non-genetic factors that determine variation in the MRS, genetic factors would explain
about 39% to 69% of the total variance of the MRS; see Model 1 of Table 2. If we take into
account that, except for Cirrocumulus and Cumulus-white, the MZ correlation is significantly
more than twice the correlation for DZ pairs and sister pairs combined, the heritability
estimates reduce to 36% and 56%. The strong familial nature of these MRS (most specifically,
the MZ pair correlations of 0.41 to 0.71) means that they explain a proportion of familial
aggregation of breast cancer, as explained in Hopper and Carlin [12]. The familial risk ratio
(FRR) is the relative risk associated with having an affected relative of a given type. For
breast cancer, the FRR depends strongly on the age at diagnosis of the affected relative and
the age of the at-risk woman, as well as with the relationship(s) with and the number of
affected relatives [22], and even cancers other than breast among relatives. In particular, for
MZ twin pairs, the FRR is six if the affected twin was diagnosed before the age of 50 years,
reducing to less than three if the affected twin was diagnosed after the age of 60 years [23].
MZ twin pairs correlations set a natural upper limit to the role of genetic factors in causing
disease concordance in relatives. If the overall genetic risk is considered a global genetic
risk score in the same sense as we are considering the mammographic density measures to
be MRS, then the inter-quartile risk ratio across the genetic risk score must be about 20 or
more depending on the age of the at-risk woman [12].

We predicted that the FRR generated by the MRSs are about 1.08 to 1.17 and therefore
explain about one-quarter to one-half of as much of the familial aggregation explained by
the current PRS. In the typical screening age range of 50 to 70 years, the PRS explains about
one-quarter of all familial aggregation and the MRS up to another one-eighth.

The question then remains regarding the genetic, and perhaps non-genetic, familial
factors that determine these mammographic density MRS and how they relate to the PRS
and its components. We will address this issue in a concurrent paper in this series [14].

5. Conclusions

There are substantial familial correlations in the MRSs that could have a genetic cause
and explain about one-quarter to one-half of the familial aggregation of breast cancer that
is explained by the current PRS.
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