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ABSTRACT: There has been growing interest in using peptides
for the controlled synthesis of nanomaterials. Peptides play a
crucial role not only in regulating the nanostructure formation
process but also in influencing the resulting properties of the
nanomaterials. Leveraging machine learning (ML) in the
biomimetic workflow is anticipated to accelerate peptide discovery,
make the process more resource-efficient, and unravel associations
among attributes that may be useful in peptide design. In this
study, a binary ML classifier is formulated that was trained and
tested on 1720 peptide examples. The support vector machine Peptide binding assay data
classifier uses Kidera factors to categorize peptides into one of two

groups based on their binding ability. The classifier exhibits satisfactory performance, as demonstrated by various performance
metrics. In addition, key variables that bear a huge impact on the model were identified, such as peptide hydrophobicity. As these
trends were derived from a large and diverse dataset, the insights drawn from the data are expected to be generalizable and robust.
Thus, the presented ML model is an important step toward the rational and predictive peptide design.

»

‘€VM binary classification model

Bl INTRODUCTION

Biomimetic synthesis of nanoparticles using peptides is a
promising technique of creating highly functional inorganic
nanomaterials." Through this method, nanostructures that
exhibit unique morphologies,” enhanced properties,” and
controlled composition4 have been created. This method relies
on the biomimetic peptide (BMPep) to regulate the

peptide screening process by predicting the peptide binding
affinity toward a particular substrate,” classifying a given
sequence if it is a strong binder or not,”” and the creation of
novel algorithms to predict the peptide binding phenomenon. '
However, these studies have used relatively small datasets,
wherein the number of peptides used for training and testing the
algorithm is less than 50. Considering that the predictive success
of such ML models relies on the quality and quantity of the data

nanostructure formation process. The BMPep is able to regulate
the growth of the nanomaterial through a capping mechanism,
wherein the peptide binds to the surface of the growing
nanomaterial, thereby influencing the growth direction.” Apart
from influencing the morphology of the produced nanomateri-
als, the adsorbed peptide on the nanomaterial surface also
impacts the material physicochemical properties, such as
catalytic activity.® As the BMPep plays a central role in the
nanostructure formation process, discovering and developing
more BMPep is expected to further expand the biomimetic
toolkit, which can widen the scope and relevance of this method.
A diverse and rich collection of BMPeps will give researchers
abundant options to tailor and fine-tune the synthesis process to
meet specific requirements or conditions. However, peptide
discovery remains to be a bottleneck as currently employed
methods are expensive, tedious, and technically demanding,
such as the phage display assay.

The integration of machine learning (ML) to biomimetics is a
promising approach to address the problems associated with
BMPep discovery. ML can minimize trial-and-error by quickly
identifying potential sequences that can be used for the
biomimetic nanomaterial synthesis. Previous works have
reported the creation of ML models that aim to assist the
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used for training," "' utilizing a larger dataset for training may
lead to the creation of ML models that are more robust and the
observed trends more generalizable. In this study, a binary
classification model that was trained and tested on more than
1500 peptide sequences is reported. The classification model
categorizes peptides based on their ability to bind to gold
nanoparticles, which may accelerate the BMPep discovery
process and also unravel nonobvious associations that may aid in
the rational design of BMPep sequences.

B METHODOLOGY

The 1720 peptide sequences which are all composed of 10
amino acids and synthesized through solid-phase synthesis
employing spot technology and their corresponding intensity
values used in this study were obtained from the study of Tanaka
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et al."”’ The paper reported the screening results of peptide-
binding assays with gold nanoparticles, as represented by
colorimetric intensities. Peptides that exhibited strong binding
capability with gold nanoparticles yielded high intensity values.
In the categorization of peptides for the dataset to be used for
formulating a ML classification model, peptides that reported
intensity values greater than 207,500 were designated into class
A and others into class B. This threshold value was selected on
the basis of the calculated median value for the dataset.

The chemical descriptors for each peptide were calculated
using the peptide R package.'* The calculated peptide
descriptors were the Blosum indices,"® Cruciani properties,'®
factor analysis scale of generalized amino acid information
(FASGAI) vectors,'” Kidera factors,'® ProtFP,'” ST-scales,”” T-
scales,”' VHSE scales,”” and Z-scales.”> The resulting dataset
was then used for the formulation of classification models using
the following ML algorithms: generalized linear models in the
form of logistic regression (LR), k-nearest neighbor, classi-
fication and regression trees, support vector machine (SVM)
using the radial basis function, and linear and polynomial
kernels. In all classification model formulations, 75% of the
dataset was devoted for training, and the remaining 25% served
as the test set. A 10-fold cross-validation was likewise conducted
for all models during training. The “class A” status was
designated as the positive class for the confusion matrix. The
default settings of each algorithm which led to the best
performance were automatically selected during screening,
followed by hyperparameter tuning during model optimization
which likewise employed 10-fold cross-validation. The R
package caret was used for the creation of the classification
models,”* and the IML package was used for feature selection
and optimization.”> The feature selection method employed in
the IML package involves the stepwise evaluation of the impact
of removing a variable in the classification performance. All R
packages and their dependents used in the study were executed
in R version 4.1.0%° running in a MacOS environment. The
dataset that consisted of 1720 peptide sequences, color intensity
values, and class designation (Table S1), together with the code
used in this study, are available in the Supporting Information.

B RESULTS AND DISCUSSION

This study attempts to overcome the limitations of previous ML
models that were applied to metal-binding peptides by utilizing a
larger dataset. This aspect is already challenging due to the
limited availability and diversity of data. Most papers only report
a few BMPeps and their binding affinities or binding constants,
wherein a good number of these reported BMPeps are strong
binders. However, building ML models also requires the
inclusion of weak or nonbinders in order for the model to
learn the discriminating attributes between the two classes. The
search for more data was widened by considering other types of
variables that indirectly relate to peptide binding on to a
substrate. Thus, the classification model was built on a dataset
that utilized a nonstandard response variable related to
nanoparticle binding in the form of color intensity. The first
step in creating the binary classifier is identifying the appropriate
descriptor and algorithm. This was achieved through the
pairwise comparison of the classification accuracy and kappa
values for each descriptor—algorithm pair (Figures 1 and 2).
Accuracy refers to the proportion of correct classification made
over the total number of cases to be classified. Kappa, on the
other hand, is a measure of agreement between the predicted
and actual classification outcomes. Values for kappa range

Color Key

n

07 08
Value

CART
KNN
SVM-L
SVM-R
SVM-P
ANN

Figure 1. Training performance represented by classification accuracy.
Accuracy scores were obtained from training based on n = 1291,
followed by 10-fold cross-validation. The darker the color, the higher is
the accuracy of the model.
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Figure 2. Training performance represented by kappa values. Kappa
scores were obtained from training based on n = 1291, followed by 10-
fold cross-validation. The darker the color, the higher is the kappa score
of the model.

between —1 to +1, wherein a value closer to +1 is desired. As the
heatmaps show, the pair of Kidera factors (KF) and support
vector machine using a radial basis function kernel (SVM-R) was
the best combination. KF is a class of descriptors specific for
peptides and proteins as they are derived from the multivariate
analysis of 188 physical properties of the 20 amino acids.'®
Following the application of dimension reduction techniques, 10
KFs are obtained, wherein each KF carries more weight on a
particular property of the peptide.

Following the identification of the optimum descriptor—
algorithm pair to be used, variable selection was then carried out
in order to improve the parsimony of the model. Table 1 shows
that KF4 which relates to peptide hydrophobicity had the
greatest impact on the model, while KF1 and KF8 which are
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Table 1. Variable Importance Scores”

Variable importance score
KF4 (hydrophobicity) 1.416
KF2 (side chain size) 1.279
KF3 (extended structure preference) 1.274
KF9 (pK-C) 1252
KF7 (flat extended preference) 1.102
KFS (double-bend preference) 1.084
KF10 (surrounding hydrophobicity) 1.080
KF6 (partial specific volume) 1.070
KF8 (occurrence in alpha region) 1.056
KF1 (helix/bend preference) 1.027

“The higher the score, the greater is the impact of the specific variable
on the classification model. The importance score is derived from the
classification error as a consequence of removing a specific variable.

both related to the peptide helical structure had the least
importance. Hence, the classification model was optimized by
removing KF1 and KF8, followed by hyperparameter tuning

(Figure 3).
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Figure 3. Hyperparameter tuning where the training classification
accuracy is monitored while the sigma and C values are varied. Inset
graph shows the lower sigma regions where the highest classification
accuracy was achieved.

The performance of the final, optimized model that consisted
of 8 KF as the classification variables, employing SVM-R as the
algorithm using C = 1 and sigma = 0.108 as the hyperparameters,
was then evaluated. The test performance is summarized in
Table 2 which shows the confusion matrix together with various
performance metrics. The nearly identical accuracy scores
obtained during the training and testing phases suggest that the
model does not exhibit overfitting. Apart from the reported
80.2% classification accuracy for the presented model, 0.604
kappa can be interpreted as a moderate agreement between the
predicted and actual outcomes.”” The classifier can also be
considered as unbiased as the p-value for the McNemar test is
greater than 0.05. This indicates that the proportion of
misclassification is statistically the same for each class.
Collectively, the performance metrics suggest that the

Table 2. Performance of the Optimized Model (SVM with a
RBF Kernel, C = 1, and Sigma = 0.108) on the Test Set, as
Demonstrated by the Confusion Matrix”

class A class B
class A 182 52
class B 33 162

“Other performance metrics that are derived from the confusion
matrix include: accuracy = 0.802, F1 = 0.811, recall = 0.847, sensitivity
= 0.847, specificity = 0.757, precision = 0.778, and kappa = 0.604.

classification model exhibits adequate and satisfactory capability
to categorize peptides based on their sequence into either class.

External validation is an important component of model
building as it tests the optimized model on data that were not
part of the training and test phases. For the external validation to
be effective, the independent data to be used should come from
the same distribution as the training and test data or
approximately report the same outcome. This therefore
becomes a challenge for the present model due to several
factors. First, the definition of a “strong binder” for gold-binding
peptides varies from study to study. For example, Du et al.” used
the threshold value of —25 kJ/mol for the binding free energy to
differentiate strong from weak binders. In the present study,
such categorization was based on the median color intensity
values of the dataset. Second, the present ML classifier was
developed on a library of 10 mer peptides. Ideally, the peptides
to be included in external validation should be of the same
length. Aware of these constraints and challenges, the optimized
model was subjected to external validation, with the data
obtained from different papers,””**” with each paper having
different criteria on categorizing strong and weak binders. The
external validation dataset is composed of 37 peptides of varying
length and is available in the Supporting Information (Table
S2). The performance of the optimized model on the external
validation is presented and summarized in Table 3. The overall

Table 3. External Validation of the Optimized Model (SVM
with a RBF Kernel, C = 1, and Sigma = 0.108) As
Demonstrated by the Confusion Matrix”

class A class B
class A 7 1
class B 9 20

“The dataset used in the external validation is available in the
Supporting Information (Table S2). Other performance metrics that
are derived from the confusion matrix include: accuracy = 0.73, F1 =
0.583, recall = 0.438, sensitivity = 0.438, specificity = 0.952, precision
= 0.875, kappa = 0.415.

performance of the optimized model on the external validation
was lower, as expected. Predictive models tend to perform more
poorly on external validation compared to the training and
testing sets.’’ Taking into consideration the aforementioned
limitations and challenges on identifying suitable peptides for
external validation, the performance of the optimized model
demonstrates its practical utility in BMPep discovery and in the
overall biomimetic workflow. The high specificity and precision
of the model are valuable in weeding out low-binding peptide
sequences as a highly specific model has a low false-positive rate.
This is important as the model can conserve time and resources.
The excellent ability of the model to reject false positives is also
an indication that the model does not overfit.’'
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Apart from the prospective utility of the classifier for screening
BMPeps, the model also has identified variables that have a huge
impact in predicting the binding capabilities of peptides. This is
fundamentally important and is an incremental advance toward
a deeper understanding of the binding phenomenon which may
contribute to efforts related to the rational peptide design. Based
on current understanding on how BMPeps bind to their
substrate, the process is believed to occur through adsorption.
Specifically, the peptide-binding process involves expulsion of
water molecules that surround the peptide as it approaches the
surface. Once bound, the peptide undergoes conformational
changes and assembly rearrangement in order to achieve
stability.”” Ultimately, these steps in the binding mechanism
are influenced by the peptide sequence, and it is envisioned that
the presented ML model will be able to capture sequence-based
information that are relevant in making the prediction. The
identified variables in this study are those related to peptide
hydrophobicity (KF4), which was deemed as the most
important, followed by extended structure preference (KF3),
side chain size (KF2), and pK-C (KF9). The findings presented
herein corroborate and reinforce past findings relevant to
peptide binding on to gold surface but on a much larger scale as
the ML classifier was built on over 1500 peptide examples. The
peptide property of hydrophobicity is a known parameter to
influence biomolecular interactions. For BMPeps in particular, it
was found through experiments and simulations that the binding
strength is a delicate balance between interactions with the gold
surface and the aqueous environment.*® In addition, interplay
between hydrophobicity and peptide conformation exists, and
both factors are known to be determinants of how peptides
interact with surfaces.”” Previous studies have also identified that
the conformation and protonation state of the BMPep influence
surface binding.’* In addition, multiple studies have identified
that peptide conformation is an important factor that governs
surface binding.”*”****™% The variables identified by the
model are all relevant to peptide conformation, an indication
that the model is logical and plausible. Finally, the identified
variables are also coherent with the phases within the binding
mechanism of gold-binding peptides,®” such as the removal of
the peptide hydration layer prior to binding (KF4—hydro-
phobicity and KF9—pKC), and conformation changes and
assembly reorganization (KF4—hydrophobicity; KF3—ex-
tended structure preference; and KF2—side chain size). Thus,
the presented ML model has formalized and generalized the
associations of these variables on their role in peptide binding to
gold surfaces on a larger scale. These information are valuable
for designing surface-binding peptides.

A limitation of the presented model which may curb its
application and deployment is the utilization of a nonstandard
variable that is associated with peptide binding on to the
nanoparticle as the basis for classification. Another limitation is
related to the utilization of SVM, which generates a black box
model. This limitation is partially addressed by determining
variable importance, but the direct association of these variables
in the classification process is not clearly known. Despite these
limitations, this work is a positive contribution for the wider
integration of ML to biomimetic nanomaterial synthesis.

B CONCLUSIONS

A ML model that was trained and tested on 1720 peptides is
presented, wherein the model can categorize peptides into one
of the two groups based on peptide binding, as represented by
color intensity. The ML model was built using SVM with a radial

basis function kernel and Kidera factors as the variables. The ML
classifier exhibited satisfactory classification performance, as
demonstrated by a test accuracy of 80.2%, among other reported
performance metrics. Thus, the formulated model is an enabling
tool for the accelerated and more resource-efficient discovery of
BMPep.

The ML classifier has also shed light on the significant
variables related to BMPep interactions with gold surfaces,
wherein it was found that peptide hydrophobicity has the
greatest impact on the classification, together with variables
related to the structure, side chain, and protonation state of the
peptide. As these trends were derived from a large and diverse
dataset composed of 1720 peptides, the insights drawn from the
data are expected to be generalizable and robust. This is an
important step toward the rational and predictive peptide
design. Future work should focus on the exploration of other
peptide descriptors, conducting peptide motif analysis, and the
utilization of interpretable ML methods in order to create a
highly generalizable model that can be fully integrated in the
materials creation workflow.
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