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Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance,
their regulation remains poorly understood. The commonly used molecular classification systems for GBM all
identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive
growth.We used a comprehensive data-driven networkmodeling technique (augmented sparse inverse covari-
ance selection, aSICS) to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma sub-
types. Our model identified Annexin A2 (ANXA2) as a novel methylation-controlled positive regulator of the
mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a
prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblasto-
ma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation
and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesen-
chymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes.
.S. Carro),
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1. Introduction

Glioblastomamultiforme (GBM) is the most frequent primary brain
tumor in adults. Despite intense efforts at defining novel targeted ther-
apies, the prognosis of GBM patients remains poor, with a median sur-
vival of approximately 12 months. Molecular profiling studies of GBM
surgical samples have revealed distinct subtypes of GBM (Brennan et
al., 2009; Phillips et al., 2006; Verhaak et al., 2010). Although the pro-
posed subtyping systems differ in the details, a shared feature of current
proposals is a subtype with high expression of mesenchymal marker
transcripts. Mesenchymal subtype GBM exhibits decreased expression
of the Neurofibromin 1 gene (NF1) and high levels of necrosis-associat-
ed genes (Brennan et al., 2009; Phillips et al., 2006; Verhaak et al., 2010).
under the CC BY-N
While there is a strong association betweenmesenchymal gene expres-
sion and tumor invasiveness, in both GBMand other tumors (Balbous et
al., 2014; Carro et al., 2010; Kalluri and Weinberg, 2009; Thiery et al.,
2009), the cellular networks that drive mesenchymal transformation
are far from understood.

Genes that modulate mesenchymal transformation in GBM have
previously been found by computational analysis of mRNA profiling
data. These studies have revealed the transcription factors CEBPB and
STAT3 (Carro et al., 2010) and WWTR1 (a.k.a TAZ) (Bhat et al., 2011)
as master regulators of mesenchymal GBMs. Moreover, Bhat and col-
leagues showed that NF-κB can induce the mesenchymal signature
through induction of CEBPB, STAT3 and WWTR1 (Bhat et al., 2013).
Amplified and overexpressed RHPN2 also promotes mesenchymal
transformation (Danussi et al., 2013) and microRNAs miR-128a
and miR-504 have been shown to negatively correlate with mesen-
chymal gene expression (Ma et al., 2012). Despite the progress in
mapping transcriptional networks of GBM phenotypes, our under-
standing of how these networks are modulated by genetic, epigenet-
ic factors or miRNAs remains incomplete. For such analyses to be
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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possible, new approaches are warranted that take several types of
evidence into account.

To conduct such an open and data-driven search for regulators of all
GBM subtypes, we here adapt the recently described Augmented Sparse
Inverse Covariance Selection (aSICS)method for integrative cancer data
analysis (Kling et al., 2015), which has two suitable features for the
problem at hand. First, unlike previous tools for detection of subtype
regulators (Cantini et al., 2015; Carro et al., 2010), it combines multiple
types of data into a single networkmodel, thus allowing us to efficiently
screen for associations across several classes of molecular events along
with sample data on mRNA and miRNA expression, DNA copy number
aberrations (CNA) of genes and miRNAs, DNA methylation, loss of het-
erozygosity (LOH), point mutations, and clinical information. Secondly,
the procedure is based on robust estimation of partial correlations to de-
tect the coupling between two variables after correction for all the other
variables. Previously, aSICS has been shown to exhibit robust properties
compared to existing network construction methods on cancer data
(Kling et al., 2015).

We first demonstrate that, in addition to includingmultiple layers of
data, aSICS outperforms a standard method in terms of consistency be-
tween two glioma data sets. Next, we use aSICS to build a multi-layered
model of regulation of glioma subtypes. Our model identifies both
known and novel regulators of mesenchymal, proneural and classical
subtypes. Among the predicted regulators, Annexin A2 (ANXA2) stands
out as an epigenetically controlled master regulator of mesenchymal
transformation in glioma, associated with patient survival. To validate
the functional relevance of this model prediction, we abrogate ANXA2
expression in patient-derived, IDH1 wildtype glioma cancer stem cells,
leading to loss of mesenchymal signature genes. Interestingly, ANXA2
loss led to reduced phosphorylation of the previously described key reg-
ulator of mesenchymal transformation, STAT3 (Carro et al., 2010). In-
depth analysis of two independent patient cohorts further supports
that ANXA2 suppression in lower grade glioma is likely explained by
methylation induced by IDH1 mutation. However, ANXA2 also retains
IDH1-independent prognostic power in IDH1wildtype higher grade gli-
oma. Analysis of heterogeneous gliomamaterials, both surgical samples
from different brain regions and single cell data, is used to show that
ANXA2 correlates regionally with mesenchymal transformation.

Our analysis and results thus support a new functional link between
epigenetic regulation and mesenchymal transformation, and identifies
ANXA2 as a possible therapeutic target against mesenchymal glioma.
Application of aSICS to Breast, Ovarian and Colorectal cancer identified
multiple genetic, epigenetic and transcriptional regulators of subtypes
in these cancers, illustrating its generality. The aSICS method is made
available as a free-of-charge Matlab package.

2. Methods

2.1. Applying aSICS to Define Regulators of Cancer Subtypes

The below Methods description focuses on our adaptation of aSICS
for the purpose of uncovering subtype regulators. For a full technical de-
scription of aSICS (e.g. fitting algorithm, FDR estimation, parameter
values, distance metrics, and different data types), we refer to (Kling
et al., 2015).

Step 1: Data integration. All datasets except somatic mutationswere
downloaded as Level 3 (gene level) data from TCGA (The Cancer Ge-
nome Atlas, http://cancergenome.nih.gov) database. We chose the
platform for each data type to maximize the number of patients in
that dataset. RNA and miRNA measurements were used as provided
by TCGA without further normalization. DNA copy number aberra-
tions were mapped to mRNA and miRNA transcripts by mapping
the genomic coordinates of each transcript to the log2 relative
DNA copy number segmentation map provided by TCGA. If more
than one segment was mapped, copy number was estimated as a
weighted average across the involved segments, calculating the
weights based on the relative overlaps. Genes or miRNAs with a
CNA value, but lacking an expression measurement were discarded
from the analysis. Methylation beta values (defined as the ratio of
the methylated probe intensity and the sum of methylated and
unmethylated probe intensities) were filtered to keep probes with
standard deviation across the patients N0.05. Somatic mutation
state was assigned as 0 or 1, the state 1 assigned if a gene had at
least one missense mutation called by TCGA (level 2 data) in that
sample. Silent mutations were not considered. Genes with at least
one missense mutation in fewer than 5 patients were not included
in the analysis. Glioblastoma subtype assignments were assigned by
GSEA (gene set enrichment analysis) (Mootha et al., 2003;
Subramanian et al., 2005) using the signatures provided in
(Verhaak et al., 2010). The four subtypes are classical (n = 159),
neural (n = 93), mesenchymal (n = 164) and proneural (n =
113). The collected data were subsequently organized into a block
correlation matrix:

S ¼
S11 ⋯ S1k
⋮ ⋱ ⋮

Sk1 ⋯ Skk

2
4

3
5 ð1Þ

where each block Sab contains the Pearson linear correlation across
patients for all pairs of variables in data types a, b ∈ {1,⋯, k}, respec-
tively (i.e. in this notation, we consider 1 = point mutations, 2 =
copy number aberrations etc) (the combination of continuous (like
expression) and binary (like mutations) is discussed and validated
in (Kling et al., 2015)).
Step 2: Network construction. Given the correlations S as input,
aSICS uses an iterative algorithm estimate a network of partial corre-
lations, Θ by solving the following optimization problem:

argmax
Θ

: ln det Θð Þð Þ−tr SΘð Þ−Pðθ;p; τÞ ð2Þ

The penalty function P (Θ, p, τ) is, in turn, defined as:

P Θ; p; τð Þ ¼ ∑
i≠ j

λ1;ij ð αjΘijj þ 1−αð Þ Θ2
ij Þ ð3Þ

whereα is the elastic net parameter (Zou andHastie, 2005), selected
as in (Kling et al., 2015). λ1,ij = τ νij is a link specific penalty for the
pair of network nodes i and j. τ regulates the overall stringency, i.e.
the sparsity of the network. νij take on three possible values: 1, p
(b1), or ∞, and makes it possible to emphasize specific network fea-
tures. νij = ∞ is used on CNA and mRNA interactions from differing
locus, based on the assumptions that CNA affect transcription locally,
and for within datatype interactions for CNAs and methylations, to
avoid that the network model is strongly dominated by links be-
tween CNAs or methylation variables of close genetic proximity.
νij = p is used for interactions 1) between miRNAs with their pre-
dicted mRNA targets, as defined by miRanda (John et al., 2004) pre-
diction (MicroCosm Targets Version 5 (Griffiths-Jones et al., 2008),
http://www.ebi.ac.uk/enright- srv/microcosm/htdocs/targets/v5/),
2) between cis localizedmethylations probeswith their correspond-
ing mRNA, as defined by associations between genes and methyla-
tion probes provided in the TCGA level 3 data, and 3) between all
interactions involving a point mutation. The implications of this
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prior is further discussed in (Kling et al., 2015). To increase the con-
fidence of network links we apply bootstrapping and aggregate the
results, as in (Kling et al., 2015). Specifically, we randomly chose
90% of the tumor samples and estimate the network 100 times.
The bootstrap results are aggregated into a final network Z = zij, in
which zij = +1 if the link between variables i and j is present in at
least 80% of bootstrap runs and the correlation sij is positive. Similar-
ly, zij =−1 when the link is found in at least 80% of bootstraps and
sij is negative (sij denotes the pairwise correlation between variables
i and j).We have previously shown that high levels of network strin-
gency tend to enrich for functional interactions (Kling et al., 2015).
Here, we used a variant approach by which the network stringency
(τ) was selected by maximizing the fold enrichment (FE) of genes
fromour in-house database of genes that have been functionally val-
idated in mouse GBMmodels (c.f. Supplementary Table 3). FE is de-
fined as the odds ratio P (in database|selected as regulator)/P (in
database|not selected as regulator).

Step 3: Scoring regulators of subtypes.

Given the aggregated network Z = {zij}, the net connectivity, c, be-
tween a subtype r and a regulator s, is given by the sum

crs ¼ ∑
i∈RNA

zrizis ð4Þ

where RNA the set of indices for variables representingmRNAs (as a
concrete example, cg08081036 is negatively linked to the mesen-
chymal subtype in Table 1, since it is the negative regulator of
ANXA2 which, in turn is a positive regulator of mesenchymal sub-
type, i.e. c = (−1)(+1) = −1). The number of regulators (c≠0)
and the magnitude of c is controlled by the stringency parameter τ,
discussed above.

2.2. Exploration of Additional Cancers

In our exploration of additional cancers (Supplement), we selected
three cancers forwhich there is clear evidence ofmolecular subtypes: ovar-
ian adenocarcinoma (TCGA ‘OV’ cohort) Network et al. (2011), a recent re-
analysis of colorectal cancer from the (TCGA ‘COAD’ cohort) (Cantini et al.,
2015) and breast cancer (TCGA ‘BRCA’ cohort) (Network et al., 2012), using
the provided subtyping data in each respective publication. aSICS was run
as above using the same settings as for GBM.

2.3. Validation in Two Independent Cohorts

Weused the Phillips et al. GBMcohort of 100 cases (Phillips et al., 2006)
and the 529 expression profiles from the TCGA cohort to confirm that sim-
ilar sets of TF regulators were detected. The analysis was repeated for a
range of values of τ to control the number of predictions. Master regulator
was applied as described (Carro et al., 2010), using the ARACNE I0 param-
eter to control the number of predictions. For each method, we recorded
the regulators that did not overlap between data sets (Fig. 1d, x axis) and
the ones that did (Fig. 1d, y axis). The slope for each method and the null
expectation, respectively were assessed and tested by linear regression.

2.4. Functional Annotation of Networks

For Supplementary Fig. 1, hierarchical clustering of the network was
performed using the adjacency matrix indicating existence or absence
of links. The pairwise topological overlap (Ravasz et al., 2002) between
nodes was used for the distance matrix and clustering was performed
for each connected component of the network separately. The number
of clusters for each component was chosen as the minimum number
forwhich adding another cluster did not improve the average silhouette
width. Gene set enrichment was computed for each cluster using the
Fisher's exact test comparing overlap of node gene assignments with
v5.0 of the MSigDB database (Subramanian et al., 2005), including
only the c2, c3, c5, c6 and c7 gene set collections. p-Values were adjust-
ed using the Benjamini-Hochberg method and considered significant if
less than 0.05.

2.5. Cell Lines and Culture Conditions

Glioblastoma cell lines and HEK 293T cells were routinely grown in
DMEM with 10% FBS. Primary glioblastoma-derived BTSCs were pre-
pared from tumor specimens collected at the University of Freiburg
(BTSC 168 and BTSC 161) and University of Uppsala (U3047MG) ac-
cording to a study approved by the University ethic committees and
upon patient approval. Tumor tissues were collected in the operation
room and immediately transferred to a sterile hood for cell dissociation.
The tissue was initially washed in sterile PBS and subsequently cut into
small pieces with a scalpel. After PBS removal by low-speed centrifuga-
tion (700 rpm for 5min), the tissuewas incubatedwithCell Dissociation
Solution (Sigma) for 5min. During this time the cellswere alsomechan-
ically dissociated by pipetting with a 200 l pipette tip. The Cell Dissoci-
ation Solution was then removed by centrifugation and the tissue
resuspended in 5ml of ACK Lysis Buffer (Life Technologies) and incubat-
ed for 5 min at room temperature. After centrifugation, the cells were
resuspended in 5 ml of neurobasal medium and filtered through a
10 m Nylon-Filter (BD Falcon), collected in a new tube, and transferred
to a 75 cm2 cell culture flask (low adherent, Nunclon). The established
BTSCs were then cultured as neurospheres in Neurobasal medium
(Invitrogen) containing B27 supplement (Invitrogen), FGF (20 ng/ml,
R&D Systems), EGF (20 ng/ml, R&D Systems), LIF (10 ng/ml, Genaxxon
biosciences), Heparin (2 μg/ml, Sigma), and glutamax (Invitrogen).
U3047MG BTSC were grown on Laminin.

2.6. Vectors and Viral Infection

Knockdown of ANXA2 was obtained with a shRNA lentiviral vector
(pLKO, Sigma; (Wang et al., 2012)); ANXA2, originally provided in a
1st generation lentiviral vector (kindly gifted by L. Zheng, JohnsHopkins
University, Baltimore, MD), was overexpressed by cloning it into a
pCHMWS lentiviral vector (kindly provided by V. Baekelandt,
Katholieke Universiteit Leuven) in frame with a FLAG tag. To infect
BTSCs, supernatant from transfected 293T cells was ultracentrifuged to
produce high-titer, serum-free virus; Polybrene 4 μg/ml (Sigma) was
added to the lentiviral particles during the infection. Selection of infect-
ed cells was conducted with 2 μg/ml of Puromycin (Sigma).

2.7. Quantitative Real-time PCR

RNA was prepared using the RNAeasy kit or the All Prep DNA/RNA
Protein Mini Kit (Qiagen) and used for first strand cDNA synthesis
using random primers and SuperscriptIII Reverse Transcriptase
(Invitrogen). Quantitative real-time PCR (qRT-PCR) was performed
using the following pre-validated TaqManAssays (Applied Biosystems);
ANXA2: Hs00743063_s1, 18srRNA: Hs99999901. Quantitative RT-PCR
with SYBR green (Applied Biosystems), and primers listed in Supple-
mentary Table 3, were used to validate a panel of mesenchymal genes.

2.8. Immunoblotting and Immunostaining

The following antibodies were used in immunoblotting analyses:
ANXA2 (mousemonoclonal, BD Biosciences), CHI3L1 (rabbit polyclonal,
Quidel), FLAG (rabbit, Cell Signaling), and α-tubulin (mouse monoclo-
nal, Abcam), STAT3 (rabbit polyclonal, Santa Cruz), phospho-STAT3
(rabbit, Abcam). Immunostaining was performed using antibodies
against: ANXA2 (mouse monoclonal, BD Biosciences), CHI3L1 (rabbit
polyclonal, Quidel), Ki67 (mouse monoclonal, Leica), Nestin (rabbit,
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Millipore), MMP2 (rabbit, Abcam), Vimentin (mouse, Sigma). Pictures
were acquired using an Axiovert Microscope (Zeiss) or a FSL confocal
microscope (Olympus).
2.9. Invasion Assays

The Matrigel invasion assay was done using BioCoat Matrigel Inva-
sion Chambers (BD Biosciences) according to the manufacturer's in-
structions. 2.5 × 104 cells infected with lentivirus were seeded in the
upper compartment. PDGF-BB (20 ng/ml, R&D) was used as a
chemoattractant. Images were collected using a wide-field microscope
(Axiovert, Zeiss).
2.10. EdU Cell Proliferation Assay

Cell proliferation was assessed using the EdU-Click594 Cell Prolifer-
ation Imaging Kit (Baseclick GmbH) according to themanufacturer's in-
structions. 2.0 × 104 cells were seeded on laminin-coated glass
coverslips in a 24-well cell culture plate. Pictures were acquired using
an Axiovert Microscope (Zeiss).
2.11. Osteogenesis Differentiation Assay

The osteogenesis differentiation assay was performed using the
StemPro Osteogenesis Differentiation Kit (Life Technologies) according
to themanufacturer's instructions. Briefly, 5 × 103 cells/cm2 were seed-
ed on laminin-coated glass coverslips in a 24-well cell culture plate.
Cells were incubated in MSC Growth Medium at 37C, 5% CO2 for
21 days, replacing the medium every 4 days. Cells were then fixed
with 4% formaldehyde, stained with Alizarin Red S solution (pH 4.2)
and mounted on microscope slides. Pictures were acquired using an
Axiovert Microscope (Zeiss).
2.12. Gene Expression Array and Gene Set Enrichment Analysis (GSEA)

For gene expression profiling total RNA was prepared using the
RNeasy kit or the all Prep DNA/RNA/Proteinmini kit (Qiagen) and quan-
tified using 2100 Bioanalyzer (Agilent). 1.5 μg of total RNA for each sam-
ple was sent to the genomic facility of the German Cancer Research
Center (DKFZ) in Heidelberg (Germany) where hybridization and data
normalization were performed. Hybridization was carried out on
Illumina HumanHT-12v3 expression BeadChip. Microarray data were
analyzed using the GSEA software (http://www.broadinstitute.org/
gsea).
2.13. Classification of Brain Tumor Samples

The classification of brain tumor samples was performed by using
510 genes out of the 840 classifier genes used by Verhaak et al. to clas-
sify 260 glioblastoma samples (Verhaak et al., 2010), and529glioblasto-
ma tissue samples from TCGA with assigned subtypes as reference
(Network, 2008). The 510 genes were selected such that they classify
well the extended set of 529 TCGA samples and were represented on
the Illumina HumanHT-12v3 expression BeadChip arrays. The expres-
sion levels for these genes on the Illumina arrays and in the TCGA data
set were converted into z-scores and the combined matrix was used
to classify each glioma sample based on a k-nearest neighbors (k =
10) and voting procedure, in which a subtype was assigned based on
themajority subtype among the 10 TCGA samples with highest correla-
tion coefficients for these genes with respect to the tumor sample. All
data manipulations were performed in R (https://www.r-project.org/)
and MATLAB (The MathWorks, Inc., Natick, MA, United States).
2.14. Pyrosequencing

GenomicDNAwas extracted from tissues and cell lines using all Prep
DNA/RNA/Protein mini kit (Qiagen) and quantified using
NanoDrop2000c (Thermo Scientific). For pyrosequencing, genomic
DNA was bisulfite modified using the EZ DNA methylation gold kit
(The Epigenetics company) according to the manufacturer's instruc-
tions. Pyrosequencing analysiswasperformed using a PyroMarkQ96 in-
strument (Qiagen), following the manufacturer's protocol. The
following primers were used: ANXA2-pyr-for
GGGTAGGGGTGAGTTATTTTTGATTT, ANXA2-pyr-rev biotin-
ACAAAACCCAC- TAACCTAAATAAAACTTTTATACC, ANXA2-pyr-seq
GGGTAGGGGTGAGTTATTTTTGATTT. The results were analyzed by
PyroMark CpG software (Qiagen). The methylation index for each sam-
ple was calculated as the average value of CpG methylation in the CpG
examined.

2.15. Methylation Array and Analysis

The methylation array was performed using the Illumina Infinium
HumanMethylation450 chip according to the manufacturer's instruc-
tions. Data analysis was performed by R software and RnBeads software
package.

2.16. MRI-localized GBM Biopsy Collection

Before surgery, standard gadolinium-enhanced T1-weightedMRI 3D
datasets were acquired. According to the MRI data, three tumor regions
were identified for sampling: i) a non-enhancing, peritumoral area re-
ferred as edema zone; ii) a contrast-enhancing area within the tumor;
iii) a non-enhancing intratumoral area, referred to as core. During surgi-
cal resection of the tumor, pre-originatedMRI coordinates were used to
accurately track the sampling positions. All biopsy specimens were col-
lected upon patients approval by an experienced neurosurgeon, subse-
quently snap-frozen in liquid nitrogen, and stored at−80 °C. This study
was approved by the University of Freiburg ethic committee.

3. Results

3.1. A Comprehensive Pipeline to Uncover Modulators of Cancer Subtypes

For aSICS analysis of tumor subtypes, we first developed a novel
pipeline with three steps. In step 1 (data integration), we combine dif-
ferent genomic data typeswith binary subtype information, e.g. accord-
ing to Verhaak et al.'s system (Verhaak et al., 2010) (Fig. 1a). We
subsequently compute all pairwise correlations between variables in
the joint data set. Such correlations can be informative, but will also
contain multiple correlations that are due to indirect or spurious effects
in the data. In step 2 (aSICS network construction), we process the cor-
relation matrix to remove such indirect correlations. This is done by an
efficient statistical optimization algorithm to select a set of robust
pairwise partial correlations (Fig. 1b). Partial correlations with strong
evidence in the data are interpreted as network links, which can either
be positive (+) or negative (−). To ensure that the links have strong
support in data,we aggregate the results from100bootstrap runs, keep-
ing only links with consistent evidence support in at least 80% of the
runs. The procedure is adjusted by only two parameters: the stringency
τ (which controls the sensitivity/specificity) and the prior p (which con-
trols theweight of a network, used tomodel e.g. miRNA-mRNA interac-
tions and promoter structure). For an in-depth discussion of the model,
bootstrap procedure and the prior, we refer to (Kling et al., 2015). In step
3 (subtype regulators) we analyze the network to predict direct and in-
direct regulators of subtypes. As direct regulators, we consider transcrip-
tion factors or miRNAs that are directly linked to at least one subtype
(i.e. they are found to contribute independently to subtype variability).
As indirect regulators, we consider mutations, CNA loci, epigenetic

http://www.broadinstitute.org/gsea
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https://www.r-project.org/


Table 1
aSICS derived regulators of GBM subtypes.

CL = classical subtype, MES = mesenchymal subtype, NL = neural subtype, PN =
proneural subtype. Numbers in boxes are net connectivity between each regulator and
the corresponding subtype. Color indicates positive (red) and negative (blue) net connec-
tivity between regulator and subtype, respectively (Methods).

76 T. Kling et al. / EBioMedicine 12 (2016) 72–85
changes or miRNAs connected to at least one subtype variable via at
least one mRNA (Fig. 1c). The sign and connectivity of each regulator
is summarized by its net connectivity, defined as the sum of positive
and negative influences between a regulator and a subtype (Fig. 1c).
To evaluate this pipeline as a tool to uncover subtype regulators, we per-
formed cross-validation using two independent transcriptional data
sets: the TCGA data with 529 GBM cases (Brennan et al., 2013) and
the study by Phillips et al. of 100 glioma cases (Phillips et al., 2006).
When compared to the Master regulator algorithm (MRA, a technique
to predict TF (Carro et al., 2010) and miRNA (Cantini et al., 2015) regu-
lators of cancer), aSICS was approximately twice as sensitive at any
fixed level of false detections (p ≤ 0.001) (Fig. 1d). The number of pre-
dicted regulators will depend on the stringency τ (Fig. 1e). To set the
stringency cross-validation can be used (Jornsten et al., 2011), or an em-
pirical control. Here, we chose the latter strategy, and adjusted stringen-
cy to maximize the relative overlap between the network and our
internal database of published candidate genes in GBM extracted by
text mining and manual curation (Supplement) (Fig. 1f). In all, the pro-
posed pipeline presents a comprehensive framework to predict several
types of transcriptional and genomic determinants of cancer subtype,
and their net effect.

3.2. New Regulators of Glioblastoma Subtypes

At the preferred stringency setting we found 12 direct and 38 indi-
rect regulators of GBM subtypes, from an aSICS model with 3400 links
(Table 1, Supplementary Fig. 1). Three trends emerged. Firstly, we con-
firmed known key subtype selective mutations, including NF1 (mesen-
chymal) and IDH1 (proneural), as well as amplifications of PDGFRA
(proneural) and EGFR amplification (classical). The model confirmed
multiple transcriptional regulators with key roles in GBM, in particular
CEBPB, WWTR1, ASCL1, SOX4 and SOX10 (Carro et al., 2010; Glasgow
et al., 2014; Su et al., 2014; Zhang et al., 2014), aswell as themiRNA reg-
ulators miR-222 and miR-21 (Stewart et al., 2013) (Table 1). The previ-
ously reported mesenchymal driver STAT3, however, was not
detectable in TCGA data. In contrast to the Phillips et al. material, from
which it wasfirst detected, STAT3mRNAdoes not correlatewithmesen-
chymal subtype in TCGA material (r = 0.13); this may reflect either a
technical difference or the inclusion of lower grade glioma in the Phillips
et al. cohort. Secondly, while multiple regulators were detected for the
proneural and mesenchymal subtypes (Table 1), there were relatively
few predictions for the classical subtype and not a single one for the
neural subtype. The neural subtype has limited prognostic relevance
and was recently found to be rare among primary cell cultures from
GBM (Xie et al., 2015). While more research is warranted, one possible
interpretation is that the neural subtype might be better explained by
thepresence of brain parenchyma in the TCGA sampleswhere itwasde-
tected (Verhaak et al., 2010). The prediction that stood out for the clas-
sical subtype was methylation of the EVI2A gene promoter, in close
proximity to the NF1 locus. This methylation event (cg23352695) may
warrant further investigation as a possible determinant of classical sub-
type GBM. Thirdly, we predicted a notable number of epigenetically
controlled regulators of the mesenchymal sub-type, proneural subtype,
or both (with opposing signs). The methylation events included the re-
cently reported suppression of podoplanin, PDPN (Peterziel et al., 2012),
the aSICS detected promoter regulation of brevican (BCAN)(Lu et al.,
2012), ANXA2, SOX10 andMYT (Table 1). Such detections are not a con-
sequence of IDH1 mutation, since this mutational event was identified
as an independent node in the model, and was thus accounted for. We
further concluded that despite the tendency for DNAcopynumber aber-
rations and DNAmethylations to appear across entire genomic regions,
aSICS was generally successful in restricting the prediction to relevant
CNAs (EGFR, PDGFRA) and cis-acting promoter methylations, and the
detected regulators were not significantly clustered on any particular
chromosome. This is due to the combined effect of rigorous variable se-
lection and a network prior (this is further analyzed in (Kling et al.,
2015)).

3.3. Evidence of ANXA2 as a Methylation Controlled Marker of Glioma
Grade

The high number of predicted epigenetic regulators of the mesen-
chymal subtype might suggest a general principle for how GBM cells
adopt more mesenchymal and invasive properties. We chose one such
regulator, ANXA2, for further investigation. According to the aSICS anal-
ysis, ANXA2 was linked to the mesenchymal subtype and promoter
methylation (cg08081036), positive and negative interaction sign, re-
spectively (Fig. 1g, Supplementary Fig. 1). A member of the annexin
family of Ca2+ and membrane-binding proteins (Rescher and Gerke,
2004), it has been suggested as a biomarker for glioma grade stratifica-
tion (Gao et al., 2013) and found to regulate cell migration and prolifer-
ation (Tatenhorst et al., 2006; Zhai et al., 2011). Interestingly, inspection
of the regulators in Table 1 highlighted a number of functional partners
and targets of ANXA2: S100A10 and PLAUR (controlled by miR-21 and
miR-222, respectively) are involved in plasminogen to plasmin conver-
sion, a reaction promoted by the presence of ANXA2 in the cleaving
complex (Stewart et al., 2013), while the mesenchymal gene PDPN
whose promoter methylation is positively connected to the proneural
signature and which plays a role in tumor invasion, is controlled by
the PI3K/AKT/AP1 pathway that can be activated by the binding of
ANXA2 to tenascin C (Chung and Erickson, 1994; Gong et al., 2010;
Peterziel et al., 2012). This observation further strengthened our
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hypothesis for a pivotal role of ANXA2 in mesenchymal tumors. To ex-
plore ANXA2 as a possible methylation-controlled regulator of mesen-
chymal transformation in GBM, we first analyzed ANXA2 expression
and promoter methylation in a set of independent samples. Like in the
TCGA cases (Fig. 2a,b), expression of ANXA2 was significantly higher
in mesenchymal compared to non-mesenchymal GBM in an indepen-
dently collected set of samples from the Freiburg University Medical
Center (Fig. 2c,d). Consistent with a role of DNA methylation in
ANXA2 gene expression regulation, ANXA2 promoter methylation in
TCGA samples showed a clear correlation with grade, primary GBM
exhibiting a lower degree of methylation compared to both LGG grad
II and III(Fig. 2e), which resulted in a negative correlation between
ANXA2 expression and its promoter methylation (Fig. 2f). Finally, we
looked at the methylation status of the ANXA2 promoter
(cg08081036) in a cohort of in-house high and low grade gliomas ana-
lyzed bymethylation array and gene expression profile (Supplementary
Fig. 2). Tumor sample classification based on expression profiling data
allowed to characterize the low-grade tumors as proneural/neural and
the high-grade ones as mesenchymal. We decided to consolidate the
neural group with the proneural one as a classification distinct from
the mesenchymal subtype since it is still controversial whether the
neural subtype represents a distinct subclass (Verhaak et al., 2010). As
expected, the proneural/neural low grade tumors showed higher global
methylation compared to the high-grade/mesenchymal samples, con-
sistent with previous findings (Noushmehr et al., 2010) (Supplementa-
ry Fig. 2a). Examination of the ANXA2 promoter (cg08081036)
confirmed itsmethylated status in low-grade/proneural/neural samples
(Supplementary Fig. 2b). Analysis of ANXA2 expression by qRT-PCR
confirmed its association with high-grade/mesenchymal gliomas (Sup-
plementary Fig. 2c). Overall, our data indicate that ANXA2 presents a
low promoter methylation and elevated expression in high-grade mes-
enchymal gliomas.

3.4. ANXA2 is Suppressed by PromoterMethylation and CorrelatesWith Pa-
tient Prognosis

Since the network model and subsequent validation of ANXA2 pro-
moter methylation in TCGA samples was based on a single probe
(cg08081036), we performed pyrosequencing analysis on several low
and high-grade tumor samples and brain tumor stem cells-like
(BTSCs) from the FreiburgMedical Center. The analyzed region covered
7 CpG sites, including the one corresponding to probe cg08081036 (Fig.
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3a and Supplementary Fig. 3). As shown in Fig. 3b, ANXA2 methylation
was higher in a fraction of low grade and in secondary GBM, which
were defined according to their likely evolution from lower grade tu-
mors, and was generally consistent upon recurrency (Fig. 3b). In accor-
dance with these findings, immunostaining of an independent set of 6
GBM and 6 LGG tissues sections showed a considerably higher expres-
sion of ANXA2 protein in GBM compared to LGG (Fig. 3c–d). Analysis
of IDH1 status revealed that samples with low ANXA2 methylation
were mostly IDH1 wild-type (19/22) (Fig. 3b). Survival analysis of the
same group of Freiburg patients with known ANXA2methylation status
(Fig. 3b) showed a significant association of ANXA2 methylation with
survival (p = 0.013) (Fig. 3e). Although limited in number, secondary
GBMs seemed to be associated with a more favorable prognosis. Anec-
dotally, the only secondary GBM with low ANXA2 methylation had a
survival time of only 15 months, further reinforcing the idea that
ANXA2methylation could be a prognostic factor (Fig. 3e). In accordance
with this, and consistent with our network, we observed a clear associ-
ation of ANXA2 methylation with survival in TCGA patients (Fig. 3f).
Similarly to what was observed in the Freiburg sample set (Fig. 3b),
ANXA2 methylation was significantly associated with IDH1 mutation
in TCGA samples (Fig. 3g). To further confirm a role of DNAmethylation
in regulating ANXA2 expression, we treated the cell line BTSC23,
Fig. 3. ANXA2 is methylated and downregulated in primary GBM. (a) Schematic representation
the CpG corresponding to the probe cg08081036 is indicated. (b) Pyrosequencing analysis of
recurrencies, showing a reduced level of ANXA2 methylation in primary GBM compared t
indicated. (c) Representative immunostaining of ANXA2 in GBM and LGG, counterstained w
Meier curve showing survival of Freiburg patients based on ANXA2 methylation status. (f) K
Analysis of ANXA2 methylation in TCGA samples with wt (orange bar) or mutated (gre
demethylating agent 5-Aza-2-dC alone or in combination with the histone deacetylase inhibito
GBM regions considered for sampling (left panel), and representative MRI data used to colle
contrast-enhancing zone in red, and the core in black. (j) Box-plot graph correlating ANXA2
largest observations (upper and lower whiskers, respectively), the interquartile range (box
lower than the first quartile or 1.5 times the interquartile range higher than the third quartile
characterized by a methylated ANXA2 promoter (Supplementary Fig.
3), with the hypomethylating agent 5′-Aza-2′-deoxycytidine (5-Aza-
2-dC) alone or in combination with the histone deacetylase inhibitor
Trichostatin A (TSA), because histone deacetylation has been shown to
cooperate with DNAmethylation to epigenetically repress transcription
(Nan et al., 1998). Our results showed increased expression of ANXA2
upon 5-Aza-2-dC treatment and a further increment with the combina-
tion of 5-Aza-2-dC and TSA, indicating that ANXA2 expression is epige-
netically regulated (Fig. 3h). Since tumors often contain cells with
distinct transcriptional signatures and such heterogeneity could have
important implication on the effect of therapeutic treatments (Patel et
al., 2014), we performed a regional analysis of ANXA2 expressionwithin
a cohort of 13 GBMs in which 3 samples per tumor were collected
through localized MRI-guided sampling (Fig.3i). The analysis showed
a significant degree of co-expression with mesenchymal marker
CHI3L1 across biopsies (Fig.3j). There was, however, no gradient from
central to peripheral tumor regions, suggesting that its expression is de-
pendent on the GBM molecular signature rather than associated with
any particular region of the tumor (Fig.3j). We further noted that, in
the single cell material collected and profiled by Patel et al. (Patel et
al., 2014), ANXA2 was predictive of mesenchymal signature (p b 10−8,
Supplementary Fig. 4). Together, these results suggest that ANXA2
of ANXA2 promoter showing 7 CpGs covered by pyrosequencing analysis. The position of
ANXA2 promoter methylation in primary and secondary GBM, LGG and their respective
o secondary GBM and glioma grade III. The IDH1 mutation status for each samples is
ith DAPI. (d) Summary of ANXA2 immunostaining results in GBM and LGG. (e) Kaplan
aplan Meier curve showing survival of TCGA patients based on ANXA2 methylation. (g)
en bar) IDH1. (h) Analysis of ANXA2 expression upon BTSC23 treatment with the
r TSA, measured by qRT-PCR. (i) Schematic illustration of the localization of the different
ct MRI-localized biopsies (right panel). The edema zone is highlighted in light blue, the
expression with GBM regions and CHI3L1 expression. The graph shows the smallest and
), and the median (black line); data points more than 1.5 times the interquartile range
were considered to be outliers. For each GBM region n = 13.
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expression is associatedwith the higher GBM tumor grade and themes-
enchymal subgroup and thatANXA2 is repressed in LGGs and secondary
GBMs at least partially via DNA methylation. In addition, ANXA2 co-
varies with mesenchymal transformation within individual tumors,
even down to a resolution of individual cells.

3.5. ANXA2 Regulates Mesenchymal Transformation of Brain Tumor Stem
Cells (BTSCs)

To further investigate the role of ANXA2 in GBM, we selected two
BTSC lines (BTSC161 and 168) in which ANXA2 was expressed to per-
form knockdown experiments (Fig. 4a,b, Supplementary Fig. 5a,b). Si-
lencing of ANXA2 led to suppression of mesenchymal marker
transcripts (Phillips et al., 2006; Verhaak et al., 2010), as measured by
GSEA (Fig. 4c,d and Supplementary Fig. 5c). We decided to validate
our results in BTSC168 since the phenotype appeared stronger in this
cell line. A panel of mesenchymal genes which showed downregulation
upon ANXA2 knockdown in the gene expression array, was then vali-
dated by qRT-PCR (Fig. 4e). Downregulation of the mesenchymal gene
CHI3L1 upon ANXA2 silencing was also validated at the protein level
(Fig. 4f–h). Furthermore, ANXA2 overexpression in BTSCs lacking
ANXA2 (3047) induced both mesenchymal genes (Supplementary Fig.
6a,b) and, interestingly, ANXA2 itself, suggesting a positive feedback
mechanism (Supplementary Fig. 6c,d). A comparatively more favorable
outcome for GBM has been associated to a subgroup of tumors, G-CIMP,
characterized by a higher DNA methylation level (Noushmehr et al.,
2010). This was also confirmed by our network model (Supplementary
Fig. 1) in which patients survival was linked to methylation events,
which in turn tended to be in the promoter region of G-CIMP reported
genes (Fisher test p-values 2.5 · 10−25 and 2.5 · 10−61 for genes directly
or one network step away from the survival node, respectively). Our
data indicate that ANXA2 is methylated in the group of tumors (lower
grade, mostly belonging to the proneural and neural subclass) which
show high methylation of similar nature to the previously identified
G-CIMP (Supplementary Figs. 2,3). This is also in agreement with the
study of Noushmehr and colleagues showing that ANXA2 is a G-CIMP
gene (Noushmehr et al., 2010). Sincewe observed that ANXA2 silencing
causes a loss of the mesenchymal gene signature, and knowing that
most of the non-G-CIMP tumors are mesenchymal, we tested whether
ANXA2 also affects themethylation and expression of G-CIMP genes. Al-
though no significant change was observed in global methylation upon
ANXA2 knockdown in two BTSC lines (data not shown and Supplemen-
tary Fig. 7a), GSEA showed a gene expression profile shift towards the
G-CIMP signature; in particular, genes methylated (Fig. 4i) or downreg-
ulated (Fig. 4j) in G-CIMP tumorswere downregulated, whereas the ex-
pression of genes upregulated in G-CIMP tumors was enriched
(Supplementary Fig. 7b). Altogether, these results suggest that ANXA2
plays a role in the maintenance of the mesenchymal signature and
that its removal from the cellular system leads to a gene expression pro-
file similar to that of the less aggressive G-CIMP subgroup of GBM.

3.6. ANXA2 Acts Upstream of Known Master Regulators of Glioma
Transformation

The expression of mesenchymal genes in GBM has shown to be
controlled by a handful of transcription factors that act as master
regulators of the gene expression profile (Bhat et al., 2011; Carro et
al., 2010). Since our results implicated ANXA2 in the maintenance
of the mesenchymal signature, we investigated whether it plays a
role in the regulation of the mesenchymal master regulators.
ANXA2 knockdown in BTSC168 (Fig. 3a,b) led to a downregulation
of 4 out of 7 tested master regulators, although STAT3 and CEBPB
which have been shown to drive the expression of the other regula-
tors, did not significantly change (Fig. 5a). Then, we decided to look
at STAT3 phosphorylation, which has been demonstrated to be re-
quired for its activation in GBM (Bhat et al., 2011). Here, two new
primary cell lines (BTSC380 and BTSC407) were used, since the pre-
vious cells (BTSC161 and 168) were no longer available due to a loss
of their previous phenotype and to a decrease in cell growth rate. In-
terestingly, silencing of ANXA2 in BTSC380, BTSC407, and in the GBM
cell line SNB19 resulted in decreased STAT3 phosphorylation (Fig.
5b,c). The halt to the activation of STAT3 pathway upon ANXA2
knockdown was then confirmed by GSEA, showing a loss of expres-
sion of genes upregulated by STAT3 and conversely, an enrichment
of genes downregulated by STAT3(Fig. 5d). These data suggest that
ANXA2 is controlling themaintenance of themesenchymal signature
by regulating the expression and/or the activation of a subset of mes-
enchymal master regulators.

3.7. ANXA2 Suppression Abrogates Mesenchymal Characteristics of Brain
Tumor Stem Cells

Upon ANXA2 silencing, two primary BTSC lines (BTSC168 and
BTSC407) lost their characteristic elongated shape and their dispersed
distribution, tending instead to cluster together to form large spheres
(Fig. 6a, Supplementary Fig. 8a), a phenotype reminiscent of mesenchy-
mal-to-epithelial transition described in several different cancer types
(Baum et al., 2008). To support this observation, stainings for the
stemness and EMT marker nestin (NES), and for the EMT markers
MMP2 and vimentin (VIM) showed an attenuated protein abundance
upon ANXA2 silencing in the mesenchymal primary cell line BTSC407
(Fig. 6b, Supplementary Fig. 8b–d). Moreover, ANXA2 modulated both
cellular proliferation, as shown by EdU incorporation assay and Ki67
staining (Fig. 6c–d, Supplementary Fig. 8e–g), and migration, as
shown by a matrigel invasion assay (Fig. 6e,f). Finally, ANXA2 silencing
rendered BTSCs incapable of mesenchymal differentiation into osteo-
cytes when exposed to differentiating conditions (Fig. 6g). Thus,
ANXA2 knockdown in BTSCs seems to alter the gene expression profile
of the cells, inducing drastic changes of important cellular properties
such as proliferation, invasion, and cell fate.

4. Discussion

The progression of a GBM depends on invasive growth marked by
mesenchymal cell features. It therefore remains a critical priority to ex-
pand our knowledge of how the mesenchymal features are modulated.
We have employed aSICS as an integrativemodelingmethod to identify
regulators of cancer subtypes. Applied to GBM, ourmodel implied that a
number of methylation events, independently of IDH1 mutation, con-
tribute to a mesenchymal/proneural axis in GBM. We confirmed
ANXA2 as a key regulator of mesenchymal transformation and demon-
strated its importance for viability, invasiveness andmaintaining ames-
enchymal gene signature. The results thus show that integrative
modeling can uncover a new mesenchymal modulator. Additional pre-
dictions provide a rich source for future investigation (Table 1). Our re-
sults warrants further investigation of aSICS as a general tool to uncover
cancer subtypes. Compared to existing approaches, aSICS includes
broader spectrum of data types, and benchmarking confirmed repro-
ducible performance between independent cohorts. Explorative analy-
ses of three additional cancers reveal that TF, miRNA, mutations and
DNAmethylation regulators are also detected in breast, ovarian and co-
lorectal cancers, suggesting that new regulators can be predicted (Sup-
plementary Fig. 9). A second important venue of investigation will be to
explore the impact of alternate classification schemes, or using the
model to improve subclassifications. For instance, the absence of regula-
tors of the neural subtype is notable and may indicate a lack of mecha-
nistic support for this subtype. Furthermore, there are currently
inconsistent observations regarding the prognostic value of mesenchy-
mal signatures from individual biopsies (Noushmehr et al., 2010; Ozawa
et al., 2014; Phillips et al., 2006; Verhaak et al., 2010). These observa-
tionsmotivate extendedmethoddevelopment andbroader applications
of the aSICS framework, also taking into account tumor heterogeneity,



a b c

d
e

f

g h

i j

Fig. 4.ANXA2 regulatesmesenchymal gene expression signature andpromotes aG-CIMP-like geneexpression signature. (a)ANXA2 expression after shRNAknockdown in the cancer stem
cell line BTSC168, measured by qRT-PCR. (b) ANXA2 protein expression after shRNA knockdown in BTSC168 cell line. (c) GSEA of the mesenchymal signature genes (Phillips dataset);
BTSC168 shANXA2 vs. BTSC168 shCtrl. (d) GSEA of the mesenchymal signature genes (Verhaak dataset); BTSC168 shANXA2 vs. BTSC168 shCtrl. (e) Expression changes of a panel of
mesenchymal genes in BTSC168 cell line upon ANXA2 knockdown, measured by qRT-PCR. For each experimental group n = 3. (f) CHI3L1 protein expression in BTSC168 cell line upon
ANXA2 knockdown. (g) Immunostaining of CHI3L1 in BTSC168 cell line upon ANXA2 knockdown, counterstained with DAPI. (h) Quantification of the fluorescence intensity of CHI3L1
immunostaining (shown in g). For each experimental group n = 10. (i) GSEA of the methylated genes in G-CIMP+ tumors; BTSC168 shANXA2 vs. BTSC168 shCtrl. There is a loss of
expression of this geneset. (j) GSEA of downregulated genes in G-CIMP+ tumors; BTSC168 shANXA2 vs. BTSC168 shCtrl. There is a loss of expression of this geneset.
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reserved for future work. Furthermore, the bootstrapping framework
can be generalized, e.g. to compute confidence intervals of connectivity
scores, reserved for future work. The software itself is currently avail-
able in Matlab and can be obtained from the authors upon request. In
addition to the finding observation that ANXA2 is a key regulator of
mesenchymal targets, our analysis adds to the characterization of
ANXA2 as a possible biomarker in solid tumors (Liu et al., 2015; Zhang
et al., 2012). Based on our results, ANXA2 promoter methylation
shows promise as a prognostic marker, andwe also find that ANXA2 ex-
pression levels to be predictive of patient survival. When extending the
analysis to lower grade glioma (LGG) and secondary GBM, which tend
to be IDH1 mutant and hypermethylated, we noted elevated ANXA2
promotermethylation and suppressed expression. In the G-CIMP signa-
ture described by Noushmehr et al. (2010), ANXA2 is a methylated
gene. Together, these observations imply that ANXA2 can be suppressed
by IDH1 mutation in LGG but also that IDH1-independent mechanisms



a b

c d

Fig. 5. ANXA2 regulates a subset of mesenchymal master regulators. (a) Expression changes of the mesenchymal master regulator genes in BTSC168 cell line upon ANXA2 knockdown,
measured by qRT-PCR. For each experimental group n = 3. (b) Phosphorylation status of STAT3 protein after ANXA2 shRNA knockdown in BTSC407 and BTSC380 primary cell lines,
and in SNB19 cell line, analyzed by western blot. (c) Quantification of phospho-STAT3 band intensities shown in b. (d) GSEA of a dataset of genes upregulated (top panel) or
downregulated (bottom panel) by STAT3; BTSC168 shANXA2 vs. BTSC168 shCtrl. Upregulated genes are lost, while downregulated genes are enriched upon ANXA2 knockdown.
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can modulate ANXA2 via methylation of its promoter in GBM cells. Al-
though we did not observe any significant effect of ANXA2 on global
DNA methylation, several G-CIMP target genes were among the genes
affected by ANXA2 knockdown. Thus, it is possible that ANXA2 knock-
down leads to a general shift in gene expression that effectively mimics
the expression modulation normally achieved through DNA methyla-
tion in G-CIMP tumors. Since G-CIMP tumors are associated with the
most favorable patients' prognosis (Noushmehr et al., 2010), we specu-
late that the acquisition of a G-CIMP-like gene expression signature
upon ANXA2 knockdown in BTSCs might explain the connection be-
tween ANXA2methylation and survival in our two cohorts. IDH1muta-
tion correlates significantly with both ANXA2 methylation or
expression. However, as estimated by a correlation analysis on TCGA
cases, IDH1 status only explains circa 62% of the variation of ANXA2 pro-
moter (cg08081036) methylation and 26% of the expression variation.
Thus, removing IDH1 mutant cases from the analysis, a significant de-
gree of correlation between ANXA2 expression and methylation is
retained (r = −0.21, p = 0.03). We further find that after removal of
IDH1 mutant cases, ANXA2 expression is predictive of longer survival
(Supplementary Fig. 10A). In addition, in the Freiburg patient survival
analysis (Fig. 4e) ANXA2 methylation was not always associated with
IDH1 status. In fact, in the group of secondary GBM (shown in Fig. 3b
and in the survival analysis (Fig. 3e, indicted by a “x”) two patients
with ANXA2methylation butwildtype IDH1 status showed nonetheless
a more favorable prognosis. Combination of ANXA2 expression with re-
cently described prognostic indicators 1p19q co-deletion and TERT pro-
moter mutation (Eckel-Passow et al., 2015) also suggested that ANXA2
expression adds independent prognostic power (Supplementary Fig.
10B), motivating combined analysis of ANXA2 and other indicators in
larger cohorts. Together, our results therefore imply that while IDH1
mutation is a key mechanism behind ANXA2 suppression, particularly
in LGG and secondary GBM, it is likely regulated by additional factors,
and may have clinical promise as a prognostic complementary to IDH1
mutation, or as an indirect marker of G-CIMP cases.

Our MRI-localized regional analysis of ANXA2 expression in GBM
showed a variation across the tumor, with elevated expression in re-
gions expressing a mesenchymal markers. This finding, in turn, was
consistent with a re-analysis of the data by Patel et al, in which
ANXA2 expression predicts mesenchymal transformation in individual
cells (c.f. Supplementary Fig. 4). Reduced ANXA2 expression in the
edema zone compared to contrast-enhancing zone and core of mesen-
chymal tumors might be related to the particularly heterogeneous na-
ture of this region in which ANXA2-expressing neoplastic cells are
intermixed with non-neoplastic cells without ANXA2 expression (Gill
et al., 2014). GBM tumors often contain cells with distinct transcription-
al signatures; such heterogeneity might reflect the evolution process of
tumor cells by the accumulation of temporalmutation events (Ozawa et
al., 2014; Patel et al., 2014; Sottoriva et al., 2013). The different level of
ANXA2 expression in the tumor may thus suggest that it is an interest-
ing target to re-program mesenchymal subsets of GBM cells.

Functional experiments in BTSCs showed that ANXA2 is a causative
regulator of mesenchymal transformation, which both regulates and
co-depends on previously described regulators. Firstly, ANXA2 knock-
down and overexpression in BTSCs suppressed and inducedmesenchy-
mal genes, respectively. In BTSC168 ANXA2 knockdown resulted in a
more pronounced loss of the mesenchymal signature by Phillips and
Verhaak compared to the other tested cell line, BTSC161 (Fig. 4c,d, Sup-
plementary Fig. 5c); this could reflect different gene expression proper-
ties of the two cell lines. Interestingly, BTSC168were established from a
recurrent GBM, so they might display more mesenchymal features
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Fig. 6. ANXA2 knockdown affects cellular properties in BTSC. (a) Micrographs showing different cell morphology and culture organization in BTSC168 cell line upon ANXA2 knockdown.
(b) Immunostaining of the stemness and EMT marker nestin, and of the EMT markers MMP2 and vimentin in BTSC407 upon ANXA2 knockdown, counterstained with DAPI. (c) EdU
staining of BTSC168 cell line upon ANXA2 knockdown, counterstained with DAPI. (d) Quantification of the fluorescence intensity of EdU staining (shown in c). BTSC168 shCtrl
experimental group n = 5; BTSC168 shANXA2 experimental group n = 6. (e) Micrographs showing the matrigel invasion assay in BTSC168 cell line upon ANXA2 knockdown. (f)
Quantification of the matrigel invasion assay shown in e. For each experimental group n = 6. (g) Micrographs showing osteogenic differentiation by Alizarin Red S staining of BTSC168
cell line upon ANXA2 knockdown.
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consistent with previous indication that glioblastoma tend to shift to a
mesenchymal phenotype upon recurrence (Phillips et al., 2006). Exoge-
nous expression of ANXA2 appears to induce a positive feedback loop
that induces endogenous ANXA2 in BTSCs. This is interesting in the
light of ANXA2 presence in microvesicles secreted by GBM cells which
are able to deliver material into neighboring cells (Bronisz et al.,
2014). Potentially, such a positive feedback loop might represent a
mechanism of paracrine interaction between tumor cells to coordinate
cellular behavior across the cell population. Effects of ANXA2 on cellular
properties in GBM has been previously reported (Onishi et al., 2015;
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Tatenhorst et al., 2006; Zhai et al., 2011), although these studies only
used human GBM cell lines or murine models. Here, we investigated
the ANXA2-dependent mesenchymal signature modulation effect on
cell behavior in BTSCs. As previously described for GBM cell lines
(Tatenhorst et al., 2006; Zhai et al., 2011), ANXA2 expression levels
also determine cellular proliferation and invasiveness in BTSCs. In
BTSCs, loss of the mesenchymal signature prevented the cells from dif-
ferentiating into mesenchymal progeny. Thus perturbation of ANXA2
translates into an actual change in cell phenotype by affecting key prop-
erties such as proliferation, invasion, and notably, cell fate.

Consistent with the phenotypic response to ANXA suppression (Fig.
6), suppression of ANXA2 led to an alteration of not only mesenchymal
signatures but also cell cycle related pathways, such as cell cycle check-
point genes (Gene Set Enrichment Analysis p = 8.6 × 10−7, q = 8.6 ×
10−6, Supp Table 1). Intriguingly, additional pathways are also detected
as significantly affected by ANXA2 perturbation, including e.g. Tumor
Necrosis Factor Signaling (p = 1.2 × 10−8, q = 2.08 × 10−7) and
MHC class II antigen presentation (p = 1.02 × 10−4, q = 1.38 ×
10−2). Thus further studies will be needed to elucidate the full cellular
impact of ANXA2 knockdown. In order, an extended study of ANXA2
knockdown inmore cell lines is motivated, e.g. to determine differences
in vulnerability to ANXA2 suppression. Such a systematic study appears
quite possible, since ANXA2 is broadly expressed in glioma cells and
does not co-vary significantly with cell culture passage (Supp Fig 11).

Our data provides new evidence of a functional interaction between
ANXA2 and transcription factors (TFs) known to be involved in GBM
mesenchymal programs. Previously, STAT3 phosphorylation has been
linked to regulation of three TFs that regulate mesenchymal genes:
RUNX1, FOSL2, and BHLHB2 (Carro et al., 2010). It is notable that
ANXA2 knockdown in BTSCs suppresses both STAT3 phosphorylation
and all three target transcription factors. This would place ANXA2 up-
stream in a regulatory hierarchy. Interestingly, ANXA2 is not catego-
rized as a transcription factor (TF), the class of protein most
commonly associated with the gene expression master regulator func-
tion (Bhat et al., 2011; Carro et al., 2010). Danussi et al. identified the
RhoA-binding protein, RHPN2, as an example of mesenchymal signa-
ture driver that does not belong to the TF category (Danussi et al.,
2013). Similarly, ANXA2might represent a mechanism to control cellu-
lar programs alternative to the canonical TF drive. Further studieswould
be required to fully understand the ANXA2 downstream activation
mechanism. Since ANXA2 cellular localization is more accessible than
that of TFs, which generally pose as difficult drug targets, our identifica-
tion of ANXA2 as a regulator of the mesenchymal signature might rep-
resent an opportunity to therapeutically target this molecule in order
to more efficiently treat brain tumors and improve patients' survival.
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