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a b s t r a c t

Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleio-
tropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to
induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex
II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed su-
peroxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of
modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced
basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed
by extracellular Hþ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an
isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pres-
sure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a
shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic in-
terval.

& 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nitric oxide (●NO) and nitrite ( −NO2)-mediated inflammatory
reactions promote the generation of nitrogen dioxide (●NO2), that
in turn nitrates unsaturated fatty acids to form electrophilic ni-
troalkene derivatives (NO2-FA) [1]. The β-carbon of the reactive
nitroalkenyl substituent of NO2-FA readily undergoes reversible
Michael addition with functionally significant Cys and His residues
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on transcription regulatory proteins and enzymes. In aggregate,
the post-translational protein modifications (PTM) by low con-
centrations of NO2-FA and other biological electrophiles promote
adaptive signaling responses in a variety of metabolic and in-
flammatory disease models, including myocardial ischemia/re-
perfusion (IR) injury [1–4].

By virtue of their intrinsic reactivity, electrophilic fatty acids
both activate and inhibit transcriptional regulatory programs and
acutely alter protein catalytic activity (e.g., glyceraldehyde
3-phosphate dehydrogenase, xanthine oxidoreductase, matrix
metallo-proteinases) [5–7]. Inflammatory and metabolic gene ex-
pression is modulated by NO2-FA reaction with the redox-sensitive
transcriptional regulatory factors Kelch-like ECH-associated pro-
tein 1/Nuclear factor (erythroid-derived 2)-like 2 (Keap1/Nrf2),
p65 subunit of nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB), and peroxisome proliferator activating re-
ceptor gamma (PPARγ) [6–8]. These Michael addition reactions are
in turn modulated by a) reactions with low molecular weight
nucleophiles such as glutathione (GSH) and hydrogen sulfide (H2S)
and b) reduction of the reactive nitroalkene by prostaglandin re-
ductase-1 [9–12].

The multiplicity of protein targets indicates that pleiotropic
signaling mechanisms underlie the actions of NO2-FA and moti-
vates the identification of functionally-significant molecular tar-
gets of biological electrophiles. Mitochondria provide a platform
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and substrate for fatty acid nitration and thus may be significant in
manifesting downstream responses to NO2-FA-induced PTMs
[1,13]. Respiratory chain components autoxidize to yield super-
oxide ( •−O2 ) and subsequently hydrogen peroxide (H2O2) resulting
from spontaneous or enzymatically-catalyzed dismutation. This
process is amplified during tissue IR events, promoting increased
levels of secondary reactive species [14]. For example, the hydro-
phobic nature and small molecular radius of �NO allows this ra-
dical species to readily diffuse into mitochondria, where it can
either directly modulate respiratory chain function or react with
O2

●�to yield the nitrating species peroxynitrite (ONOO�) [15–17].
In addition, mitochondrial −NO2 can undergo either reduction to
�NO or mediate nitrosation and nitration reactions via dinitrogen
trioxide or �NO2 formation respectively [18–21]. Nitrogen dioxide
undergoes rapid radical addition reactions with abundant mi-
tochondrial conjugated linoleic acid present in cardiolipin, yield-
ing both oxidized and nitrated products [22].

Formation of nitrated fatty acids has been reported in cardiac
mitochondria following cycles of hypoxia-reoxygenation that in-
duce ischemic preconditioning [13]. In addition, the organelle
supports the β-oxidation of NO2-FA to electrophilic dinor and
tetranor product later detected in plasma and urine [23]. The role
of the mitochondria in cardiac IR injury remains an active area of
discovery and a promising pharmacological target for cardiopro-
tection [24]. In this regard, NO2-FA-reactive mitochondrial protein
targets have already been identified, including the mitochondrial K
(ATP) channel and the adenine nucleotide transporter-1 channel
[25,26].

Herein, complex II is established as a sensitive, reversible, and
functionally-significant target of NO2-FA reaction in cardiac mi-
tochondria, resulting in respiratory inhibition, enhancement of
glycolysis, suppression of superoxide production and the induction
of acute cardioprotection in an isolated perfused rat heart model of
global IR.
2. Experimental procedures

2.1. Materials

Nitro-oleic (OA-NO2) and nitro-linoleic acid (LA-NO2) were
synthesized as previously [27]. Fatty acids were obtained from
NuCheck (Elysian, MN) and other chemicals were purchased from
Sigma (St. Louis, MO) unless otherwise indicated. Animals were
housed in accordance with the Guide for the Care and Use of La-
boratory Animals published by the United States National In-
stitutes of Health (NIH Publication no. 85-23, revised 1996). All
rodent and clinical studies were approved by the University of
Pittsburgh Institutional Animal Care and Use Committee (Approval
12070398).

2.2. Mitochondrial isolation and respirometry

Fresh mitochondria were obtained from rat hearts. Following
anesthesia with isoflurane, hearts were rapidly excised from male
Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN) and
placed into cold mitochondrial isolation buffer (10 mM HEPES,
250 mM sucrose, 0.2 mM EDTA). Hearts were minced into �2 mm
fragments, then placed in clean isolation buffer, washed on filter
paper and moved to a fresh beaker containing isolation buffer and
0.1% trypsin (dissolved in 1 mM HCl). After stirring for 5 min, tis-
sue was homogenized with a Dounce homogenizer. Following
addition of protease inhibitor to the homogenate, it was cen-
trifuged at 600� g and the pellet discarded. The supernatant was
retained and centrifuged at 8000� g, the pellet washed with iso-
lation buffer and again centrifuged at 8000� g. The pellet was
resuspended in a minimal volume (�500 ml) of isolation buffer to
yield �20 mg/ml protein. For respirometry studies, this prepara-
tion was diluted to 0.5 mg/ml in respiration buffer (120 mM KCl,
25 mM sucrose, 10 mM HEPES, 1 mM EGTA, 1 mM KH2PO4, 5 mM
MgCl2) at pH 7.5 in a stirred chamber containing a Clark-type O2

electrode. Respiratory control ratios (RCR) were determined with
8 mM malate/4 mM glutamate as substrates for state 4 respiration
and 10 mM ADP was added to initiate state 3 respiration. Pre-
parations with RCR o4 were discarded. OA-NO2 and oleic acid
(OA) were diluted from methanol stocks and incubated with mi-
tochondria for 10 min before addition of state 4 substrates (either
8 mM glutamate/4 mM malate or 8 mM succinate). O2 concentra-
tion in the chamber was recorded for 15 min and maximal rates
were determined from the linear portion of the curve after sub-
strate addition. When mitochondria were used following freeze-
thaw, oxidized cytochrome c (cyt c)(50 mM) was added just before
substrate. FCCP (500 nM) was added 5 min prior to OA-NO2

addition.
2.3. Measurement of respiratory chain complex activities

Rat heart mitochondrial preparations (�20 mg/ml) were sub-
jected to one cycle of freeze thaw and measurements were made
using 50 mg mitochondrial protein in 10 mM HEPES buffer con-
taining 2.5 mM MgCl2 and 2 mM KCl. Complex II activity was de-
termined by following the decrease in absorbance at 600 nm
(DCPIP, ε 19.1 mM�1 cm�1) in buffer supplemented with 0.1 mM
EDTA, 75 mM DCPIP, 50 mM decylubiquinone and 20 mM succinate
[28]. Complex IIþ III activity was determined in the presence of
20 mM succinate, 50 mM decylubiquinone and 50 mM oxidized cyt
c, by following the increase in absorbance at 550 nm (reduced cyt c
ε 21 mM�1 cm�1) [29]. To determine the effect of NO2-FA treat-
ment on complex activity, mitochondria were incubated with OA-
NO2 or OA at pH 9.0 for 10 min, centrifuged at 14,000� g, pellet
resuspended at pH 7.4, and complex activity determined under the
conditions described above. To test reversibility of the inhibition,
1 mM BME was added for an additional 10 min before
centrifugation.

2.4. Characterization of OA-NO2 addition reactions to complex II and
Fp subunit

Blue native gel electrophoresis resolution of mitochondrial re-
spiratory complexes was performed as described [30] with mini-
mal modifications. Briefly, 400 mg of rat heart mitochondrial pro-
tein was treated with 0 or 20 mM OA-NO2, extracted with lauryl
maltoside and separated by tricine-SDS-PAGE. The complex II band
was excised, sliced into 2 mm segments, dehydrated in 200 ml ACN
for 10 min at 25 °C, and gel pieces dried under vacuum. Trans ni-
troalkylation of OA-NO2 was achieved by rehydration in 50 mM
phosphate buffer (pH 8.0) containing 500 mM BME for 1 h at
37 °C. The reaction was quenched by adjusting pH to 5 with 1 M
formic acid. BME-OA-NO2 adducts were determined by LC/MSMS,
following the neutral loss of BME (404.3–326.2 transition in ne-
gative ion mode) as described [31]. Fp-OA-NO2 adducts were de-
termined using denaturing gels using a similar procedure, with
TCEP used as reducing agent to avoid reversal of OA-NO2 mod-
ifications as previously described [31]. The identification of the 70-
kDa subunit was performed by running a parallel Western blot. Fp
subunit was detected using a mouse monoclonal antibody (1:2000
dilution, Mitosciences, Eugene, OR) and an HRP-conjugated anti-
mouse Ig antibody (1:5000 dilution, Cell Signaling Technologies,
Danver, MA).
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2.5. OA-NO2 alkylation target residues in complex II Fp subunit

10 mg recombinant human complex II Fp subunit (MyBioSource,
San Diego, CA) was treated with methanol or OA-NO2 (1 to 50-fold
molar excess) for 30 min at 37 °C and digested with sequencing
grade trypsin (1:50) in 50 mM phosphate buffer, pH 7.4 at 37 °C for
16 h. Tryptic fragments were separated using a reverse-phase
column (ReproSil C18 column, 3 mm, 75 mm�100 mm) and pep-
tides eluted with a linear gradient of solvent B (0.1% formic acid in
acetonitrile, 2–60% in 46.5 min) over solvent A (0.1% formic acid in
water) at a 300 nl/min flow rate. Peptides were detected in the
positive ion mode using a linear ion trap mass spectrometer (LTQ-
XL, Thermo Electron Corp., San Jose, CA). The electrospray voltage
was set at 2 kV and the capillary temperature was 200 °C. Peptide
sequencing was performed using Proteome Discoverer 1.1.0
(Thermo Scientific).

2.6. Extracellular flux analysis in cardiomyoblasts

H9C2 cells (ATCC, Manassas, VA) were maintained in DMEM
(Mediatech, Manassas, VA) with 10% fetal bovine serum (FBS),
100 U/mL penicillin and 100 ng/ml streptomycin (Invitrogen,
Carlsbad, CA), and used between passages 17 and 30. For extra-
cellular flux (XF) analysis, cells were plated at 20,000 per well in
specialized Seahorse 24-well plates and left to adhere and grow
overnight. The next day media was exchanged for DMEM sup-
plemented with 25 mM glucose, 4 mM L-glutamine, and 1 mM
pyruvate (600 ml final volume per well) 90 min prior to the start of
assay. Optimal concentration of each modulator was determined
in concentration response experiments.

Superoxide determination by DHE oxidation to 2-OH-Eþ . Hy-
droethidine (HE) was purchased from Invitrogen. The standards of
2-hydroxyethidine (2-OH-Eþ), and ethidium (Eþ) were prepared
as previously described [32]. Mitochondria (0.5 mg/ml in 500 ml
respiration buffer) were incubated with OA-NO2 (0–20 mM) for
10 min before addition of 8 mM succinate and 20 mMHE. Reactions
were incubated at 37 °C for 30 min, followed by precipitation of
mitochondria and pellet storage at �20 °C. Generation of 2-OH-
Eþ was quantified by HPLC coupled to an electrochemical detector
as previously reported [32]. The separation of the oxidized pro-
ducts of HE was performed using an ether-linked phenyl column
(Phenomenex, 100 mm�4.6 mm, 2.6 mm), an elution gradient
from 25% to 60% B over A in 10 min at a flow rate of 0.75 ml/min.
The following solvents were used: solution A, 50 mM phosphate
buffer in 90% water and 10% acetonitrile and solution B, 50 mM
phosphate buffer in 40% water and 60% acetonitrile. The peak's
corresponding area were determined and concentrations calcu-
lated using an external standard curve containing synthetic 2-OH-
Eþ and Eþ standards.

2.7. Langendorff-perfused heart preparation and global IR

Hearts were rapidly excised from male Sprague-Dawley rats
following induction of anesthesia with ketamine/xylazine (80 mg/
kg and 5 mg/kg), and retrograde perfused as described [33]. The
perfusate was KH buffer containing 20 mM glucose, 118 mM NaCl,
4.7 mM KCl, 1.2 mM MgSO4, 1.25 mM CaCl2, 1.2 mM KH2PO4, and
25 mM NaHCO3, equilibrated with 95% O2, 5% CO2 gas. Coronary
flow was held constant at 8–12 mL/min at 37 °C. Hearts were
equilibrated for 30 min before insertion of a balloon to the left
ventricle, which was inflated to allow left ventricular developed
pressure (LVDP) to be measured by a force transducer. Hearts
which failed to surpass exclusion criteria (outlined elsewhere [33])
were discarded. Then, 15 min after balloon insertion LA-NO2

(100 nM final concentration) or vehicle (methanol, at 1/1000 final
dilution) were infused for 15 min just above the heart using a
syringe pump. At the end of this interval, hearts were subjected to
35 min of no-flow ischemia, maintained at 37 °C in the perfusate
buffer. Flow was restored slowly to the original rate over 5 min to
initiate reperfusion, and LVDP and heart rate recorded for 60 min.

2.8. Statistical analysis

Where appropriate, Student's t test or analysis of variance with
Bonferroni post-test was applied to the data, with po0.05 used as
the cutoff for significance.
3. Results

3.1. Nitro-fatty acids inhibit complex II-linked respiration in isolated
mitochondria

To first define the effects of a fatty acid nitroalkene on overall
respiratory metabolism, complex I- or II-linked respiration was
measured in isolated rat heart mitochondria preincubated with
OA-NO2 or OA. No inhibition of respiration was observed by up to
10 μM OA-NO2 concentrations in the presence of the complex
I-linked substrates malate and glutamate (Fig. 1A). In contrast,
significant inhibition (�50%) of succinate-mediated respiration
was observed at 3 μM OA-NO2 (Fig. 1B). Similarly, incubation with
OA-NO2 inhibited State 3 inhibition when succinate was used as
substrate (Fig. 1C).

Inhibition of complex II-linked O2 consumption could be by-
passed by the addition of ascorbate/TMPD, substrates which do-
nate electrons to complex IV via cyt c (not shown), indicating that
complex II is a target of OA-NO2. To test if inhibition was depen-
dent on coupling state, the effect of OA-NO2 was tested on freeze-
thawed mitochondria supplemented with cyt c (Fig. 1D) and after
FCCP uncoupling (Fig. 1E). Both treatments blunted the inhibitory
effect of the nitroalkene, indicating that the respiratory state
modulates the OA-NO2 inhibition of complex II-linked respiration.

3.2. Inhibition of complex II activity by OA-NO2 is reversible and pH-
dependent

Given that uncoupled mitochondria (FCCP, freeze-thaw) pro-
tected from respiratory inhibition by OA-NO2, and that Michael
addition reactions are favored under basic conditions that promote
thiol ionization, it was proposed that matrix pH may control OA-
NO2 covalent binding to its target residue. The pH-dependence of
OA-NO2 inhibition on complex IIþ III activity was first assayed in
mitochondria subjected to a freeze-thaw cycle, followed by addi-
tion of 10 μM OA-NO2 or OA over a range of pH values. While OA-
NO2 did not alter activity at pH 6.5 relative to control, inhibition
became significant with higher pH values, with a maximum in-
hibition of 82% reached at pH 9.0 (Fig. 2A).

To further characterize the inhibition and measure the complex
activities at their optimal pH, thawed mitochondria were in-
cubated with OA-NO2 or OA at pH 9.0 (where substantial inhibi-
tion of complex IIþ III activity had been observed, Fig. 2A), sedi-
mented by centrifugation, and resuspended in buffer at pH 7.4.
Independent activity assays showed that complex II was sig-
nificantly inhibited by OA-NO2 (�80%, Fig. 2B) while complex III
activity remained unchanged (Fig. 2C), confirming complex II as
the target of pH-dependent respiratory inhibition by OA-NO2. The
potent inhibition by OA-NO2 of complex II activity strongly con-
trast the observed inhibition of oxygen consumption in whole
mitochondria (OA-NO2 at 10 μM leads to �25% inhibition in FCCP-
uncoupled mitochondria in Fig. 1E versus �45% in Fig. 2A). This
apparent conflicting data most likely originates from complex II
activity not being a limiting factor in mitochondrial oxygen



Fig. 1. OA-NO2 inhibition of mitochondrial respiration. Rat heart mitochondria (0.5 mg) were incubated in respiration buffer (pH 7.5) for 5 min with OA-NO2 (0–10 μM) prior
to substrate addition. (A) Average O2 consumption rates following addition of the complex I-linked substrates glutamate (8 mM) and malate (4 mM). (B) Average O2

consumption rates following succinate (10 mM) addition. (C) Ratio of average State 3 O2 consumption rates (OA-NO2 vs OA) following succinate (10 mM) and ADP (10 mM)
addition. (D) Uncoupling protects mitochondrial respiration from OA-NO2 inhibition. Mitochondria were subjected to one cycle of freeze-thaw and incubated with OA-NO2

(0–10 μM) in the presence of exogenous cyt c for 5 min prior to succinate (10 mM) addition. (E) FCCP (500 nM) protects from OA-NO2 (10 μM) inhibition of succinate driven
state 4 respiration. Values represent the mean7SD of three independent experiments. po0.05, one-way ANOVA vs control.
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consumption rates, contrasting the measurement of complex
II� III activity.

NO2-FA display signaling actions via reversible addition reac-
tions to target Cys residues [7]. To determine the reversibility of
nitroalkene inhibition of complex II, the restoration of activity was
evaluated in the presence of β-mercaptoethanol (BME). Addition
of this low molecular weight thiol to OA-NO2–treated mitochon-
dria fully reversed the loss of complex IIþ III activity to untreated
control levels (Fig. 2D) while the concentration of BME had no
effect on the respiratory activity of mitochondria treated with
native OA (Fig. 2D). It was concluded that OA-NO2 reversible in-
hibits complex II through Michael addition reactions and that
mitochondrially-relevant pH changes modulate inhibition by OA-
NO2.
3.3. OA-NO2 directly modifies the Fp subunit of complex II

To verify a Michael addition reaction between OA-NO2 and
complex II, a trans-nitroalkylation reaction to capture protein-
adducted OA-NO2 was first employed on intact complex II isolated
following blue native electrophoresis [31]. No BME-OA-NO2 ad-
ducts were observed in control conditions, while OA-NO2-BME
adducts from treated mitochondria were detected and co-eluted
with synthetic standards (Fig. 3A and B). The complex II catalytic
70 kDa Fp subunit contains critical thiols that when modified
modulate its activity [34–36]. To determine if this subunit of
complex II was susceptible to OA-NO2 addition, the Fp band was
subjected to a trans-nitroalkylation reaction using BME as ac-
cepting nucleophile. The OA-NO2 treatment resulted in dose-



Fig. 2. pH and alkylation dependence of complex II inhibition by OA-NO2. (A) Effect of pH on complex IIþ III activity (reduction of cytochrome c with succinate and
decylubiquinone substrates added) of freeze-thaw mitochondria incubated with 10 μM OA or OA-NO2. (B,C) Mitochondria incubated with OA or OA-NO2 at pH 9.0 for 10 min
were pelleted by centrifugation, resuspended and assayed for (B) complex II or (C) complex III activity. (D) Complex II inhibition by NO2-FA is reversed by low molecular
weight thiols. Mitochondria treated with OA or OA-NO2 (10 μM) at pH 9.0 were subsequently incubated with þ/�1 mM BME and complex IIþ III activity determined at pH
7.4. All data represent mean7SD of three independent experiments; *po0.05 by Student's t test, two-tailed. **po0.05, one-way ANOVA.
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dependent specific increases in BME-OA-NO2 adducts that were
absent in non-treated controls, indicating that complex II, and
particularly the Fp subunit, is directly modified by OA-NO2 (Fig. 3C
and D).

3.4. Mass spectrometric analysis of the Fp subunit of complex II

To define specific reaction sites of OA-NO2 within the Fp sub-
unit, purified recombinant protein was trypsinized and peptides
analyzed for adducts by mass spectrometry obtaining 64% se-
quence coverage. The analysis covered 11 of the 17 cys found in the
70 kDa Fp subunit. The OA-NO2-treated digests revealed 7 OA-NO2

target peptides (Table 1) identified by a 327.3 m/z increase and a
characteristic shift in hydrophobicity and retention times when
compared to native unmodified peptide. Two OA-NO2 modifica-
tions corresponded to Cys residues and 5 to His residues (Table 1
and Supplementary data).

In particular all OA-NO2-alkylated peptides displayed retention
times ranging from 34 to 41 min while the corresponding native
peptides eluted between 19 and 28 min. Five of the 7 modified
peptides were identified with the same charge as the native
peptides and two displayed a charge 1 unit higher (peptides
SHTVAAQGGINAALGNMEEDNWR and KPFEEHWR) (Table 1 and
Supplementary data).

3.5. Nitro-fatty acids induce metabolic shifts in cardiac muscle cells

Alterations in respiratory metabolism are associated with
cardioprotection in models of ischemia-reperfusion [37]. To de-
termine if the inhibition of complex II by OA-NO2 observed in
isolated mitochondria occurred in intact cells, metabolic flux
analysis using a Seahorse XF24 analyzer was performed on H9C2
cardiomyoblasts. Basal respiration and maximal respiration were
significantly inhibited at low concentrations of OA-NO2, while
proton leak was unaffected (Fig. 4A).

Separately, the acute effects of OA-NO2 on OCR were observed by
addition of 10 μM OA-NO2 to basally respiring cells. This con-
centration lead to a �30% decrease in OCR over 15 min (Fig. 4B).
This decrease was followed by an increase in ECAR, supporting the
concept that cells shifted from respiratory to glycolytic metabolism
in response to OA-NO2. Because these effects mirrored those ob-
served in isolated mitochondria, it was hypothesized that un-
coupling mitochondria and lowering matrix pH may also abrogate
respiratory inhibition by OA-NO2 in intact cells. Myoblasts exposed
to 500 nM FCCP displayed a 60% increase in basal OCR that was not
influenced by addition of 10 μM OA-NO2 (Fig. 4C), further affirming
the role of pH in OA-NO2-mediated cellular respiratory inhibition.

3.6. OA-NO2 suppresses basal superoxide production in respiring
mitochondria

One way in which respiratory chain inhibition may promote
cardioprotection is by limiting formation of partially-reduced re-
active oxygen species. To determine if OA-NO2 would modulate
(O2

●�) production in succinate respiring mitochondria, oxidation
of the superoxide-sensitive probe hydroethidine was followed.
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Fig. 3. OA-NO2 modifies the Fp subunit of complex II. (A) Blue native gel of 400 μg of mitochondrial protein incubated with 0 or 20 μM OA-NO2, the band corresponding to
complex II highlighted. (B) LC/MS profile of the BME-OA-NO2 adducts captured by BME induced trans nitroalkylation of the gel control and OA-NO2 (20 μM) Complex II band.
Elution of BME-13C18 OA-NO2 internal standard shown. (C) SDS-PAGE Coomassie stain of 100 μg of mitochondrial lysate incubated with 0, 5 or 20 μM OA-NO2 (D) OA-NO2

content on the band corresponding to the Fp subunit of complex II was determined using BME transalkylation reaction in the presence of 13C18 OA-NO2. Data represent
mean7SD of three independent experiments.
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Mitochondrial exposure to 5 μM OA-NO2 was sufficient to reduce
O2

●� production by 70%, with no additional decrease observed at
higher concentrations (Fig. 5).

3.7. Nitro-fatty acids are cardioprotective in an ex vivo IR model

Compounds that shift cellular metabolic activity from respira-
tion to glycolysis or limit reactive species formation are often
protective in ischemia-reperfusion injury, and some complex II
inhibitors induce cardioprotective effects. Therefore, the influence
of fatty acid nitroalkenes on cardiac function was evaluated in a
Langendorff-perfused heart model. Administration of 100 nM LA-
NO2 15 min prior to induction of no-flow ischemia did not affect
heart rate, coronary flow, and LVDP but resulted in a significantly
higher rate-pressure product after reperfusion when compared to
LA treated hearts (Fig. S1).
4. Discussion

Nitroalkene fatty acid derivatives are generated by mitochon-
dria and specifically in the heart by the metabolic stress induced
by ischemia-reperfusion [1,13]. These species, when added as
synthetic homologs, mediate myocardial protection in IR [1,31].
Addition of NO2-FA result in inhibition of mitochondrial respira-
tion and reduction of superoxide anion formation as demonstrated
using isolated mitochondria and whole cell flux analysis. Fur-
thermore, cardioprotective effects upon mitochondrial inhibition
by NO2-FA preserved contractile function in an ex vivo model of
acute IR and led to cardioprotection.

The evidence for a link between respiratory inhibition and
cardioprotection in IR is extensive, though it is not clear if a
common protective mechanism unites the inhibition of each
complex [37]. Similarly, while many complex II inhibitors with
distinct sites of action are protective in IR, the involvement of this
complex in protection is not fully understood. Complex II in-
hibitors noted for their therapeutic efficacy in IR include malonate
(a competitive inhibitor at the active site), TTFA and atpenin A5
(inhibitors of the quinone binding site), diazoxide (a non-
competitive inhibitor whose binding site is unknown) and 3-ni-
tropropionate (3-NP, a suicide inhibitor at the active site) [38–41].
Nonetheless, these inhibitors can display systemic toxicity as op-
posed to electrophilic nitroalkenes which are endogenously pre-
sent and have been administered for up to 12 weeks in murine
models of vascular disease with no apparent adverse effects [3].

A shared mechanism of cardioprotection for these structurally



Table 1
Mass spectrometry analysis of human recombinant complex II Fp subunit. Peptides detected to be modified by OA-NO2 are shown with their respective retention times,
MþHþ mass and charge detected. Peptide coverage of Fp subunit after tryptic digest is shown underlined. Modified residues are shown.

Peptides targeted by OA-NO2 in the Fp subunit of complex II

Peptide sequence LC-Retention time (min) Experimental mass MþHþ (z detected)

Native OA-NO2 Native OA-NO2

SMQNHAAVFR 19.1 35.4 1160.7 (2) 1489.6 (2)
SHTVAAQGGINAALGNMEEDNWR 27.1 37.0 2443.1 (2) 2770.5 (3)
AAFGLSEAGFNTACVTK 28.1 40.5 1688.2 (2) 2016.3 (2)
KHTLSYVDVGTGK 20.0 34.0 1406.2 (3) 1732.4 (3)
KPFEEHWR 19.7 34.1 1129.1 (2) 1457.2 (3)
VGSVLQEGCGK 20.2 39.3 1076.8 (2) 1404.0 (2)
WHFYDTVK 24.3 38.5 1095.8 (2) 1424.3 (2)
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diverse inhibitors is appealing, and several candidates have been
proposed. A mitochondrial KATP channel of undetermined mole-
cular identity is activated by many complex II inhibitors and is
considered crucial in preconditioning, with complex II proposed to
have a structural role in this channel. In this regard, nitroxyl (HNO)
is a thiol-modifying compound which inhibits complex II and ac-
tivates the mitoKATP channel, promoting cardioprotection when
administered prior to ischemia [35,42]. While the potential role of
this channel in NO2-FA-mediated cardioprotection was not directly
addressed, protection of primary ventricular myocyte cultures by
LA-NO2 in simulated IR was not affected by the mitoKATP inhibitor
5-hydroxydecanoate [13]. Independent of mitoKATP effects, a re-
cent study indicates that succinate buildup during ischemia and its
rapid metabolism during reperfusion is an important mechanism
of ischemic injury. In this model it is reverse electron transfer to
complex I which drives reactive species production and tissue
damage [43]. This injury is inhibited by the prodrug di-
methylmalonate, which is converted to the flavin-binding complex
II inhibitor malonate, and a similar mechanism is possible with
OA-NO2 through specific binding to the flavin-containing Fp sub-
unit [43,44].

In addition to reduced radical formation, the metabolic shift
from cellular respiration to glycolysis observed in cell culture as a
result of complex II inhibition can promote cell survival in IR [45].
Notably, enzymes in the glycolytic pathway are tightly regulated
by electrophiles, as reported for GAPDH [7], suggesting that mi-
tochondrial NO2-FA trafficking might be involved in directing mi-
tochondrial protein PTMs.

The mechanism of inhibition of the 70 kDa Fp subunit flavin by
3-NP involves its oxidation to yield the electrophile
3-nitroacrylate, which inhibits complex II upon Michael addition
[46]. Despite the structural and mechanistic similarities between
fatty acid nitroalkenes and the 3-carbon nitroalkene 3-ni-
troacrylate, addition of 3-NP at 10-fold molar excess did not inhibit
OA-NO2 binding to the Fp subunit, likely indicating that these
compounds target different nucleophilic amino acids (not shown)
[47,48]. Furthermore, 3-NP causes pronounced neurodegeneration
in animal models independent of its cardioprotective effects [49],
an effect that is not evident in acute or long term OA-NO2 treat-
ments. The apparent reversibility of NO2-FA adduction of complex
II by low molecular weight thiols is another important distin-
guishing feature, as 3-NP adducts are considered irreversible [46].

An earlier study linked acute cardioprotection by OA-NO2 to
mild uncoupling induced by nitroalkylation of the adenine nu-
cleotide transporter (ANT1) in mitochondria [26]. However, this
study used biotinylated NO2-FA (derivatized at the carboxylic
acid), whose intracellular metabolism and trafficking differs from
that of the native fatty acid, to demonstrate ANT1 modification in
isolated perfused hearts. These metabolic and trafficking differ-
ences are salient when studying the modification of mitochondrial
proteins by NO2-FA, as the entry of fatty acids to the mitochon-
drion requires the formation of carnitine and CoA derivatives. In
addition, mitochondrial beta oxidation of NO2-FA generates
shorter chain electrophilic species that may have different targets
than the parent compound, with biotinylated NO2-FA not subject
to this metabolic regulation [23]. Finally, the addition of biotin
doubles the size of the fatty acid and neutralizes the carboxylic
acid which may impact half-life and molecular targets. Of note,
despite the differences in experimental approach, biotinylated
nitrated linoleic acid has been reported to modify the Fp subunit of
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Fig. 4. OA-NO2 inhibits respiration and promotes glycolysis in H9C2 cardiomyoblasts. O2 consumption and extracellular acidification rates (OCR and ECAR) were measured in
H9C2 cells (A) Following 2 h of incubation with 0–5 μM OA-NO2, basal OCR was measured, followed by proton leak, maximal respiration, and non-mitochondrial O2

consumption (induced by oligomycin, FCCP and 2-DG, and antimycin A, respectively). A representative experiment is shown. (B) 10 μM OA-NO2 was added to respiring cells
and the percent change in OCR and ECAR recorded. (C) Addition of 10 μM OA-NO2 after uncoupling of respiration with 500 nM FCCP. For all experiments, n¼5 wells per
group, data represents mean7SD.
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Fig. 5. OA-NO2 suppresses basal superoxide production in isolated mitochondria.
Superoxide was determined by the oxidation of DHE (20 μM) to 2-OHE in mi-
tochondria respiring on succinate (10 mM) preincubated for 10 min with OA-NO2

(0–20 μM). 2-OHE content in the mitochondrial pellet was determined by HPLC. A
representative experiment is shown. n¼4 reactions per group, mean7SD.
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complex II in mitochondria [13].
Additional insights from the present study in the context of

previous reports of the mitochondrial effects of NO2-FA include
the observation of uncoupling and the concentrations used to elicit
respiratory inhibition. In one study, a small (though significant)
increase in O2 consumption rate was noted by extracellular flux
analysis in H9C2 cells at 1 mM LA-NO2 [26]. This was a minor effect
relative to previous data showing robust uncoupling of primary rat
ventricular myocytes at concentrations between 0.25 and 1 mM
LA-NO2, and in isolated mitochondria at concentrations up to
10 mM, with 20 mM required for inhibition [13]. In the present
study, increased respiration in OA-NO2-treated cardiomyoblasts
relative to controls was not observed at nitroalkene concentrations
below 10 mM.

The present data indicates that inhibition of complex II by NO2-
FA may depend in part on matrix pH, since respiratory coupling
was a requirement for inhibition in both isolated mitochondria
and cells. The dissipation of the membrane potential in uncoupled
mitochondria reduces the delta psi and the pH differential across
the membrane, lowering the pool of available thiolate anion on
target proteins required for nitroalkylation reactions. Consistent
with this, inhibition of complex IIþ III activity by NO2-FA in iso-
lated mitochondria after freeze-thaw was strongly dependent on
pH, with maximal inhibition occurring near pH 9.0. The pH-de-
pendent response of respiratory inhibition by OA-NO2 suggests
that modification of a thiol on complex II with a pKa of approxi-
mately 8.0 is responsible for NO2-FA-mediated inhibition. Esti-
mates of in vivo matrix pH using pH-sensitive GFP mutants in-
dicates that this compartment in resting cardiomyocytes main-
tains �pH 7.9, and a higher local pH would be expected near the
respiratory complexes, where protons are actively exported from
the matrix [50]. Thus, physiologically relevant changes in matrix
pH might tightly control nitroalkene-dependent inhibition of re-
spiration. In this regard, cytochrome oxidase is highly sensitive to
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nitric oxide, a condition associated with high levels of nitrated
fatty acids, mitochondrial hyperpolarization and local higher pH
levels.

The administration of nitrite mediates the post-translational
modification of complex I thiols and leads to cardiac protection
from ischemic insult [51]. Herein, no effect of OA-NO2 on NADH-
linked respiration in isolated mitochondria was observed, con-
sistent with an earlier report showing no effect of LA-NO2 on
complex I activity [13]. The biochemical basis for complex I-spe-
cific inhibition by S-nitrosation but not S-nitroalkylation is unclear,
and might relate to local spatial and charge constrains. With re-
gards to complex II, it is a target for various reactive species. For
example, a) Cys90 in the Fp subunit of bovine complex II (corre-
sponding to Cys81 in the rat) is S-glutathionylated in vitro upon
addition of oxidized glutathione GSSG, [52] b) nitroxyl, the one
electron reduction product of �NO preferentially inhibits complex
II over complex I [35] and c) 4-HNE covalently modifies and in-
hibits the Fp subunit [36].

Prior studies have employed MS analysis to monitor redox
modifications of the 70 kDa Fp subunit of complex II in post-is-
chemic myocardium. In the absence of reducing agents, a coverage
of 64.9% was obtained, in agreement with the 64% obtained in our
study [52]. A difference between studies is the coverage of cy-
steines, as we characterized 11 of the 17 cysteines present in hu-
man succinate dehydrogenase and that study covered 5 of 18
present in the bovine-derived enzyme, a coverage that increased
to 88% after incubation with reducing agents. In this regard, the
presence of OA-NO2 adducts requires non-reducing conditions to
stabilize modifications, as these agents induce β-elimination of
OA-NO2. In particular, Cys89, the target residues of OA-NO2 in the
human subunit is basally S-glutathionylated in bovine hearts
(Cys90), and loss of this modification in IR is associated with de-
creased electron transfer efficiency and increased production [52]
underscoring its role in mitochondrial respiration control. In ad-
dition, the role of different PTMs becomes evident in the control of

•O2 formation as OA-NO2 has an inhibitory effect and S-glutathio-
nylation increases the formation of this radical. Additionally, OA-
NO2 targets Cys526 (homologous to bovine Cys537) which was
reported to undergo oxidation to sulfonic acid in the bovine
myocardium during IR further demonstrating the sensitivity of
cysteine residues in Fp subunit to oxidative modifications [34].
Reversible nitroalkylation of these residues could further prevent
their irreversible oxidation during injury. While exogenous OA-
NO2 and purified recombinant Fp subunit were employed here to
map sites of adduction, future studies will seek to identify mod-
ified peptides in complex II following in vivo physiologic or pa-
thophysiologic stresses, such as ischemic preconditioning or IR.

Signaling by individual electrophilic species involves effects on
multiple protein targets in various cellular compartments, and it is
likely that several mechanisms account for the acute ex vivo car-
dioprotection conferred by NO2-FA. Overall our data support a role
for respiratory inhibition in the cardioprotective mechanism of
NO2-FA, likely via inhibition of complex II, promoting glycolysis,
suppressing reactive species formation, and preserving myocardial
function in the post-ischemic interval. Endogenous production of
fatty acid nitroalkenes during ischemic stress links inflammatory
stress with beneficial metabolic responses, providing a potential
target for future pharmacological intervention.
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