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Abstract: This work presents a simple and innovative protocol employing a microfluidic paper-based
analytical device (µPAD) for equipment-free determination of mercury. In this method, mercury (II)
forms an ionic-association complex of tetraiodomercurate (II) ion (HgI4

2−
(aq)) using a known excess

amount of iodide. The residual iodide flows by capillary action into a second region of the paper
where it is converted to iodine by pre-deposited iodate to liberate I2(g) under acidic condition. Iodine
vapor diffuses across the spacer region of the µPAD to form a purple colored of tri-iodide starch
complex in a detection zone located in a separate layer of the µPAD. The digital image of the complex
is analyzed using ImageJ software. The method has a linear calibration range of 50–350 mg L−1 Hg
with the detection limit of 20 mg L−1. The method was successfully applied to the determination
of mercury in contaminated soil and water samples which the results agreed well with the ICP-MS
method. Three soil samples were highly contaminated with mercury above the acceptable WHO
limits (0.05 mg kg−1). To the best of our knowledge, this is the first colorimetric µPAD method that is
applicable for soil samples including mercury contaminated soils from gold mining areas.

Keywords: tetraiodomercurate; mercury; paper-based; iodometry; soil; water

1. Introduction

Mercury is well known as one of the most toxic elements for organisms and human
health. It is known that natural disasters such as volcano eruptions and forest fires can cause
the release of mercury and contamination of the environment [1]. Nonetheless, emission of
mercury from artisanal small-scale gold mining (ASGM) is the largest source of mercury
emission in some developing countries [2,3], where mercury is used for amalgamation and
purification of gold [4]. The US EPA methods for determination of mercury in water [5]
and soil [6] are based on cold vapor atomic absorption spectrometry (cold vapor-AAS). For
complicated matrices such as soil and sediment, a method employing use of an alkaline
reagent (pH ≈ 14), named Universol® was recently presented in association with cold
vapor-AAS [7]. There are also other equipment-based methods that have been employed
for these samples, such as high-performance liquid chromatographic method using chemi-
luminescence detection [8] and inductively coupled plasma mass spectrometric method or
ICP-MS [9] for soil samples, as well as a resonance scattering spectroscopic method [10] for
water samples.

Among equipment-based techniques, colorimetric spectrometry is still the favored tech-
nique for the determination of mercury because of its simplicity and availability of cost-
effective instruments. The water soluble Michler’s thioketone reagent (4.4′-Bis-(dimethylamino)-

Molecules 2021, 26, 2004. https://doi.org/10.3390/molecules26072004 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9294-3182
https://doi.org/10.3390/molecules26072004
https://doi.org/10.3390/molecules26072004
https://doi.org/10.3390/molecules26072004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26072004
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/7/2004?type=check_update&version=1


Molecules 2021, 26, 2004 2 of 17

thiobenzophenone) has been used for detection of mercury but the method could be inter-
fered by other metal ions, such as Cr(III), Fe(III) and Cu(II) [11]. Several selective reagents
have also been proposed for the determination of mercury. However, most chromogenic
reagents are insoluble in water, e.g., 1-[(5-Benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-
2-ol [12], dithizone [13], 2-(3-hydroxy-1-methylbut-2-enylideneamino) pyridine-3-ol [14]
and 2,4-bis (4-phenylazophenylaminodiazo) benzenesulfonic acid [15]. In order to im-
prove the solubility of these organic reagents, the reaction has to be carried out in a
micellar system of sodium dodecyl sulphate [13] or Triton X-100 [15]. Functionalized gold
nanoparticles (AuNPs) with dithioerythritol [16], 3, 5-dimethyl-1-thiocarboxamidepyrazole
(Pzl) [17] or mercaptophenyl boronic acid (MPBA) [18] have also been presented for col-
orimetric/spectrometric detection of mercury. Nonetheless, for low- and middle-income
countries (in Asia, Africa, the Pacific and South America) where emissions of mercury
are mainly from gold mining activities, equipment-free and low-cost devices for mercury
determination are needed as tools for monitoring the anthropogenic emission at point
source and the extent of the spread of the contamination.

Microfluidic paper-based analytical devices (µPADs) [19–23], as well as reagent
impregnated-paper strips/devices, are analytical tools that is in line with the strategy
of equipment-free analysis using low-cost devices. For producing µPADs, patterns are
drawn on the paper substrate using various hydrophobic materials to act as barriers to
control the fluid flow on the paper. For mercury, there are some interesting paper-based
devices that have been presented for colorimetric detection of mercury (as Hg2+) with
photographic image analysis [24–28]. Patidar et al. presented two synthesized rhodamine
derivatives for colorimetric detection of Hg2+ (and Cr3+) on paper strips and cellulose
acetate membrane [24]. A resorufin thionocarbonate signaling probe for Hg2+ was recently
synthesized by the group of Chang [25]. Hg2+ induces cleavage reaction of thionocarbon-
ate moiety of the probe leading to a prominent color change from yellow to pink. This
probe was later incorporated into a wax printed µPAD for selective detection of Hg2+.
Nanoparticles have been utilized by various groups to develop sensitive colorimetric
paper-based analytical devices (PADs)/µPADs for quantifying Hg2+ [26–30]. Han et al.
presented a paper chip for Hg2+ detection based on the enzyme-like catalytic activity of
gold nanoparticles (AuNPs) that is enhanced by the formation of Au-Hg amalgam for the
reaction between 3,3′,5,5′-tetramethylbenzidine (TMB) and H2O2 [29]. The color intensity
of the chromogenic peroxidase substrate (TMB image) corresponds to the concentration
of Hg2+. Silver nanoparticles (AgNPs) were also employed as colorimetric sensors for
PADs/µPADs [26,27,30]. Hg2+ is reduced by AgNPs which leads to disintegration of the
AgNPs into smaller particles and formation of Hg0 [26]. Subsequent deposition of Hg0 onto
AgNPs gives Ag-Hg amalgam particles resulting in the change in the color intensity which
is dependent on the concentration to Hg2+ [30]. Pourresza et al. presented a colorimetric
paper-based analytical device incorporating synthesized curcumin nanoparticles (CcNPs)
for quantifying Hg2+ [28]. Complex formation between Hg2+ and CcNPs leads to the
fading of the yellow color which is used for the determination of Hg2+. A distance-based
readout µPAD for determination of Hg2+ was also presented by Cai et al. [31]. The reaction
between Hg2+ and dithizone in NaOH solution forms an insoluble colored complex in the
paper channel. The length of the pink reaction band increases linearly with the concentra-
tion of Hg2+. Most of these PAD/µPAD methods were tested to analyze water samples
spiked with mercury [25–31]. To the best of our knowledge, there has been no PAD/µPAD
previously presented for detection of mercury in soil.

Therefore, this work presents a µPAD as tool for analyzing soil heavily contaminated
with mercury. The µPAD can be used to identify the source and the dispersion of mercury
emission from gold mining activities. The µPAD method is also appropriate for assessing
inactive gold mines for persistence of the release of mercury to villages surrounding the
mines. The µPAD was fabricated based on the concept of membraneless gas-separation
microfluidic paper-based analytical device (membraneless gas separation µPAD) that was
introduced in 2016 by Phansi et al. [32]. This work quantitates mercury via formation of



Molecules 2021, 26, 2004 3 of 17

tetraiodomercurate(II) ion (HgI4
2−) with a known amount of excess iodide. This ionic-

association complex is formed in the sample reservoir of the “donor layer”. The residual
iodide reagent then flows via capillary action to react with iodate and acid to generate
iodine (I2) in the neighboring reservoir of the “donor layer”. I2 vaporizes from this reservoir
through the headspace (the spacer layer) to form a purple complex of tri-iodide starch in
the detection reservoir of the third “acceptor layer”. Photographic images of the purple
complex are analyzed using ImageJ to obtain the color intensities for the quantitation of
mercury. Our device serves the needs of low- and middle-income countries with limited
resources in the mining areas as simple and low-cost tool capable for mercury determination
in samples with complicated matrix such as soil. The device is readily implemented to assess
crisis and situation of mercury emission. Production cost of the mercury µPAD is very cost-
effective (7 US$/100 devices) [33]. The reagents are common and are supplied worldwide
at reasonably low in costs (potassium iodide, potassium iodate, sulfuric acid and starch).
In addition to the use of the mercury standards (which is unavoidable in any mercury
determination), our method does not contribute hazardous waste to the environment.

2. Results and Discussion
2.1. Principle of Indirect Colorimetric Detection of Mercury

Mercuric ion reacts with iodide ion to form a stable complex of tetraiodomercurate
(HgI4

2−, Kf = 7.4 × 1012) [34]. The complex is a colorless compound which cannot be
detected using a digital camera. In order to generate intense visible color, the iodometric
reaction was employed. The detection principle is based on the following reactions:

At the Donor layer
‘sr’ reservoir: Hg2+

(aq) + I−(aq) → HgI4
2−

(aq) + I−(aq)
excess unreacted

‘dr’ reservoir: 5I−(aq) + IO3
−

(aq) + 6H+
(aq) → 3I2(g) + 3H2O(l)

unreacted
At the Acceptor layer I2(g) + I−-starch → I3

− -starch(aq)
purple complex

The first step of the reaction occurs in the donor layer ‘D’ at the sample reservoir ‘sr’
(Figure 1b) where the stable complex of HgI4

2− is formed. The remaining I− flows to the
donor reservoir ‘dr’ and is oxidized by acidic iodate to produce iodine gas (I2(g)). The
gas diffuses across the spacer layer to react with the iodide-starch reagent producing the
purple tri-iodide starch complex on the acceptor layer ‘A’. The higher the concentration
of Hg(II), the less amount of iodide will remain in the donor reservoir ‘dr’, resulting in
decrease of production of iodine gas and consequently decrease in the color intensity of the
I3
−-starch complex, as can be visually observed. The color of the complex at the acceptor

zone (layer A in Figure 1) is recorded using the digital camera and the image analyzed
using ImageJ software. The RGB (red, green, blue) intensity values were evaluated. It was
found that the data for the green intensity scale provided the highest sensitivity of the
linear calibration line (see Method S1, Figure S1 and the discussion in the Supplementary
data for the selection of the green color intensity).

2.2. Optimization of Physical Parameters of the µPAD

Three physical parameters were optimized using standard Hg(II) solutions in the
range of 50–350 mg L−1 by following the protocol illustrated in Figure 2. The sensitivity,
i.e., the slope of the calibration line, was the target of the optimization process.
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Figure 1. (a) The µPAD pattern: (i) acceptor layer A with circular-shaped barrier and (ii) 
donor layer D with dumbbell-shaped barrier. (b) The three layers of the membraneless 
gas-separation µPAD, showing alignment of the donor layer, the spacer layer with circular 
hole and the acceptor layer. (c) 3D-view of assembled device from both the acceptor and donor 
sides, with position of the transparent tapes. 
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problem, the diameter of the donor reservoir was reduced to 3 mm and the length of the 
connecting channel was slightly increased from 5 to 6.5 mm. In the fabrication of the mem-
braneless gas-separation device, the center of the 3 mm donor reservoir ‘dr’ was aligned 
with the center of the acceptor reservoir, as shown in the drawing in Table 1. With use of 
the smaller diameter of 3 mm, homogeneity of color distribution, as well as higher sensi-
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Figure 1. (a) The µPAD pattern: (i) acceptor layer A with circular-shaped barrier and (ii) donor
layer D with dumbbell-shaped barrier. (b) The three layers of the membraneless gas-separation
µPAD, showing alignment of the donor layer, the spacer layer with circular hole and the acceptor
layer. (c) 3D-view of assembled device from both the acceptor and donor sides, with position of
the transparent tapes.
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2.2.1. Diameter of Donor Reservoir

In the previous work of membraneless gas-separation µPADs reported by Phansi et al.
for determination of volatile (ethanol) and non-volatile compounds (S2− and NH4

+) [32]
three µPADs with donor reservoir diameters of 6, 8 and 10 mm were tested. They found
that the volume of the air gap increases with an increase in the donor reservoir diameter
which results in a decrease in the sensitivity of measurements. Therefore, the smallest
diameter of the donor reservoir (6 mm) was selected and this diameter was also used as
the size of the acceptor reservoir. When this dimension was used in this work, the color
of the complex developed towards one side of the acceptor reservoir (see photographs
in Table 1). As illustrated by the drawings in Table 1, for the donor reservoir with larger
diameter (6 mm), it appears that iodine is generated mostly at the entrance of the donor
reservoir ‘dr’. This gives rise to uneven distribution of the color and low precision of the
mean of the color intensity value of the designated area of the acceptor reservoir. To solve
this problem, the diameter of the donor reservoir was reduced to 3 mm and the length
of the connecting channel was slightly increased from 5 to 6.5 mm. In the fabrication of
the membraneless gas-separation device, the center of the 3 mm donor reservoir ‘dr’ was
aligned with the center of the acceptor reservoir, as shown in the drawing in Table 1. With
use of the smaller diameter of 3 mm, homogeneity of color distribution, as well as higher
sensitivity of analysis, was achieved. Therefore, the donor reservoir diameter of 3 mm was
selected in further optimization study.

Table 1. Effect of size of diameter of donor reservoir on homogeneity of color distribution at the acceptor reservoir and on
the sensitivity of analysis.

Diameter of
Donor Reservoir

Working Range
(mg L−1 Hg) Linear Equation Schematic Diagram

of the Experimental Study

Image of the Acceptor
Reservoir (6 mm) for

150 mg L−1 Hg

6 mm 50–350 Intensity- = (4.0 ± 0.5) ×
10−2 CHg(II) + (123.7 ± 1.1)
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2.2.2. Effect of Reaction Time

In this work, the reaction time is defined as the time period from the addition of
the iodide solution into the sample reservoir ‘sr’ (Step 5 in Figure 2) to the recording of
the image of the detection area (Step 6). The reaction time was varied from 2 to 8 min,
respectively. Figure 3a shows that the sensitivity significantly increased when the reaction
time was increased from 2 min to 4 min. However, the sensitivity remained constant for
reaction times of 6 and 8 min. This implied that the partial pressure of the iodine gas was
attained within 4 min. Therefore, the minimum reaction time of 4 min was selected for
further studies. However, in order to increase sample throughput, multiple analyses can
be carried out since reaction time longer than 4 min does not affect the measurement.

2.2.3. Effect of Spacer Thickness

Effect of the spacer thickness of the µPAD was also optimized. The spacer thickness
was increased from 0.8 to 3.2 mm by increasing the number of layers of the 0.8 mm
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mounting tape, respectively. The result in Figure 3b shows that the sensitivity significantly
decreases with increasing spacer thickness. This may be due to the increased volume of the
air-gap which will require more iodine to provide the same equilibrium partial pressure
and, hence, less iodine reacting with the iodide-starch reagent. This effect was also observed
in the previous report [35]. Thus, we selected 0.8 mm air gap in the further studies.
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spacer thickness study, the reaction time is 4 min.

2.3. Optimization of Chemical Parameters of µPAD
2.3.1. Iodide Concentration

The determination of Hg(II) is based on the measurement of the iodide remaining
after reaction with mercury in the sample. Therefore, the initial concentration of iodide is
an important parameter as it will affect the amount of iodine gas produced and, thus, the
formation of the I3

−-starch complex. The study was carried out using a standard solution
of 150 mg L−1 Hg(II) with the concentrations of potassium iodide varied from 5 to 14 mmol
L−1, respectively. As expected, increasing the initial concentration of iodide, the value of
the green intensity of I3

−-starch complex also increased, corresponding with the amount
of remaining iodide (Figure 4b). The images of the purple I3

−-starch complex are shown
in Figure 4a. Measurements of the sensitivity of determination, using standard Hg(II)
solutions from 50–350 mg L−1, showed increasing sensitivity for iodide concentration
up to 10 mmol L−1. However, there is a steep decline at higher concentration of iodide
(Figure 4b). Using large amount of initial iodide (>10 mmol L−1), the green intensity did
not significantly change with the concentrations of standard Hg(II) (50–350 mg L−1). This
showed that the amount of Hg(II) in the samples consumed only a small proportion of
the initial iodide, resulting in calibration curves with low sensitivity. In fact, for loading
of 8.0 µL of 10 mmol L−1 iodide (Step 5 in Figure 2) on to the previously applied Hg(II)
standard (3.0 µL, Step 2 in Figure 2) the amount of remaining iodide is 96% for 50 mg L−1

Hg and 74% for 350 mg L−1 Hg. Thus, 10 mmol L−1 was selected because it provided the
highest sensitivity.

2.3.2. The pH of Mercury Solution

The pH of the mercury solution was investigated to find the suitable value for the
reaction of iodide to form the HgI4

2− complex. Mercuric ion is unstable at high pH where
the main species include HgOH+, Hg(OH)2 and Hg(OH)3

− [36,37]. Therefore, low pH was
selected to have Hg2+ as the main species. Optimization was carried out using standard
150 mg L−1 Hg in the pH range of 0.5 to 4. The results in Figure S2 (Supplementary data)
shows that the green intensity value increased from pH 0.5 to pH 2 and then decreased. It
was found that self-oxidation of iodide was taking place at extremely low pH producing
iodine gas (at sample reservoir ‘sr’) at the same as reacting with mercury. Stable condition
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was achieved at pH 1 and 2 (Figure S2). Kim et al. have reported that mercury in solution
with +2 oxidation state has the highest stability at pH 2 and decreasing with increasing
pH [37]. Thus, we selected pH 2 as the optimum pH for determination of mercury since it
provides the highest green intensity with absence of self-oxidation of iodide.
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2.4. Analytical Performance and Interference Study
2.4.1. Analytical Features

Using the optimal parameters (described above) and operating procedure (Section 3.4
and Figure 2), the linear working range was 50–350 mg L−1 Hg, with coefficient of de-
termination r2 of 0.996 (Figure 5). The limit of detection (3σ of y-intercept/slope) and
limit of quantification (5σ of y-intercept/slope; [38]) were 20 mg L−1 and 33 mg L−1 Hg,
respectively. Thus, the method is applicable for determination of mercury in contami-
nated samples such as soil including water samples collected from gold mining areas. The
contaminated water samples can be directly analyzed without any sample preparation
step whereas the contaminated soil samples have to be digested prior to the analysis.
The mercury contents in water and digested soil samples (concentration range of a hun-
dred mg L−1) are mutual with the calibration range. The repeatability of the proposed
method was performed by measurement of standard Hg(II) solution of 150 mg L−1 Hg for
twelve replicates, with a %RSD of 2.2%. The determination of one mercury sample can be
carried out within 10 min; however, the number of sample throughput can be increased
with simultaneous analyses of samples.

2.4.2. Interference Study

The proposed µPAD method was developed for the determination of mercury in soil
and water samples from gold mining areas. Therefore, the effect of interfering species that
are normally present in water and soil in such areas were investigated. According to the
previous report of Malehase et al. in 2016 [39], several metal ions and anions have been
found in soil and water samples in the gold mining area. These include iron (Fe), copper
(Cu), chromium (Cr), cadmium (Cd), zinc (Zn), lead (Pb), silver (Ag), nitrate (NO3

−), sulfate
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(SO4
−) and chloride (Cl−). Therefore, these and other ions (see Table 2) were investigated

for their effect on the mercury analysis. A 50 mg L−1 of mercury standard solution was em-
ployed as the test solution which was spiked with various concentrations of each interfering
species. In this work, the tolerance limit is defined as the highest concentration of the foreign
species causing a change of the green intensity less than ±1 SD (standard deviation) for the
determination of 50 mg L−1 Hg standard solution. This SD value was 4.5% of the mean
intensity. The results in Table 2 show that, among the metals ions, Fe(III) and Ag(I) show
low levels of tolerance because Fe(III) acts as oxidizing agent of iodide (E0

Fe3+/Fe2+ = 0.77 V,
E0

I2/I− = 0.54 V) and Ag(I) can precipitate out with iodide (AgI(s); Ksp = 8.3 × 10−17). As for
the anions, sulfide (S2−) shows the lowest level of tolerance of 25 mg L−1 since sulfide has
a high affinity for mercury to form HgS(s) (Ksp = 2 × 10−54) [34]. However, the tolerance
concentrations of all substances are still higher than the reported levels in water and soil
samples. Therefore, the proposed method has the potential for analysis of mercury in water
and soil samples without interference by possible foreign species.
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Table 2. The tolerance limit of the µPAD for analysis of Hg(II) and comparison with the reported
levels of foreign species in some samples (drinking water, river water and soil).

Foreign Species
Reported Level Tolerance Limit

(mg L−1)River Water (mg L−1) a Soil (mg kg−1) b

Copper (II) 0.006–10 5–70 1000 c

Lead (II) 0.003–0.3 10–67 1000 c

Cadmium (II) 0.01–0.04 6.4–11.7 1000 c

Iron (II) 0.03–0.05 0.5–10 1000 c

Nitrate (NO3
−) 5–50 8–119 1000 c

Sulfate (SO4
2−) – 29–130 1000 c

Cyanide (CN−) ≤0.2 11–44 750
Chromium (III) 0.05–0.2 2–60 500

Zinc (II) 0.05–0.1 8.9–65.7 500
Nickel (II) 0.03–10 3–100 500
Iron (III) ≤7 20–30 250
Silver (I) 0.3–1 0.2–0.3 250

Sulfide (S2−) Up to 0.05 Up to 11.7 25
a Reported by World Health Organization, 2011. [40]; b Reported by Fashola et al. [41]; c Maximum tested concentration.
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2.5. Applications and Validation

Three soil samples (S1–S3) were obtained from artisanal small-scale gold mining
(ASGM) areas on Lombok Island, Indonesia. The other soil samples (S4–S10) were collected
from Bangkok City and Samut Sakorn Province, Thailand. Water samples were collected
from canals in Bangkok, Thailand. Soil samples were first digested using USEPA 3050B [42]
standard method and the water samples were treated as described in Section 3.2.

Table 3 gives the amount of Hg(II) obtained from samples of the soil and water, as the
concentration of the sample solution (mg L−1 Hg) loaded on the membraneless gas-separation
µPAD (Step 2 in Figure 2). Examples of the images of the colored product that was formed
in the acceptor reservoir during analysis of soil and water samples are depicted in Figure S3
(see the supplementary data). Only soil samples S1–S3 were found to have Hg(II) levels.
Converting the values in Table 3 to mg kg−1 soil sample, the amounts are 3041, 3166 and
3151 mg kg−1 Hg, respectively. The mercury contents in all contaminated soils are above
World Health Organization (WHO) limits for agricultural soils (0.05 mg kg−1) [43].

Table 3. Percentage recovery of mercury in soil and water samples using the µPAD.

Sample
Mercury Concentration (mg L−1 Hg)

% Recovery
Present a Added Found b

Soil Sample
S1 121.7 ± 5.3 50 174.4 ± 4.5 105.5
S2 126.7 ± 4.3 50 175.2 ± 3.4 97.0
S3 126.1 ± 3.7 50 180.2 ± 4.2 108.2
S4 n.d. 100 105.4 ± 3.6 105.4
S5 n.d. 100 96.9 ± 3.6 96.9
S6 n.d. 100 96.7 ± 4.9 96.7
S7 n.d. 100 104.1 ± 4.3 104.1
S8 n.d. 100 100.3 ± 3.8 100.3
S9 n.d. 100 103.5 ± 4.6 103.5
S10 n.d. 100 105.7 ± 3.7 105.7

Water Sample
W1 n.d. 100 90.7 ± 3.9 90.7
W2 n.d. 100 101.2 ± 3.5 101.2
W3 n.d. 100 97.2 ± 2.9 97.2
W4 n.d. 100 102.9 ± 3.2 102.9

a Mean concentration± SD, n = 3. b Concentration of sample after spiking with standard solution; n.d.: Not detected.

Percent recoveries of spiked mercury in soil and water samples were carried out using
the developed µPAD. All samples were spiked at 100 mg L−1 Hg, except for soil samples
S1 to S3 which were spiked at 50 mg L−1 Hg. As shown in Table 3, the recoveries were
96.7–108.2% and 90.7–102.9% for soil and water samples, respectively. According to the
AOAC guideline [44], the recovery values are in the acceptable range.

The concentrations of mercury in the soil and water samples were also analyzed using
inductively coupled plasma mass spectrometry (ICP-MS). The three digested soil samples
(S1–S3) were analyzed directly using ICP-MS with appropriate dilution. The other digested
soil samples (S4–S10) were spiked at 2500 mg kg−1 Hg, whereas water samples (W1–W4)
were spiked at 100 mg L−1 Hg. Our method provides comparable results to the reference
ICP-MS method (see Figure 6) as shown by using paired t-test at 95% confidence level
(tstat =1.38, tcrit = 2.16). The results in Figure 6 suggest that our method is accurate and
that the air-conditioning system provides good control of the temperature for gas diffusion
inside µPADs.
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Figure 6. Bar plots of the concentrations of mercury in digested soil and water samples as determined using the membrane-
less gas-separation µPAD and the reference ICP-MS method. The digested soil samples, S1–S3, were analyzed directly using
ICP-MS with appropriate dilution. The other digested soil samples, S4–S10, were spiked at 2500 mg kg−1 Hg. The water
samples, W1–W4, were spiked at 100 mg L−1 Hg.

2.6. Comparison of the Proposed Method with Existing Methods Including Other PADs/µPADs
Methods for Determination of Mercury

Analytical features of the proposed method and previous methods are summarized in
Table 4. Cold vapor-AAS technique (Technique No. 1 in Table 4) is usually the gold standard
method that utilizes a very reliable equipment, the atomic absorption spectrophotometer.
In this method, mercury in water or soil samples is reduced using SnCl2 or NaBH4 to
form Hg0 [7,9,45]. However, during the procedure, the generated Hg0 vapor is prone to
be released into the workplace which causes a health risk for the operator. Apart from
the equipment-based techniques, like the cold vapor-AAS, there are alternative ways
to analyze mercury without liberating Hg0 and without use of equipment, viz. using
paper-based analytical techniques. These paper-based techniques include both PADs and
µPADs which are listed in Table 4 as techniques No. 2.1–2.3 and techniques No. 3.1–3.4.
The strategy of techniques No. 2.1–2.3 exploit the special features of nanoparticles (both
unmodified [26,27,30] and functionalized synthesized [28,29]) to enhance the sensitivity of
mercury detection. Nonetheless, the use of nanoparticles also has the problem of possible
ecological issue since it is easily released into the environment [46]. Risks of nanoparticles
to human health have always been an issue of public concern along with the advantages in
their applications [47]. Techniques No. 3.1 to 3.3 in Table 4 show PADs/µPADs techniques
that were developed without using nanoparticles. Instead, these techniques utilized a
chemical reaction to form a colored compound for semi-quantitative [24] or quantitative
analyses of mercury [25,31]. Although these techniques do not produce Hg0, the chemicals
employed are not eco-friendly.



Molecules 2021, 26, 2004 11 of 17

Table 4. Comparison of the analytical features of various techniques for the determination of mercury.

Technique Class/Reagent Test Samples Working Range/LOD
Analysis Time

(Excluding Sample
Preparation)

Classified as
“Equipment-Free”

Method
Remark

1. Cold vapor-AAS/
SnCl2, NaBH4, KMnO4
(for hydride generation)

• Water [45] 0.04–2.4 µg L−1 Hg/0.02 µg L−1 Hg NR a
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with 0.01 mol L−1 nitric acid. A stock solution of 0.5 mol L−1 potassium iodate was prepared 
by dissolving 1.07 g of potassium iodate powder (Ajax Finechem.) in 100 mL of deionized 
water. This solution was used for preparing the oxidizing agent for iodometric reaction 
(at donor reservoir ‘dr’), which is a mixture of 0.2 mol L−1 potassium iodate and 0.2 mol 
L−1 sulphuric acid. The solution was freshly prepared daily by mixing 4 mL of 0.5 mol L−1 
potassium iodate and 4 mL of 0.5 mol L−1 sulphuric acid (RCI Lab Scan, Thailand) and 
then made up to 10 mL with deionized water. Potassium iodide solution is used for form-
ing the HgI42− complex at the sample reservoir (‘sr’ in Figure 2). A stock solution of 0.1 
mol L−1 potassium iodide was firstly prepared by dissolving 1.66 g of potassium iodide 
crystal (Merck, Germany) in 100.0 mL of deionized water. The solution of 10 mmol L−1 
potassium iodide was prepared by diluting this stock solution 10-fold with deionized wa-
ter. The solution of 1% (w/v) of starch in 0.1 mol L−1 potassium iodide was used as the color 
forming reagent at the acceptor reservoir (‘ar’ in Figure 2). The solution was freshly pre-
pared daily by dissolving 0.05 g of starch powder (BDH, U.K.) in 5 mL boiling deionized 
water and then letting the solution cool to room temperature before adding 0.083 g potas-
sium iodide crystal. 

3.2. Preparation of Samples 
The water samples were filtered with Whatman filter paper No. 42 (Whatman Inter-

national, Ltd., Maidstone, UK) followed by acidification with nitric acid to pH 2. For soil 

Yes

Not eco-friendly
reagent/solvent.

3.2 Resorufin
thiono-carbonate in CH2Cl2

• Simulated wastewater [25] 2–10 mg L−1 Hg/1.18 mg L−1 Hg NR Not eco-friendly
reagent/solvent.

3.3 Rhodamine derivatives
in CH2Cl2

• NONE [24] 20, 50, 100, 200, 300 mg L−1 Hg (no
calibration plot)/NR

≥15 min Need synthesized chemicals.
Not eco-friendly solvent.

3.4 This work/
KI, KIO3, H2SO4, starch

• Water (spiked)
• Soil (from gold mining) 50–300 mg L−1 Hg/20 mg L−1 Hg 10 min

All reagents are common and
are all commercially available.
No serious toxicity from skin
exposure (KI, KIO3, starch)
except 0.2 mol L−1 H2SO4.

NR: Not reported; TMB: 3,3′,5,5′-tetramethylbenzidine; CcNPS: Curcumin nanoparticles. a Usual analysis time for cold vapor-AAS is 3 min with use of flow injection system [48].



Molecules 2021, 26, 2004 12 of 17

It is also observed from Table 4 that all PADs/µPADs techniques developed in the
last decade [25–31] were tested only in water samples (all spiked with mercury), which are
not as complicated as soil. There were no alternative methods to the cold vapor-AAS for
assessing soil contamination particularly for use in countries with limited resources. Our
mercury µPAD was developed with the purpose of analysis of soil samples. Although our
method provides less sensitivity compared to others µPADs method, the detection limit
is sufficient for determination of mercury in soils from contaminated areas. The results
in Figure 6 show that our µPAD is capable of analyzing real soil samples collected from
artisanal small-scale gold mining areas. We also successfully validated our µPAD method
for water analysis. As shown in the remark column of Table 4, our technique (techniques
No. 3.4) employs very common reagents which are not hazardous. The chemicals can be
easily obtained from worldwide suppliers at economic prices. The analysis time of our
µPAD is comparable with most PADs/µPADs techniques [28–30] (10–15 min/analysis).
Comparing to PAD technique No. 2.2, which is the pioneering work in utilizing AgNPs
in paper-based devices for mercury [27], our method gives a much faster analysis time
(10 min compared to 45 min).

3. Materials and Methods
3.1. Chemicals and Reagents

Chemicals used in this work were all analytical reagent (AR) grade. Deionized water
(18.2 MΩ·cm, Thermo Scientific Easypure II system, Waltham, MA, USA), was employed
for the preparation of all aqueous solutions. All of the glassware and the bottles were
cleaned, rinsed with deionized water, soaked overnight in 10% (v/v) nitric acid, then rinsed
with deionized water.

A standard stock solution of Hg(II) (10.0 g L−1 Hg) was prepared by dissolving an
accurate weight of 1.36 g of mercuric chloride powder (Ajax Finechem., Australia) in
0.01 mol L−1 of nitric acid (RCI Lab Scan, Thailand) in a 100 mL volumetric flask. Working
standard solutions of mercury were prepared by subsequent dilution of this stock solution
with 0.01 mol L−1 nitric acid. A stock solution of 0.5 mol L−1 potassium iodate was
prepared by dissolving 1.07 g of potassium iodate powder (Ajax Finechem.) in 100 mL of
deionized water. This solution was used for preparing the oxidizing agent for iodometric
reaction (at donor reservoir ‘dr’), which is a mixture of 0.2 mol L−1 potassium iodate
and 0.2 mol L−1 sulphuric acid. The solution was freshly prepared daily by mixing 4 mL
of 0.5 mol L−1 potassium iodate and 4 mL of 0.5 mol L−1 sulphuric acid (RCI Lab Scan,
Thailand) and then made up to 10 mL with deionized water. Potassium iodide solution
is used for forming the HgI4

2− complex at the sample reservoir (‘sr’ in Figure 2). A stock
solution of 0.1 mol L−1 potassium iodide was firstly prepared by dissolving 1.66 g of
potassium iodide crystal (Merck, Germany) in 100.0 mL of deionized water. The solution
of 10 mmol L−1 potassium iodide was prepared by diluting this stock solution 10-fold with
deionized water. The solution of 1% (w/v) of starch in 0.1 mol L−1 potassium iodide was
used as the color forming reagent at the acceptor reservoir (‘ar’ in Figure 2). The solution
was freshly prepared daily by dissolving 0.05 g of starch powder (BDH, U.K.) in 5 mL
boiling deionized water and then letting the solution cool to room temperature before
adding 0.083 g potassium iodide crystal.

3.2. Preparation of Samples

The water samples were filtered with Whatman filter paper No. 42 (Whatman Inter-
national, Ltd., Maidstone, UK) followed by acidification with nitric acid to pH 2. For soil
samples, the wet soil/sediments were placed in a petri dish and air dried for 48 h. The
dried soil samples were ground with a mortar and pestle and then heated in an oven at
120◦ C for 2 h. After cooling to room temperature, the samples were stored in a desiccator
until analyzed. The soil samples were acid digested prior to analysis. The USEPA 3050B
protocol of the standard acid method for determination of heavy metals in soil samples [42]
was adopted for this work. Previous comparison study [49] have shown that there is an
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acceptable correlation (r = 0.99) between the USEPA 3050B protocol (open system digestion)
and the USEPA 3051A protocol (close system digestion by microwave) for determination of
mercury in 10 classes of soils. Briefly, 2 g of soil was placed in a Teflon beaker; then, 5 mL
of concentrated HNO3 was added and the beaker covered with a watch glass. The solution
was then heated on a hotplate at 95 ± 5 ◦C for 15 min and cooled to room temperature.
Another 5 mL of concentrated HNO3 was added and heated again at 95 ± 5 ◦C for 2 h.
After cooling 2 mL of deionized water and 3 mL of 30% hydrogen peroxide (Sigma-Aldrich,
Germany) were added, followed by the heating step for a further 2 h. The last step of
digestion was the addition of 10 mL of hydrochloric acid (RCI Lab Scan, Thailand) with
heating for 15 minutes at 95 ± 5 ◦C. The digested solution was filtered with 0.45 µm of
cellulose acetate membrane and adjusted to pH 2 using a few drops of 50% (w/v) sodium
hydroxide. The filtered solution was made up in a 50 mL volumetric flask with deionized
water. This solution was used for the determination of mercury using the membraneless
gas-separation µPAD. Appropriate dilution of the filtrate with 2% (v/v) sub-boiled nitric
acid was performed prior to determination of Hg in the samples by inductively coupled
plasma mass spectrometry (ICP-MS 7900, Agilent Technologies, Santa Clara, CA, USA) as
the comparison method.

3.3. Fabrication of µPAD

The membraneless gas-separation µPAD comprises 3 layers: a donor layer, a spacer
layer and an acceptor layer. Two patterns of the hydrophobic barriers were employed, as
shown in Figure 1a: a single circular pattern for the donor layer and a dumbbell-shaped
pattern with 2 different sizes of the reservoirs for the donor layer. The sample reservoir
(‘sr’) and the acceptor reservoir (a’r)’ were of the same dimension of 6 mm i.d., whereas the
second donor reservoir (‘dr’) has 3 mm i.d. The spacer layer was a mounting tape with
0.8 mm thickness (Scotch™, St. Paul, MN, USA) which has a 7 mm circular disc cut out.
The donor layer, spacer layer and acceptor layer were assembled together to produce the
membraneless gas-separation µPAD as shown in Figure 1b. Figure 1c shows the assembled
µPAD from the acceptor and donor side, respectively. The printed circular hydrophobic
barriers are screen-printed on a Whatman No. 4 filter paper (Maidstone, UK), following the
method of Sitanurak et al. [33], to define the circular reservoirs for the donor and acceptor
layers, respectively. The patterned paper was kept overnight at the room temperature for
complete curing of the resin prior to cutting to give separate devices. One screen-printed
paper provides 77 pads. These µPAD devices are stable for at least 2 years.

3.4. Operating Procedure

The operating procedure for using the membraneless gas-separation µPAD to measure
the amount of Hg(II) is shown in Figure 2. The analysis is carried out at room temperature
in an air-conditioned room (26–27 ◦C). In the first step (Step 1), 1.0 µL of the oxidizing
agent (0.2 mol L−1 KIO3 in 0.2 mol L−1 H2SO4) is loaded on the donor reservoir ‘dr’ using
an autopipette (Rainin Instrument, Mettler Toledo, Switzerland), followed by (Step 2), the
addition of 3.0 µL Hg(II) standard/sample on to the sample reservoir ‘sr’ and then waiting
ca. 5 min for the pad to dry. Next, the device is turned over and (Step 3) 2.0 µL of the color
developing reagent (1% (w/v) starch in 0.1 mol L−1 KI) is loaded on the acceptor reservoir
‘ar’. The acceptor reservoir ‘ar’ and donor reservoir ‘dr’ are then immediately covered
with transparent adhesive tape (Scotch™) (Step 4) to prevent loss of the reagents from the
device. Next, (Step 5), 8.0 µL of 10 mmol L−1 KI is loaded on the sample reservoir ‘sr’. The
iodide solution reacts with Hg(II) deposited earlier (in Step 2) forming the colorless HgI4

2−

complex at the ‘sr’ reservoir. The unreacted iodide diffuses into reservoir ‘dr’, where it is
converted to volatile iodine (I2(g)) by iodate ion deposited earlier (in Step 1). The iodine gas
diffuses across the spacer to react with the starch-KI reagent on the acceptor side (Step 3) to
generate the purple color of triiodide-starch complex. In the final step (Step 6) the acceptor
layer is placed face up inside an in-house light-box (fitted with a JMF fs-wh-1 watt LED
light tube). The image of the purple color complex is recorded at 4 min after the addition
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of KI (Step 5 in Figure 2) using a digital camera (IXUS 125 HS, Canon, Japan). The color
intensity of the image is analyzed using ImageJ software (version v1.35e). The green color
scale is used to construct the calibration line for concentrations of Hg(II) in the standard
solutions. Note: The volume of sample of 3.0 µL was chosen to provide the maximum
loading of the sample into the sample reservoir ‘sr’ without the overflow of sample into
the donor reservoir ‘dr’.

4. Conclusions

A simple, cost-effective, equipment-free and environmentally friendly µPAD method
was developed for determination of Hg(II) in contaminated soil and water samples by
using a membraneless gas-separation µPAD. Mercury in the sample is determined by
an indirect colorimetric procedure. The detection principle is based on quantitating the
color image of I3

−-starch complex. In the donor layer of the membraneless gas-separation
µPAD, the pre-deposited sample containing mercuric ions reacts with an added solution
containing a fixed amount of excess iodide to form the colorless complex of HgI4

2−. The
remaining iodide flows to a connected adjacent area, where it is oxidized by acidic iodate
to produce volatile iodine via the Dushman reaction [50]. The volatile iodine moves
across an air spacer region to react with pre-deposited iodide-starch to form the purple
I3
−-starch complex at the acceptor layer. This method is applicable for measurement of

high concentrations of mercury, especially in contaminated soil and water in artisanal
small-scale gold mining area.

The method fits the purpose for waste management of contaminated sites in many
developing countries where artisanal small-scale gold mining is still an important primary
economic sector (e.g., Asia, Africa and South America) [2]. Our developed µPAD for
mercury detection has several advantages. The fabrication of µPAD by screen-printing
technique is simple and does not require sophisticated skill. Hence, this mercury µPAD
can be produced anywhere in the world where filter paper, double-sided mounting tape,
screen-printing tools, t-shirt ink (as hydrophobic barrier) are available. The production
cost is approximately 7 US$/100 devices [33] which is suitable for developing countries.
Moreover, our method is in compliance with “Green Analytical Chemistry”, since there
is reduction of waste generation (e.g., no hazardous synthesis), with low human toxicity
and eco-toxicity.

Supplementary Materials: The following is available online. Method S1: Preliminary test for
selection of the color scale; Figure S1: Calibration graphs obtained from preliminary tests using the
iodine-starch reaction on a single-layer paper device with the ImageJ analysis of the plot between
(a) grey intensity, (b) red intensity, (c) green intensity and (d) blue intensity against the concentration
of iodide.; Method S2: Control of light illumination and calibration of camera; Figure S2: Effect of
pH of standard 150 mg L−1 Hg solutions on the green intensity value. Experimental conditions:
0.2 mol L−1 KIO3 in 0.2 mol L−1 H2SO4, 10 mmol L−1 KI, 1% (w/v) of starch in 0.1 mmol L−1 KI
and reaction time of 4 min.; Figure S3: Examples of photographic images of the colored product
formed in the acceptor reservoirs during analysis of soil and water samples. Note: Soil samples S1–S3
were highly contaminated with mercury whereas the levels of mercury in other samples of soils and
waters are below the detection limit.
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