The synthesis and evaluation of triazolopyrimidines as anti－tubercular agents

Edison S．Zuniga ${ }^{\text {a }}$ ，Aaron Korkegian ${ }^{\text {a }}$ ，Steven Mullen ${ }^{\text {a }}$ ，Erik J．Hembre ${ }^{\text {b }}$ ，Paul L．Ornstein ${ }^{\text {c }}$ ，Guillermo Cortez ${ }^{\text {b }}$ ， Kallolmay Biswas ${ }^{\text {d }}$ ，Naresh Kumar ${ }^{\text {d }}$ ，Jeffrey Cramer ${ }^{\text {b }}$ ，Thierry Masquelin ${ }^{\text {b }}$ ，Philip A．Hipskind ${ }^{\text {b }}$ ， Joshua Odingo ${ }^{\text {a }}$ ，Tanya Parish ${ }^{\text {a，＊}}$
${ }^{a}$ TB Discovery Research，Infectious Disease Research Institute， 1616 Eastlake Avenue East，Seattle，WA 98102，USA
${ }^{\mathrm{b}}$ Lilly Research Laboratories，Eli Lilly and Company，Indianapolis，IN 46285，USA
${ }^{\text {c }}$ Roosevelt University College of Pharmacy，Schaumburg，IL 60173，USA
${ }^{\text {d }}$ Jubilant Chemsys Limited，B－34，Sector 58，Noida 201301，India

A RTICLE INFO

Article history：

Received 7 March 2017
Revised 10 May 2017
Accepted 15 May 2017
Available online 19 May 2017

Keywords：

Tuberculosis
Mycobacterium tuberculosis
Anti－tubercular activity
Triazolopyrimidines

Abstract

We identified a di－substituted triazolopyrimidine with anti－tubercular activity against Mycobacterium tuberculosis．Three segments of the scaffold were examined rationally to establish a structure－activity relationship with the goal of improving potency and maintaining good physicochemical properties．A number of compounds displayed sub－micromolar activity against Mycobacterium tuberculosis with no cytotoxicity against eukaryotic cells．Non－substituted aromatic rings at C5 and a two－carbon chain con－ necting a terminal aromatic at C 7 were preferred features；the presence of NH at C 7 and a lack of sub－ stituent at C2 were essential for potency．We identified compounds with acceptable metabolic stability in rodent and human liver microsomes．Our findings suggest that the easily－synthesized triazolopyrim－ idines are a promising class of potent anti－tubercular agents and warrant further investigation in our search for new drugs to fight tuberculosis． © 2017 The Authors．Published by Elsevier Ltd．This is an open access article under the CC BY license（http：／／ creativecommons．org／licenses／by／4．0／）．

1．Introduction

Tuberculosis（TB）and its causative agent Mycobacterium tuber－ culosis present a serious threat to global health．There are over 1 million deaths each year and approximately 9 million new cases．${ }^{1}$ Taken together with the estimate that a third of the world＇s popu－ lation is infected with M．tuberculosis and the existence of drug－ resistant strains of M．tuberculosis，it is apparent there is a pressing need for new therapies．To address these needs，there has been an increased effort directed towards TB drug discovery in recent years and a pipeline of new anti－TB drug candidates has started to emerge．The search for new molecular scaffolds with potentially novel mechanisms of action remains a priority．

Triazolopyrimidines（TZPs）are a well－known scaffold in medic－ inal chemistry，and their utility is exemplified by the discovery and development of novel agents to fight a wide range of diseases．For example，TZPs possess anticancer activity，${ }^{2}$ and have been used as phosphodiesterase inhibitors for diabetes treatment．${ }^{3}$ Recently，the first natural TZP，essramycin，was isolated and found to possess

[^0]antibacterial activity．${ }^{4}$ A considerable effort has been made to develop TZPs with antimalarial activity．${ }^{5-7}$ Transition metal－con－ taining TZPs have antiproliferative activity against Leishmania and Trypanosoma cruzi，the protozoa that cause leishmaniasis and Chagas disease，respectively．${ }^{8}$ In addition TZP acylsulfonamides with anti－mycobacterial activity target acetohydroxyacid syn－ thase．${ }^{9}$ Similar compounds were also identified in a phenotypic screening campaign against Mycobacterium bovis BCG．${ }^{10}$

We identified a single TZP compound（1）from a whole－cell screen against M ．tuberculosis which was active in liquid culture （Fig．1）．The compound had good activity against M．tuberculosis

Fig. 1. Triazolopyrimidine (TZP) 1. Three segments are illustrated with boxes and numbered.
with a minimum inhibitory concentration (MIC) of $3.1 \mu \mathrm{M}$ (Table 1). The compound was not cytotoxic, with an IC_{50} of $>100 \mu \mathrm{M}$ against the HepG2 cell line; the selectivity index (SI),
defined as the ratio of cytotoxicity to MIC, was >32. Based on these data we initiated a structure-activity relationship (SAR) study around this singleton.

Here, we present an exploratory study to understand the SAR of the TZP series. We identified key functionalities and features necessary for anti-tubercular activity. In general, TZP compounds lack cytotoxicity and display an encouraging metabolic stability profile. In addition, we demonstrated their bactericidal activity against non-replicating bacteria.

2. Results and discussion

Our SAR investigation began with the design and synthesis of novel analogs based on modifications of the core structure of compound $\mathbf{1}$. We set out to explore modifications of the core by way of heteroatom replacement and the impact of chemical diversity at the C2, C5, and C7 positions.

2.1. Chemical synthesis

The general synthetic routes are shown in Schemes 1 and 2. We initially evaluated the SAR associated with modifications at the C5

Table 1
Examining Aromatic Moieties at C5.

Cpd

[^1]

Scheme 1. Synthesis of the triazolopyrimidine compounds. General conditions: (i) $\mathrm{AcOH}, 120^{\circ} \mathrm{C}, 12-16 \mathrm{~h}$; (ii) $\mathrm{POCl}_{3}, 80-100^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) $\mathrm{NMP}, 80-100{ }^{\circ} \mathrm{C}$ or room temperature.

Scheme 2. Synthesis of triazolopyrimidine compounds exploring core modifications. General conditions: (i) AcOH, 100-120 ${ }^{\circ} \mathrm{C}, 12-16 \mathrm{~h}$; (ii) $\mathrm{POCl} \mathrm{P}_{3}, 80-100{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (iii) amine 6, NMP, 80-100 ${ }^{\circ} \mathrm{C}$.
position of the TZP ring system. Synthesis of analogs 7-25 proceeded through key 7-hydroxytriazolopyrimidine intermediates $\mathbf{4}$ (Scheme 1), which were obtained via the condensation of the 1,3-di-keto compound 2 with the 5 -amino- $4 \mathrm{H}-1,2,4$-triazole $\mathbf{3} .{ }^{9}$ Di-keto compounds were prepared by treating the appropriate substituted ethanone with diethyl carbonate in the presence of base. Chloro intermediates 5 were obtained upon treatment of $\mathbf{4}$ with phosphoryl chloride. Reaction of $\mathbf{5}$ with 4-methoxyphenethylamine gave C5 substituted triazolopyrimidines 7-25 in moderate to good yields. Condensation between 3-(dimethylamino)-1-phe-nyl-propane-1-one and $\mathbf{3}$ directly gave 27.

Compound $\mathbf{5}$ served as a strategic intermediate from which a diverse set of C7 analogs could be prepared. Condensation between 5 ($\mathrm{R}^{\prime}=$ phenyl) and a variety of amines ($\mathbf{6}$) gave C7 substituted triazolopyrimidines 27-48 with good yields. Similarly, reaction of $\mathbf{5}$ ($\mathrm{R}^{\prime}=2$-pyridinyl) with a variety of amines gave C 7 substituted analogs 51-60; the use of cyclic amines gave 62-64. Compound 28 was obtained after treating 7-chloro-5-phenyl-[1,2,4]triazolo[1,5a]pyrimidine (5a) with methanolic ammonia. Synthesis of amide analogs $\mathbf{4 9}$ and 50 proceeded through $\mathbf{2 8}$ via EDCI-HOBt mediated coupling with the appropriate substituted benzeneacetic acid. The alkylation of compound $\mathbf{1}$ using iodomethane afforded analog 61.

As shown in Scheme 2, decoration of the C2 position of the TZP core proceeded through intermediate 66a-b, obtained from the condensation between ethyl 2-pyridylcarbonylacetate ($\mathbf{2 k}$) and a 2 -substituted 5 -amino-1H-1,2,4-triazole (65a-b). Commercially available triazoles 65a and 65b were treated with $\mathbf{2 6}$ to give 66a and 66b, respectively. Subsequent chlorination followed by treatment with 4-methoxyphenylethylamine gave C2 substituted TZP analogs 67 and 68. Heterocyclic core replacement analogs pyrazolopyrimidine 69 and imidazopyridine 70 were produced after manipulation of commercially available intermediates $\mathbf{6 5 c} \mathbf{c} \mathbf{d}$.

2.2. Structure-activity relationship (SAR) studies

We determined the activity of all the compounds synthesized against both M. tuberculosis and eukaryotic cells (HepG2 cell line); we determined the MIC_{90} against M . tuberculosis, defined as the concentration required to inhibit 90% growth in liquid medium, and the IC_{50} against HepG2 cells, defined as the concentration required to reduce HepG2 viability by 50%. Selectivity index (SI) was calculated as $\mathrm{IC}_{50} / \mathrm{MIC}_{90}$. We completed a systematic evaluation by modification of the TZP ring at the C5, C7, C2 and core positions.

We first explored substitution of C5 phenyl with ortho- or para-electron-donating groups, which resulted in a loss of activity (Table 1, compounds 7-10). The incorporation of fluorine on the para- or ortho-positions (compounds 13 and 14) of the C5 phenyl ring was tolerated and maintained good separation from cytotoxicity. This was not seen with chloride analogs $\mathbf{1 1}$ and $\mathbf{1 2}$ which had no activity. The strongly deactivating para- CF_{3} phenyl moiety (compound 15) abrogated activity. Replacing the C5 phenyl with a polar 2-pyridyl gave compound 16 with slightly increased potency while having no effect on cytotoxicity, and provided a valuable point for further optimization. It is interesting to note that 3- or 4-pyridyl isomers at C5 (17 and 18) resulted in loss of activity (Table 1).

No advantage was gained by replacing the aromatic group at C5 with either a linear alkyl $(\mathbf{2 0}, \mathbf{2 1})$ or a cyclohexyl group (25) and only small cyclic alkyl moieties such as the cyclopropyl (22), cyclopentyl 24 and cyclobutyl (23) analogs had good anti-tubercular activity (Table 2).

We next explored modifications to the C7 position, while keeping a phenyl group at C5 (Table 3). Non-aromatic moieties at C7 (e.g. compounds 27-35) did not show any anti-tubercular activity, except for the ethyl tethered cyclohexyl analog (36).

Table 2
Replacement of Aromatic Groups with Alkyl Moieties at C5.

Cpd	R	MIC ($\mu \mathrm{M}$)	$\mathrm{IC}_{50}(\mu \mathrm{M})$	SI
1		3.1 ± 1.3	>100	>32
20		>20	>100	-
21		>20	>100	-
22		5.8 ± 1.6	>100	>17
23		2.9 ± 0.71	>100	>34
24		5.5 ± 0.07	95	17
25		>20	47	-

MIC $_{90}$ is the minimum concentration required to inhibit growth of M. tuberculosis by 90%. MICs are the average \pm standard deviation of two independent experiments. IC_{50} is the concentration required to reduce the viability of HepG2 cells by 50%. Selectivity index (SI) $=\mathrm{IC}_{50} / \mathrm{MIC}_{90}$.

We next evaluated the effect of chain length at C7 (Table 4). Compounds $\mathbf{3 7}$ (with no tether), $\mathbf{3 8}$ (with a one carbon tether), and 40 (with a three carbon tether) were all inactive. A reduction in potency was observed for the unsubstituted terminal phenyl group as in compound 39 compared to the para-methoxy analog 1. This pointed to the importance of para-substitution for activity and selectivity. Polar aromatics at the terminal end of the C7 alkyl chain were not tolerated as demonstrated by the inactive pyridyl analogs 41-43. para-substituted analogs 44-48 were prepared, and the overall potency was rescued in all cases except for the para-fluoro analog 46. C7 amide analogs (49 and 50) retained activity and were not cytotoxic indicating that properties of the aniline nitrogen at C7 can be modified with little penalty to activity.

Thus far we demonstrated that optimal anti-tubercular activity was found in the 2-pyridyl analog 16. As with the C5 phenyl derivatives, we examined modifications to the terminal aromatic ring of the C 7 side chain while keeping the 2-pyridyl at C5 constant (Table 5). A variety of para-substituted aromatic groups were tolerated at the terminal end of the C 7 side chain resulting in analogs (55-60) with comparable or improved potency and good separation from cytotoxicity. It is worthy to note that analogs containing terminal pyridyl moieties on the C 7 side chain $(\mathbf{5 2 - 5 4})$ lost activ-
ity, as observed in the C5 phenyl series, demonstrating that polar residues are not tolerated in this region for either series.

We investigated other SAR elements of the spacer at C7 (Table 6). The N-methylated analog $\mathbf{6 1}$ had a loss of activity, an indication that H-bonding may be important for the TZP compounds binding to their target (this could also be due to unfavorable steric interactions). Introducing rigidity on the amine tether as in pyrrolidine 62 , piperidine 63 and morpholino 64 was not tolerated. It has been previously reported that substitution on the C2 position of the TZP scaffold gave compounds with potent antimalarial activity and with good metabolic stability. ${ }^{7}$ Based on these findings and with the goal of identifying active and metabolically stable compounds, we prepared and tested the 2-methyl (67) and 2-phenyl (68) analogs. Analog 67 had comparable activity to our original hit, but analog 68 showed an MIC $>20 \mu \mathrm{M}$. Pyrazolopyrimidine ${ }^{11}$ and imidazopyridine ${ }^{12,13}$ compounds have also been reported to possess potent anti-tubercular activity. Analog 69 with a pyrazolopyrimidine core demonstrated comparable activity to original hit $\mathbf{1}$, but with increased cytotoxicity, whereas the imidazopyrimidine-based analog 70 had excellent anti-tubercular activity as well as good separation from cytotoxicity.

2.3. Microsomal stability and in vivo pharmacokinetic (PK) studies

Based on in silico ADME predictions, three compounds were chosen to cover a range of cLogP values and were evaluated for their in vitro microsomal stability (Table 7). Rapid metabolism of compound 44 was observed, in rodent and human liver microsomes. The para- OCF_{3} analog 48 was also rapidly metabolized. The amide (49) had improved in vitro microsomal stability, with only 12% loss after 30 min in mouse microsomes, 22% loss in rat microsomes and 31% loss in human microsomes. The difference in stability for these three compounds is probably due to presence of more than one oxidatively-labile carbon in 44 and 48 (both have a two carbon linker), while 49 has only one such soft spot, although these have not been confirmed with metabolite identification studies.

The oral exposure of the three compounds was evaluated in male mice by comparing exposures following oral (PO) and intravenous (IV) administration of 10 and $1 \mathrm{mg} / \mathrm{kg}$ doses of compounds, respectively (Table 7). Overall, the three compounds showed poor to moderate in vivo mouse PK properties. Compound 44 had an AUC $=676 \mathrm{nM} * \mathrm{~h}$, and rapid IV clearance ($182 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$) as predicted by mouse microsomes. Compound 48 had more promising mouse PK with greater oral exposure (AUC 2750 nM * h), a longer half-life, and slower IV clearance ($33.5 \mathrm{~mL} / \mathrm{min} / \mathrm{kg}$). Surprisingly, despite showing good in vitro microsomal metabolic stability, amide 49 had the lowest oral exposure and fastest IV clearance rates in vivo compared to the two other compounds.

2.4. Activity Spectrum

Three compounds (16, 48 and 49) were selected for testing against other organisms based on good activity in liquid and solid medium ($\mathrm{MIC}_{99}<20 \mu \mathrm{M}$) against M. tuberculosis (Table 8). We tested against a non-pathogenic mycobacterial species (Mycobacterium smegmatis), Escherichia coli (Gram negative), Pseudomonas aeruginosa (Gram negative), Bacillus subtilis (Gram positive) and yeast (Saccharomyces cerevisiae) (Table 8). All three compounds had activity against M. tuberculosis, but no activity against any of the other species. Thus, the TZP compounds are selective for M. tuberculosis.

Fig. 2. Kill kinetics against M. tuberculosis in liquid culture.

2.5. Activity against replicating and non-replicating M. tuberculosis

We also determined the effectiveness of the three compounds (16, 48 and 49) in killing replicating and non-replicating M. tuberculosis. Compounds exhibited static activity against replicating bacteria, preventing growth, but no kill was noted over 21 days. In contrast, we did note killing against non-replicating bacteria (starvation conditions) for all three compounds, with a $2-3 \log$ kill over 14-21 days (see Fig. 2).

3. Conclusion

We conducted a systematic exploration of the triazolopyrimidine scaffold for activity against M. tuberculosis. Overall, the compounds in this series show good activity and selectivity. Our initial explorations suggest that non-substituted aromatic rings at C5, and a two-carbon chain connecting a terminal aromatic at C7 are preferred features for potency against M. tuberculosis and separation from cytotoxicity. The presence of NH at C7 and a lack of substituent at C2 are essential for potency of the molecule. Heteroatom replacement or homologation of the scaffold is well tolerated in the series. We have identified compounds with improved metabolic stability in rodent and human liver microsomes, however, oral exposure and clearance remains an issue
for this series. We feel that these issues can be improved through further SAR exploration. Thus, there is substantial promise in developing the TZP series that warrants further investigation as novel tools in our drug arsenal to combat tuberculosis.

4. Materials and methods

4.1. Determination of minimum inhibitory concentration (MIC)

MICs were determined against M. tuberculosis H 37 Rv as described in. ${ }^{14}$ Briefly, M. tuberculosis was grown in Middlebrook 7H9 medium containing 10\% OADC (oleic acid, albumin, dextrose, catalase) supplement (Becton Dickinson) and $0.05 \% \mathrm{w} / \mathrm{v}$ Tween 80 (7H9-Tw-OADC) under aerobic conditions. Bacterial growth was measured by OD_{590} after 5 days of incubation at $37^{\circ} \mathrm{C}$. Curves were fitted using the Levenberg-Marquardt algorithm. MIC_{90} was defined as the minimum concentration required to inhibit growth of M. tuberculosis by 90%.

4.2. Determination of cytotoxicity (IC50)

Cytotoxicity was assessed using the HepG2 cell line under replicating conditions. HepG2 cells were grown in DMEM, High Glucose, GlutaMAX ${ }^{\text {M }}$ (Invitrogen), 10\% fetal bovine serum (FBS), and

Table 3
Alkyl Chains at C7.

Cpd	R	MIC ($\mu \mathrm{M}$)	$\mathrm{IC}_{50}(\mu \mathrm{M})$	SI	Cpd	R	MIC ($\mu \mathrm{M}$)	$\mathrm{IC}_{50}(\mu \mathrm{M})$	SI
27	$\stackrel{H}{H}$	>20	>20	-	32		>20	98	-
28		>20	>20	-	33		>20	>100	-
29	HN^{-}	>20	>20	-	34		>20	>100	-
30		>20	37	-	35		>20	57	-
31		>20	94	-	36		17 ± 2.1	>100	>6

MIC_{90} is the minimum concentration required to inhibit growth of M. tuberculosis by 90%. MICs are the average \pm standard deviation of two independent experiments. IC ${ }_{50}$ is the concentration required to reduce the viability of HepG2 cells by 50%. Selectivity index (SI) $=I C_{50} / \mathrm{MIC}_{90}$.

1X penicillin-streptomycin solution ($100 \mathrm{U} / \mathrm{mL}$). Cells were incubated with compounds for 2 days at $37^{\circ} \mathrm{C}$ (final DMSO concentration of 1%), 5% CO2. CellTiter-Glo ${ }^{\circledR}$ Reagent (Promega) was added and relative luminescent units (RLU) measured to assess cell viaility. Inhibition curves were fitted using the Levenberg-Marquardt algorithm. IC_{50} is the concentration required to reduce cell viability after 2 days by 50%. Controls were 1% DMSO only (growth control) and staurosporine (positive control).

4.3. Determination of minimum inhibitory concentration on solid medium (MIC)

The serial proportion method was used to determine MIC_{99} on solid medium for a variety of representative species. ${ }^{15}$ M. tuberculosis H37Rv and Mycobacterium smegmatis $\mathrm{mc}^{2} 155$ were grown in Middlebrook 7 H 9 medium $+10 \% \mathrm{v} / \mathrm{v}$ OADC (oleic acid, albumin, dextrose, catalase) supplement (Becton Dickinson) and on Middlebrook 7 H 10 medium $+10 \% \mathrm{v} / \mathrm{v}$ OADC. Plates were incubated at $37^{\circ} \mathrm{C}$ for 4 weeks and $3-4$ days respectively; Escherichia coli DH5 α and Staphylococcus aureus RN4220 were grown on LB agar and incubated at $37^{\circ} \mathrm{C}$ for 1 and 2 days respectively; Pseudomonas aeruginosa HER1018 (PAO1) was grown on tryptic soy agar and incubated at $37^{\circ} \mathrm{C}$ for 1 day; Bacillus subtilis Marburg was grown in on nutrient agar and incubated at $28^{\circ} \mathrm{C}$ for 3-4 days; Saccharomyces cerevisiae Y187 was grown on YPD agar plus $0.003 \% \mathrm{w} / \mathrm{v}$ adenine hemi-sulfate and incubated at $30^{\circ} \mathrm{C}$ for 3-4 days. The MIC_{99} was the lowest concentration of compound, which yielded less than 1% growth relative to no-compound control.

4.4. Kill kinetics

To determine kill kinetics, replicating bacteria, a late log phase culture ($\mathrm{OD}_{590} 0.6-1.0$) of M. tuberculosis was adjusted to an OD_{590} of 0.1 in 7H9-Tw-OADC; $50 \mu \mathrm{~L}$ was used to inoculate $5 \mathrm{~mL} 7 \mathrm{H} 9-\mathrm{Tw}-$ OADC containing compounds. For non-replicating conditions, bacteria were incubated at $37^{\circ} \mathrm{C}$ for 14 days in PBS $+0.05 \% \mathrm{w} / \mathrm{v}$ Tyloxapol (PBS-Ty) at an OD_{590} of 0.1 and then compounds were added (final DMSO concentration of 2%). Cultures were incubated standing at $37^{\circ} \mathrm{C}$. Serial dilutions were plated on $7 \mathrm{H} 10-\mathrm{OADC}$ agar to determine $\mathrm{CFU} / \mathrm{mL}$.

4.5. Compound synthesis

4.5.1. General methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data were recorded in CDCl_{3} or DMSOd_{6} on a 300 or 400 MHz Bruker NMR spectrometer. Column chromatography was conducted on silica gel (100-300 mesh). Reactions were monitored using thin-layer chromatography (TLC) on silica gel plates. HPLC analysis was conducted on an Agilent 1100 series LC system (Agilent ChemStation Rev.A.10.02; Phenomenex-Luna-C18, $4.8 \mathrm{~mm} \times 150 \mathrm{~mm}, 5 \mu \mathrm{~m}, 1.0 \mathrm{~mL} / \mathrm{min}$, UV 254 nm , room temperature) with $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (0.05% TFA or HCOOH buffer) gradient elution. HPLCMSwas performed on a Gilson 321 HPLC with detection performed by a Gilson 170 DAD and a Finnigan AQA mass spectrometer operating in electrospray ionisation mode using a Phenomenex Gemini C18 150x4.6 mm column. Purity was deter-

Table 4
C7 Linker Modifications with C5 Phenyl.

MIC_{90} is the minimum concentration required to inhibit growth of M. tuberculosis by 90%. MICs are the average of two independent experiments. IC ${ }_{50}$ is the concentration required to reduce the viability of HepG 2 cells by 50%. Selectivity index (SI) $=\mathrm{IC}_{50} / \mathrm{MIC}_{90}$.
mined using a Waters Acquity UPLC system equipped with a BEH C18 $1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$ column.
4.5.2. General procedure for the synthesis of N-phenethyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amines (1, 27-50)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 4 (1.0 eq) was taken in NMP in a 100 mL round bottom flask under N_{2}. To it was added amine precursor 6 (1.2 eq). The reaction mixture was heated at $90-120^{\circ} \mathrm{C}$ or rt until complete by TLC analysis. The reaction mixture was then added to ice-cooled water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using EtOAc-hexane or MeOH-DCM as eluent to afford compounds 1, 27-50.
4.5.3. General procedure for the synthesis of N-substituted-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (16, 51-60)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\quad \mathbf{5 k}$ (1.0 eq) was taken in NMP in a 100 mL round bottom flask under N_{2}. To it was added amine precursor (1.2 eq). The reaction mixture was heated at $90-100^{\circ} \mathrm{C}$ or rt until complete by TLC analysis. The reaction mixture was then added to ice-cooled water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using EtOAchexane or MeOH-DCM as eluent to afford compounds 16, 51-60.

4.5.4. N-(4-methoxyphenethyl)-5-phenyl-[1,2,4]triazolo[1,5-a]

 pyrimidin-7-amine (1)7-chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 5 (500 mg, 2.2 mmol) was taken in NMP (5 mL) in a 50 mL round bottom flask

Table 5
C7 Modifications with 2-Pyridyl at C5.

Cpd	R	MIC ($\mu \mathrm{M}$)	$\mathrm{IC}_{50}(\mu \mathrm{M})$	SI	Cpd	R	MIC ($\mu \mathrm{M}$)	$\mathrm{IC}_{50}(\mu \mathrm{M})$	SI
51		2.4 ± 1.3	>100	>46	56		0.2 ± 0.02	44	220
52		>20	>100	-	57		4.8 ± 1.3	81	17
53		>20	>100	-	58		0.98 ± 0.4	>100	>119
54		>20	>100	-	59		1.6 ± 1.1	>100	>72
55		0.52 ± 0.1	>100	>196	60		0.76 ± 0.25	>100	>135

 the concentration required to reduce the viability of HepG2 cells by 50%. Selectivity index $(\mathrm{SI})=\mathrm{IC}_{50} / \mathrm{MIC}_{90}$.
under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1-amine $(365 \mathrm{mg}, 2.4 \mathrm{mmol})$. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (EtOAc, 100\%) until completion. The reaction mixture was then poured into ice water (50 g) and extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 1 as a white solid ($300 \mathrm{mg}, 40 \%$). M.P. $163-164^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }_{6}$): $\delta 8.46$ (s, 1H), 8.34 (bs, 1H), 8.15-8.17 (m, 2 H), 7.52-7.53 (m, 3H), 7.23 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.73-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.2,157.8,155.5,154.7,147.9,137.6$, 130.7, 130.2, 129.9, 128.5, 127.4, 113.7, 84.8, 54.9, 43.2, 33.7. LCMS (ESI) $m / z 346.45$.

4.5.5. Ethyl 3-(2-methoxyphenyl)-3-oxopropanoate (2c)

Sodium hydride ($480 \mathrm{mg}, 20.0 \mathrm{mmmol}$) was taken in dry THF $(18 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of ethyl 3-(2-methoxyphe-nyl)-3-oxopropanoate ($1.0 \mathrm{~g}, 6.7 \mathrm{mmol}$) in $\mathrm{THF}(2 \mathrm{~mL})$. The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($3.2 \mathrm{~mL}, 26.8 \mathrm{mmol}$). The reaction mixture was
then stirred at rt for 14 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 10% hexane-EtOAc as eluent to afford $\mathbf{2 c}$ as a colourless liquid ($1.3 \mathrm{~g}, 88 \%$). LC-MS (ESI) $m / z 223.32\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 97 \%$ (purity).

4.5.6. Ethyl 3-oxo-3-(p-tolyl)propanoate (2d)

Sodium hydride ($2.68 \mathrm{~g}, 112 \mathrm{mmmol}$) was taken in dry DMF $(25 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1 -(p-tolyl)ethan-1one ($5.0 \mathrm{~g}, 37.3 \mathrm{mmol}$) in DMF (5 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($18 \mathrm{~mL}, 149.2 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 16 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 10% hexaneEtOAc as eluent to afford 2d as a colourless liquid ($6.2 \mathrm{~g}, 81 \%$). LCMS (ESI) m/z $207.32\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 84.88 \%$ (purity).

Table 6
Constraining C7 Side Chain and Core Modification.
Cpd

MIC $_{90}$ is the minimum concentration required to inhibit growth of M. tuberculosis by 90%. MICs are the average \pm standard deviation of two independent experiments. IC ${ }_{50}$ is the concentration required to reduce the viability of HepG2 cells by 50%. Selectivity index (SI) $=\mathrm{IC}_{50} / \mathrm{MIC}_{90}$.

Table 7
In vitro ADME and in vivo PK.

Cpd	\% turnover by liver microsomes in 30 min			Mouse Fu, ${ }^{\text {a }}$	Predicted Fu, $\mathrm{pl}^{\text {b }}$	clog ${ }^{\text {c }}$	PO AUC ($\mathrm{nM}^{*} \mathrm{~h}$)	PO Cmax (nM)	PO Tmax (h)	PO t1/2 (h)	IV clearance ($\mathrm{mL} / \mathrm{min} / \mathrm{kg}$)
	Mouse	Rat	Human								
44	98.2	99.2	68.1	0.015	0.020	4.33	676	604	0.25	1.05	182
48	52.1	52.7	32.8	0.007	0.006	5.25	2750	958	0.75	2.49	33.5
49	12.5	21.8	30.6	ND	0.048	3.25	187	62.8	1.5	ND	248

${ }^{\text {a }}$ Fu,pl is the fraction unbound in plasma.
${ }^{\text {b }}$ Predicted value using a QSAR model built based on data generated for >3000 compounds measured internally (unpublished).
${ }^{\text {c }}$ clogP was predicted by Chemaxon model (www.chemaxon.com).

Table 8
Spectrum of activity.

MIC $_{99}(\mu \mathrm{M})$					
Cpd	M. tuberculosis	M. smegmatis	E. coli	P. aeruginosa	
$\mathbf{1 6}$	13	>100	>100	>100	S. cerevisiae
$\mathbf{4 8}$	1.6	>10	>10	>100	>10
$\mathbf{4 9}$	3.1	>10	>10	>10	>10

MIC_{99} is the lowest concentration of compound, which yielded less than 1% growth.

4.5.7. Ethyl 3-(4-ethylphenyl)-3-oxopropanoate (2e)

Sodium hydride ($161 \mathrm{mg}, 6.74 \mathrm{mmmol}$) was taken in dry THF $(8 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2} and cooled it
down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1 -(4-ethylphenyl) ethan-1-one ($500 \mathrm{mg}, 3.37 \mathrm{mmol}$) in THF (2 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl
carbonate ($1.6 \mathrm{~mL}, 13.5 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 12 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with $\mathrm{Et}_{2} \mathrm{O}$ afford 2e as a brown solid ($500 \mathrm{mg}, 67 \%$). LCMS(ESI) $\mathrm{m} / \mathrm{z} 221.29$ [M $\left.+\mathrm{H}^{+}\right] ; 50 \%$ (purity).

4.5.8. Ethyl 3-(2-fluorophenyl)-3-oxopropanoate (2i)

Sodium hydride ($1.74 \mathrm{~g}, 72.4 \mathrm{mmmol}$) was taken in dry THF $(30 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1 -(2-fluorophenyl) ethan-1-one ($5.0 \mathrm{~g}, 36.2 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($17.5 \mathrm{~mL}, 144.8 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 12 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with $\mathrm{Et}_{2} \mathrm{O}$ afford $\mathbf{2 i}$ as a brown liquid ($4.0 \mathrm{~g}, 52 \%$). MS (ESI) $m / z 211.17\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$.

4.5.9. Ethyl 3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate (2j)

Sodium hydride ($2.55 \mathrm{~g}, 106.4 \mathrm{mmmol}$) was taken in dry THF $(40 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1-(4-(trifluoromethyl) phenyl)ethan-1-one ($10 \mathrm{~g}, 53.2 \mathrm{mmol}$) in THF (10 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($25.8 \mathrm{~mL}, 212.8 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 14 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with $\mathrm{Et}_{2} \mathrm{O}$ afford $\mathbf{2 j}$ as a brown solid ($10.0 \mathrm{~g}, 72 \%$). LCMS(ESI) m/z $259.14\left[\mathrm{M}-\mathrm{H}^{+}\right] ; 61 \%$ (purity).

4.5.10. Ethyl 3-oxo-3-(pyridin-3-yl)propanoate (2l)

Sodium hydride ($2.9 \mathrm{~g}, 124 \mathrm{mmmol}$) was taken in dry THF $(45 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1 -(pyridin- 3 -yl) ethan-1-one ($5.0 \mathrm{~g}, 41.2 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($20 \mathrm{~mL}, 165.0 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 14 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 10\% hexane-EtOAc as eluent to afford 21 as a colourless liquid ($4.1 \mathrm{~g}, 52 \%$). LCMS(ESI) $m / z 194.25\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 88 \%$ (purity).

4.5.11. Ethyl 3-cyclobutyl-3-oxopropanoate (2r)

Sodium hydride ($2.44 \mathrm{~g}, 101.9 \mathrm{mmmol}$) was taken in dry THF $(55 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1-cyclobutylethan-1one ($5.0 \mathrm{~g}, 50.9 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($24.7 \mathrm{~mL}, 203.6 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 14 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 10% hex-ane-EtOAc as eluent to afford $\mathbf{2 r}$ as a colourless semi-solid (2.6 g , 30%). LCMS(ESI) m/z 169.07 [$\left.M-\mathrm{H}^{+}\right] ; 80 \%$ (purity).
4.5.12. Synthesis of 5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4) Ethyl 3-oxo-3-phenylpropanoate $2(10.0 \mathrm{~g}, 52.1 \mathrm{mmol})$ was taken in $\mathrm{AcOH}(50 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine $\mathbf{3}$ ($0.4 \mathrm{~mL}, 62.5 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vaccum which affored a white solid (10.5 g , 95%). This was then used in the next step without any further purification. LCMS(ESI) $m / z 213.09\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 59.54 \%$ (purity).

4.5.13. 5-Phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4a)

Ethyl 3-oxo-3-phenylpropanoate 2 ($10.0 \mathrm{~g}, 52.1 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(50 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine ($0.4 \mathrm{~mL}, 62.5 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded a white solid (10.5 g , 95%). This was then used in the next step without any further purification. LCMS(ESI) m/z $213.09\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 59.54 \%$ (purity).

4.5.14. 5-(4-Methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4b)

Ethyl 3-(4-methoxyphenyl)-3-oxopropanoate ($1.0 \mathrm{~g}, 4.5 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(5 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine ($416 \mathrm{mg}, 4.9 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 b}$ as a brown solid ($510 \mathrm{mg}, 47 \%$). This was then used in the next step without any further purification. LCMS(ESI) $\mathrm{m} / \mathrm{z} 243.10[\mathrm{M}+\mathrm{H}]^{+} ; 80.54 \%$ (purity).
4.5.15. 5-(2-Methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4c)

Ethyl 3-(2-methoxyphenyl)-3-oxopropanoate 2c (1.5g, 6.7 mmol) was taken in $\mathrm{AcOH}(15 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine 2 ($681 \mathrm{mg}, 8.1 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded 4c as an off-white solid (1.2 g , crude). This was then used in the next step without any further purification. LCMS(ESI) $m / z 243.11$ [M $+\mathrm{H}^{+}$]; 95.10\% (purity).

4.5.16. 5-(p-Tolyl)-[1,2,4]triazolo[1,5-alpyrimidin-7-ol (4d)

Ethyl 3-oxo-3-(p-tolyl)propanoate 2d ($6.0 \mathrm{~g}, 29.1 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(40 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($2.9 \mathrm{~g}, 34.9 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded 4 d as a white solid (1.8 g , 27%). This was then used in the next step without any further purification. LCMS(ESI) m/z $227.22\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 75.24 \%$ (purity).

4.5.17. 5-(4-Ethylphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4e)

Ethyl 3-(4-ethylphenyl)-3-oxopropanoate 2 e (500 mg , 2.27 mmol) was taken in $\mathrm{AcOH}(6 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 1 H -1,2,4-triazol-5-amine ($286 \mathrm{mg}, 3.4 \mathrm{mmol}$). The reaction mixture was heated at $115{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 e}$ as a brown solid ($400 \mathrm{mg}, 73 \%$). This was then used in the next step
without any further purification. LCMS(ESI) m/z $239.20\left[\mathrm{M}-\mathrm{H}^{+}\right]$; 45% (purity).
4.5.18. 5-(4-Chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4f)

Ethyl 3-(4-chlorophenyl)-3-oxopropanoate ($1.0 \mathrm{~g}, 4.4 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(5 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine ($406 \mathrm{mg}, 4.8 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 f}$ as a white solid ($560 \mathrm{mg}, 51 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 247.15\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 98.87 \%$ (purity).

4.5.19. 5-(4-Fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4h)

Ethyl 3-(4-fluorophenyl)-3-oxopropanoate ($2.0 \mathrm{~g}, 9.5 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(10 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine 2 (958 mg , 11.4 mmol). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 h}$ as a yellow solid ($1.1 \mathrm{~g}, 50 \%$). This was then used in the next step without any further purification. LCMS(ESI) m/z $231.25\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 79.73 \%$ (purity).
4.5.20. 5-(2-Fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4i)

Ethyl 3-(2-fluorophenyl)-3-oxopropanoate $\mathbf{2 i}$ ($4.0 \mathrm{~g}, 19.0 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(20 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($1.92 \mathrm{~g}, 22.8 \mathrm{mmol}$). The reaction mixture was heated at $115^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 i}$ as a yellow solid ($800 \mathrm{mg}, 18 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 231.06\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 54 \%$ (purity).
4.5.21. 5-(4-(Trifluoromethyl)phenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4j)

Ethyl 3-oxo-3-(4-(trifluoromethyl)phenyl)propanoate $\mathbf{2 j}$ $(10.0 \mathrm{~g}, 38.5 \mathrm{mmol})$ was taken in $\mathrm{AcOH}(50 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine $(4.85 \mathrm{~g}, 57.7 \mathrm{mmol})$. The reaction mixture was heated at $115{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 j}$ as a yellow solid ($6.0 \mathrm{~g}, 56 \%$). This was then used in the next step without any further purification. LCMS(ESI) $\mathrm{m} / \mathrm{z} 279.43\left[\mathrm{M}-\mathrm{H}^{+}\right]$; 78% (purity).

4.5.22. 5-(Pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4k)

Ethyl 3-oxo-3-(pyridin-2-yl)propanoate 2k ($8.0 \mathrm{~g}, 41.4 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(50 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($4.2 \mathrm{~g}, 49.7 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 k}$ as a deep brown solid ($4.5 \mathrm{~g}, 51 \%$). This was then used in the next step without any further purification. MS (ESI) $\mathrm{m} / \mathrm{z} 212.2\left[\mathrm{M}-\mathrm{H}^{+}\right]$.

4.5.23. 5-(Pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4l)

Ethyl 3-oxo-3-(pyridin-3-yl)propanoate 21 ($4.0 \mathrm{~g}, 20.7 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(40 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($2.08 \mathrm{~g}, 24.8 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction
mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 1}$ as a white solid ($2.1 \mathrm{~g}, 48 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 214.13\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 62 \%$ (purity).

4.5.24. 5-(Pyridin-4-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4m)

Ethyl 3-oxo-3-(pyridin-4-yl)propanoate ($2.0 \mathrm{~g}, 10.4 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(10 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($1.04 \mathrm{~g}, 12.4 \mathrm{mmol}$). The reaction mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 m}$ as a yellow solid ($1.2 \mathrm{~g}, 54 \%$). This was then used in the next step without any further purification. $\operatorname{LCMS}(E S I) m / z 214.19\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 56 \%$ (purity).

4.5.25. 5-Benzyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4n)

Ethyl 3-oxo-4-phenylbutanoate ($1.5 \mathrm{~g}, 7.2 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(8 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($733 \mathrm{mg}, 8.7 \mathrm{mmol}$). The reaction mixture was heated at $115^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 n}$ as a white solid ($910 \mathrm{mg}, 55 \%$). This was then used in the next step without any further purification.

4.5.26. 5-Methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (40)

Ethyl 3-oxobutanoate ($1.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) was taken in AcOH $(5 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($646 \mathrm{mg}, 7.7 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 o}$ as a white solid ($610 \mathrm{mg}, 53 \%$). This was then used in the next step without any further purification. LCMS (ESI) $m / z 151.06\left[\mathrm{M}^{+} \mathrm{H}^{+}\right] ; 78 \%$ (purity).

4.5.27. 5-Ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4p)

Ethyl 3-oxopentanoate ($200 \mathrm{mg}, 1.4 \mathrm{mmol}$) was taken in AcOH $(1.0 \mathrm{~mL})$ in a 25 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($139 \mathrm{mg}, 1.6 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 p}$ as an off-white solid ($110 \mathrm{mg}, 48 \%$). This was then used in the next step without any further purification. LCMS(ESI) m/z $165.43\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 90 \%$ (purity).

4.5.28. 5-Cyclobutyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4r)

Ethyl 3-cyclobutyl-3-oxopropanoate 2 ($5.0 \mathrm{~g}, 29.4 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(25 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($2.9 \mathrm{~g}, 35.2 \mathrm{mmol}$). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 r}$ as a yellow semi-solid (3.8 g , crude). This was then used in the next step without any further purification. LCMS(ESI) $m / z 191.30\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 84.60 \%$ (purity).

4.5.29. 5-Cyclopentyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4s)

Ethyl 3-cyclopentyl-3-oxopropanoate ($2.0 \mathrm{~g}, 10.8 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(10 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($1.08 \mathrm{~g}, 13.0 \mathrm{mmol}$). The reaction mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeo-
tropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded 4s as a brown solid ($1.1 \mathrm{~g}, 50 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 205.05\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 66.67 \%$ (purity).

4.5.30. 5-Cyclohexyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol (4t)

Ethyl 3-cyclohexyl-3-oxopropanoate ($800 \mathrm{mg}, 4.04 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(4 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol-5-amine ($407 \mathrm{mg}, 4.84 \mathrm{mmol}$). The reaction mixture was heated at $115^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{4 t}$ as an off-white solid ($410 \mathrm{mg}, 46 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 217.30\left[\mathrm{M}-\mathrm{H}^{+}\right] ; 52.65 \%$ (purity).

4.5.31. 7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine (5a)

To a solution of 5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 4a ($10.0 \mathrm{~g}, 47.2 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(44 \mathrm{~mL}, 472.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $120^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc $=1: 1$). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 15% hexaneEtOAc as eluent to afford $\mathbf{5 a}$ as a pale yellow solid ($4.2 \mathrm{~g}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.77$ (s, 1H), 8.38 ($\mathrm{s}, 1 \mathrm{H}$), 8.32$8.34(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.61(\mathrm{~m}, 3 \mathrm{H}) . \operatorname{LCMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 231.03\left[\mathrm{M}+\mathrm{H}^{+}\right]$; 92.15\% (purity).

4.5.32. 7-Chloro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a] pyrimidine (5b)

To a solution of 5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-ol 4b ($500 \mathrm{mg}, 2.1 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(1.6 \mathrm{~mL}$, 16.8 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc $=1: 1$). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 5% hex-ane-EtOAc as eluent to afford 5b as a brown solid ($210 \mathrm{mg}, 39 \%$). LCMS(ESI) m/z $261.15\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 85.81 \%$ (purity).

4.5.33. 7-Chloro-5-(2-methoxyphenyl)-[1,2,4]triazolo[1,5-a] pyrimidine (5c)

To a solution of 5-(2-methoxyphenyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-ol $4 \mathrm{c}(500 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(5 \mathrm{~mL}$, 52.5 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc $=1: 1$). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford 5c. This was then used in the next step without any further purification. LCMS(ESI) m/z $261.0\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 53.5 \%$ (purity).

4.5.34. 7-Chloro-5-(p-tolyl)-[1,2,4]triazolo[1,5-a]pyrimidine (5d)

To a solution of 5-(p-tolyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol $4 d(1.5 \mathrm{~g}, 6.6 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(20 \mathrm{~mL}, 211 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc =1:1). Upon completion, the reaction
mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 20% hexane-EtOAc as eluent to afford $\mathbf{5 d}$ as a yellow solid (800 mg , 49\%). LCMS(ESI) m/z $245.08\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 76.82 \%$ (purity).

4.5.35. 7-Chloro-5-(4-ethylphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine

 (5e)To a solution of 5-(4-ethylphenyl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol $4 \mathbf{e}(400 \mathrm{mg}, 1.7 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(5 \mathrm{~mL}$, 52.7 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (30%, EtOAc-hexane). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 12% EtOAc-hexane as eluent to afford $\mathbf{5 e}$ as a pale yellow solid ($250 \mathrm{mg}, 58 \%$). LCMS(ESI) m/z $259.44\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 91.33 \%$ (purity).

4.5.36. 7-Chloro-5-(4-chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine

 (5f)To a solution of 5-(4-chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol 4f ($550 \mathrm{mg}, 2.2 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(2.5 \mathrm{~mL}$, 26.4 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford $\mathbf{5 f}$ as an off-white solid ($310 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.78$ ($\mathrm{s}, 1 \mathrm{H}$), 8.42 ($\mathrm{s}, 1 \mathrm{H}$), 8.35 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

4.5.37. 7-Chloro-5-(4-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine (5h)

To a solution of 5-(4-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol $4 \mathbf{h}(1.1 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(6.0 \mathrm{~mL}$, 62.4 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford $\mathbf{5 h}$ as a yellow solid ($635 \mathrm{mg}, 53 \%$). LCMS (ESI) $m / z 249.07\left[\mathrm{M}^{+} \mathrm{H}^{+}\right] ; 75.08 \%$ (purity).

4.5.38. 7-Chloro-5-(2-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine

 (5i)To a solution of 5-(2-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol $4 \mathbf{i}(800 \mathrm{mg}, 3.5 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(10 \mathrm{~mL}$, 112 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (30%, EtOAc-hexane). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (30 mL) to pH 8 . It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120
mesh) using 14% EtOAc-hexane as eluent to afford $\mathbf{5 i}$ as a pale yellow solid ($100 \mathrm{mg}, 11 \%$). LCMS(ESI) $\mathrm{m} / \mathrm{z} 248.90\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 50 \%$ (purity).

4.5.39. 7-Chloro-5-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[1,5-a] pyrimidine (5j)

To a solution of 5-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-ol $\mathbf{4 j}(3.0 \mathrm{~g}, 10.7 \mathrm{mmol})$ was added POCl_{3} ($20 \mathrm{~mL}, 214 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (50\%, EtOAc-hexane). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 13% EtOAc-hexane as eluent to afford $\mathbf{5 j}$ as a pale yellow solid ($1.75 \mathrm{~g}, 55 \%$). LCMS(ESI) $m / z 299.08\left[\mathrm{M}+\mathrm{H}^{+}\right]$; 93.67\% (purity).

4.5.40. 7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine

 (5k)To a solution of 5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol $4 \mathbf{k}(4.0 \mathrm{~g}, 18.8 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(18 \mathrm{~mL}$, 188 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc = 1:1). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8. It was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 20% hexane-EtOAc as eluent to afford $\mathbf{5 k}$ as a yellow solid ($1.5 \mathrm{~g}, 35 \%$). LCMS(ESI) $m / z 232.04\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 98.9 \%$ (purity).
4.5.41. 7-Chloro-5-(pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (5l) To a solution of 5 -(pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol 41 ($900 \mathrm{mg}, 4.2 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(10 \mathrm{~mL}$, 105 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc $=1: 1$). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8. It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 20% hexane-EtOAc as eluent to afford $\mathbf{5 1}$ as a yellow solid ($480 \mathrm{mg}, 49 \%$). LCMS(ESI) m/z $232.19\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 74.46 \%$ (purity).

4.5.42. 7-Chloro-5-(pyridin-4-yl)-[1,2,4]triazolo[1,5-a]pyrimidine

 (5m)To a solution of 5-(pyridin-4-yl)-[1,2,4]triazolo[1,5-a]pyrim-idin-7-ol 4 m ($500 \mathrm{mg}, 2.3 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(3.0 \mathrm{~mL}$, 34.0 mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $85^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford $\mathbf{5 m}$ as a yellow solid ($260 \mathrm{mg}, 48 \%$). LCMS (ESI) m/z $232.18\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 72 \%$ (purity).

4.5.43. 5-Benzyl-7-chloro-[1,2,4]triazolo[1,5-a]pyrimidine (5n)

To a solution of 5-benzyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 4n ($900 \mathrm{mg}, 3.9 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(4.5 \mathrm{~mL}, 47.8 \mathrm{mmol})$ at
$0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford $\mathbf{5 n}$ as an off-white solid ($610 \mathrm{mg}, 62 \%$). LCMS(ESI) $\mathrm{m} / \mathrm{z} 245.22\left[\mathrm{M}+\mathrm{H}^{+}\right]$; 94.26\% (purity).

4.5.44. 7-Chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine (50)

To a solution of 5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol $40(600 \mathrm{mg}, 4.0 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(2.0 \mathrm{~mL}, 22.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (50% EtOAc-hexane). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8. It was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 20\% EtOAc-hexane as eluent to afford $\mathbf{5 o}$ as a white solid ($340 \mathrm{mg}, 50 \%$). LCMS(ESI) m / z $169.03\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 92.15 \%$ (purity).

4.5.45. 7-Chloro-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidine (5p)

To a solution of 5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 4p $(100 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(1.0 \mathrm{~mL}, 10.8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (50\% EtOAc-hexane). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 12\% EtOAc-hexane as eluent to afford 5p as a white solid ($85 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51$ (s , $1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

4.5.46. 7-Chloro-5-cyclobutyl-[1,2,4]triazolo[1,5-a]pyrimidine (5r)

To a solution of 5-cyclobutyl-[1,2,4]triazolo[1,5-a]pyrimidin-7ol $4 \mathbf{r}(3.8 \mathrm{~g}, 20 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(30 \mathrm{~mL}, 320 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $80^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc $=1: 1$). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 25% hexane-EtOAc as eluent to afford $\mathbf{5 r}$ as a yellow semi-solid (1.8 g , 43\%). LCMS(ESI) $m / z 209.06\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 86.29 \%$ (purity).

4.5.47. 7-Chloro-5-cyclopentyl-[1,2,4]triazolo[1,5-a]pyrimidine (5s)

To a solution of 5-cyclopentyl-[1,2,4]triazolo[1,5-a]pyrimidin-$7-\mathrm{ol} 4 \mathrm{~s}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(6.0 \mathrm{~mL}, 63.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8. It was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford 5s as an off-white solid ($270 \mathrm{mg}, 25 \%$). LCMS(ESI) m/z 223.09 [M $\left.+\mathrm{H}^{+}\right] ; 69.45 \%$ (purity).
4.5.48. 7-Chloro-5-cyclohexyl-[1,2,4]triazolo[1,5-a]pyrimidine (5t)

To a solution of 5-cyclohexyl-[1,2,4]triazolo[1,5-a]pyrimidin-7ol 4 t ($400 \mathrm{mg}, 1.8 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(2.0 \mathrm{~mL}, 21.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (100% EtOAc). The reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8. It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was triturated with diethyl ether to afford $\mathbf{5 t}$ as a yellow solid ($110 \mathrm{mg}, 25 \%$). LCMS(ESI) m/z $237.0\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 61.42 \%$ (purity).

4.5.49. N-(4-Methoxyphenethyl)-5-(4-methoxyphenyl)-[1,2,4]triazolo

 [1,5-a]pyrimidin-7-amine (7)7-Chloro-5-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine $5 \mathbf{b}$ ($200 \mathrm{mg}, 0.77 \mathrm{mmol}$) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphe-nyl)ethan-1-amine ($127 \mathrm{mg}, 0.84 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (EtOAc, 100%) until completion. The reaction mixture was then poured into ice water $(30 \mathrm{~g})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using $2 \% \mathrm{MeOH}-$ DCM as eluent to afford 7 as a white solid ($75 \mathrm{mg}, 26 \%$). M.P. $130-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.37-$ $8.40(\mathrm{~m}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.85(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.78(\mathrm{~m}$, 2H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 161.3, 160.2, 157.8, 154.1, 152.8, 147.9, 130.6, 129.9, 129.3, 129.1, 113.9, 113.7, 84.9, 55.3, 54.9, 43.3, 33.7. LCMS (ESI) m / z 376.37.
4.5.50. N-(4-Methoxyphenethyl)-5-(2-methoxyphenyl)-[1,2,4]triazolo [1,5-alpyrimidin-7-amine (8)

7-Chloro-5-(2-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine $5 \mathbf{c}$ ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) was taken in NMP (2 mL) in a 25 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphe-nyl)ethan-1-amine ($69 \mathrm{mg}, 0.46 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford $\mathbf{8}$ as an off-white solid ($54 \mathrm{mg}, 37 \%$). M.P. $148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{bs}, 1 \mathrm{H}), 7.78$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.09(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 3.61-3.62 (m, 2H), 2.91-2.94 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): δ 159.6, 157.8, 157.0, 155.3, 154.5, 146.9, 131.1, 130.6, 130.5, 129.7, 127.5, 120.5, 113.8, 112.1, 89.3, 55.7, 54.9, 43.3, 33.4. LCMS (ESI) $m / z 376.24$.

4.5.51. N-(4-Methoxyphenethyl)-5-(p-tolyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (9)

7-Chloro-5-(p-tolyl)-[1,2,4]triazolo[1,5-a]pyrimidine 5d ($250 \mathrm{mg}, 1.02 \mathrm{mmol}$) was taken in NMP (5 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($185 \mathrm{mg}, 1.22 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 20 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers combined, washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 9 as an off-white solid ($100 \mathrm{mg}, 27 \%$). M.P. $155-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 6.80-6.85 (m, 3H), 3.72-3.75 (m, 2H), $3.67(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.95(\mathrm{~m}$, 2H), 2.39 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 160.2,157.8$, $155.5,154.6,147.8,140.0,134.8,130.7,129.9,129.2,127.3$, 113.7, 84.4, 54.9, 43.2, 33.7, 20.9. LCMS (ESI) $m / z 360.40$.

4.5.52. 5-(4-Ethylphenyl)-N-(4-methoxyphenethyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (10)

7-Chloro-5-(4-ethylphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine 5e $(100 \mathrm{mg}, 0.38 \mathrm{mmol})$ was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($70 \mathrm{mg}, 0.46 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 26\% EtOAc-hexane as eluent to afford 10 as a pale yellow solid ($78 \mathrm{mg}, 54 \%$). M.P. $151-12^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}), 2.91-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.2,157.8,155.5,154.6$, $147.8,146.2,135.1,130.7,129.8,127.9,127.4,113.7,84.5,54.9$, 43.2, 33.7, 27.9, 15.4. LCMS (ESI) m / z 373.99.

4.5.53. 5-(4-Chlorophenyl)-N-(4-methoxyphenethyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (11)

7-Chloro-5-(4-chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine $60(200 \mathrm{mg}, 0.77 \mathrm{mmol})$ was taken in NMP $(2 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($127 \mathrm{mg}, 0.84 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (EtOAc, 100\%) until completion. The reaction mixture was then poured into ice water $(30 \mathrm{~g})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45\% EtOAc-hexane as eluent to afford 11 as a white solid ($110 \mathrm{mg}, 30 \%$). M.P. 178$180{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.47$ (s, 1H), 8.40 (bs, $1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 2.92-2.95 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): δ 158.8, 157.8, $155.4,154.8,147.9,136.4,135.1,130.6,129.9,129.2,128.6$, 113.7, 84.8, 54.9, 43.3, 33.7. LCMS (ESI) m / z 380.34.

4.5.54. 5-(4-Fluorophenyl)-N-(4-methoxyphenethyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (13)

7-Chloro-5-(4-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 h}(125 \mathrm{mg}, 0.5 \mathrm{mmol})$ was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($91 \mathrm{mg}, 0.6 \mathrm{mmol}$). The reaction mixture was stirred at rt and monitored by TLC analysis (70\% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water $(30 \mathrm{~g})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25\% EtOAc-hexane as eluent to afford 13 as a white solid ($40 \mathrm{mg}, 22 \%$). M.P. 153-
$155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.38(\mathrm{~m}$, $1 \mathrm{H}), 8.22-8.25(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83$ (d, J=6.8 Hz, 3H), 3.73-3.78 (m, 2H), 3.66 ($\mathrm{s}, 3 \mathrm{H}$), 2.92$2.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 163.5$ (d, $J=246 \mathrm{~Hz}), 159.8,159.1,157.8,155.4,154.7,147.9,134.1$ (d, $J=3 \mathrm{~Hz}), 130.7,129.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=21 \mathrm{~Hz}), 113.7$, 84.7, 54.9, 43.2, 33.8. LCMS (ESI) $m / z 364.15$.

4.5.55. 5-(2-Chlorophenyl)-N-(4-methoxyphenethyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (12)

7-Chloro-5-(2-chlorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine ($106 \mathrm{mg}, 0.4 \mathrm{mmol}$) was taken in NMP (2 mL) in a 25 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan- 1 -amine ($72 \mathrm{mg}, 0.48 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 27% EtOAc-hexane as eluent to afford 12 as a white solid ($68 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): δ 8.52 (s, 2H), 7.60-7.51 (m, 2H), 7.50-7.46 (m, 2H), 7.18-7.16 (m, $2 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 5 \mathrm{H}), 2.91-$ 2.88 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.7,157.8$, 155.1, 154.7, 147.3, 138.4, 131.1, 131.1, 130.5, 130.5, 129.9, 129.8, 127.2, 113.8, 89.3, 54.9, 43.3, 33.7. LCMS (ESI) $m / z 380.34$.
4.5.56. 5-(2-Fluorophenyl)-N-(4-methoxyphenethyl)-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (14)

7-Chloro-5-(2-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 i}$ ($100 \mathrm{mg}, 0.4 \mathrm{mmol}$) was taken in NMP (2 mL) in a 25 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan- 1 -amine ($72 \mathrm{mg}, 0.48 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 27\% EtOAc-hexane as eluent to afford 14 as a white solid ($58 \mathrm{mg}, 40 \%$). M.P. $153-155^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.50(\mathrm{~s}, 2 \mathrm{H}), 7.93(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53$7.58(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.67(\mathrm{~m}, 5 \mathrm{H}), 2.90-2.93(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.8(\mathrm{~d}, J=248 \mathrm{~Hz}$), $157.8,156.9,155.3,154.8,147.5,131.8(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.0$, $130.4,129.8,126.4(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 124.7(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.4(\mathrm{~d}$, $J=22 \mathrm{~Hz}), 113.8,88.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 54.9,43.4,33.5$. LCMS (ESI) $\mathrm{m} / \mathrm{z} 364.33$.
4.5.57. N-(4-Methoxyphenethyl)-5-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (15)

7-Chloro-5-(4-(trifluoromethyl)phenyl)-[1,2,4]triazolo[1,5-a] pyrimidine $5 \mathbf{j}$ ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) was taken in NMP (2 mL) in a 25 mL round bottom flask under N_{2}. To it was added 2-(4-methox-yphenyl)ethan- 1 -amine ($62 \mathrm{mg}, 0.4 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 27\% EtOAc-hexane as eluent to afford 15 as a pale yellow solid ($75 \mathrm{mg}, 54 \%$). M.P. 191$193{ }^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.48-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.37(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ $(\mathrm{s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, 2.92-2.96 (m, 2H). LCMS (ESI) m/z 414.39.

4.5.58. N-(4-Methoxyphenethyl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (16)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine 5k ($200 \mathrm{mg}, 0.86 \mathrm{mmol}$) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan- 1 -amine ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$) and the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45\% EtOAc-hexane as eluent to afford 16 as a white solid ($80 \mathrm{mg}, 27 \%$). M.P. $172-173{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6} : $\delta 8.75$ (d, J=4.0 Hz, 1H), $8.50-8.51$ (m, 2H), 8.45 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}$, $1 \mathrm{H}), 7.21$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H})$, 3.67 (s, 3H), 2.93-2.97 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): δ 159.0, 157.8, 155.5, 154.9, 153.8, 149.2, 148.0, 137.4, 130.5, 129.7, 125.3, 121.4, 113.9, 84.5, 54.9, 43.5, 33.4. LCMS (ESI) m / z 347.39.

4.5.59. N-(4-Methoxyphenethyl)-5-(pyridin-3-yl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (17)

7-Chloro-5-(pyridin-3-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\quad \mathbf{5 1}$ ($200 \mathrm{mg}, 0.86 \mathrm{mmol}$) was taken in NMP (5 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan- 1 -amine ($156 \mathrm{mg}, 1.04 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25\% EtOAc-hexane as eluent to afford 17 as an off-white solid ($60 \mathrm{mg}, 17 \%$). M.P. $152-153{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d d_{6}): $\delta 9.33$ ($\mathrm{s}, 1 \mathrm{H}$), 8.69-8.70 (m, 1H), 8.47-8.52 (m, 3H), 7.55-7.58 (m, 1H), 7.23 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, 6.82 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.96(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 157.9,157.8,155.4,154.8$, 150.9, 148.5, 148.1, 134.8, 133.1, 130.6, 129.9, 123.6, 113.7, 85.1, 54.9, 43.2, 33.8. LCMS (ESI) $m / z 347.37$.

4.5.60. N-(4-Methoxyphenethyl)-5-(pyridin-4-yl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (18)
 7-Chloro-5-(pyridin-4-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $5 \mathbf{m}$

 ($180 \mathrm{mg}, 0.77 \mathrm{mmol}$) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan- 1 -amine ($141 \mathrm{mg}, 0.92 \mathrm{mmol}$). The reaction mixture was stirred at rt and monitored by TLC analysis (100\% EtOAc) until completion. The reaction mixture was then poured into ice water $(30 \mathrm{~g})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 3\% MeOH-DCM as eluent to afford $\mathbf{1 8}$ as a white solid ($70 \mathrm{mg}, 26 \%$). M.P. 217$219^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.75$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.52-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, 3H), 2.92-2.96 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 157.8$, 157.6, 155.4, 155.0, 150.2, 148.2, 144.6, 130.6, 129.9, 121.4, 113.7, 85.5, 54.9, 43.3, 33.8. LCMS (ESI) m / z 347.44.4.5.61. 5-Benzyl-N-(4-methoxyphenethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (19)

5-Benzyl-7-chloro-[1,2,4]triazolo[1,5-a]pyrimidine 5n (250 mg, 1.0 mmol) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1-amine $(166 \mathrm{mg}, 1.1 \mathrm{mmol})$. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (EtOAc, 100\%) until completion. The reaction mixture was then poured into ice water (30 g) and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 19 as an off-white solid ($80 \mathrm{mg}, 21 \%$). M.P. $119-121{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.27-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.57$ $(\mathrm{m}, 2 \mathrm{H}), 2.83-2.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta$ $165.9,157.8,155.3,154.2,147.4,138.9,130.4,129.8,129.0$, 128.3, 126.3, 113.8, 87.7, 54.9, 44.0, 43.3, 33.5. LCMS (ESI) m / z 360.48.

4.5.62. N-(4-Methoxyphenethyl)-5-methyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (20)
 7-Chloro-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine 50

 ($280 \mathrm{mg}, 1.7 \mathrm{mmol}$) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($301 \mathrm{mg}, 2.0 \mathrm{mmol}$). The reaction mixture was heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (EtOAc, 100\%) until completion. The reaction mixture was then poured into ice water $(30 \mathrm{~g})$ and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45\% EtOAc-hexane as eluent to afford 20 as a white solid ($130 \mathrm{mg}, 27 \%$). M.P. 129$130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.35$ (s, 1H), 8.16 (bs, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 163.7, 157.8, 155.2, 154.0, 147.1, 130.5, 129.8, 113.7, 87.7, 54.9, 43.2, 33.5, 24.7. LCMS (ESI) $m / z 284.44$.
4.5.63. Synthesis of 5-ethyl-N-(4-methoxyphenethyl)-[1,2,4]triazolo

 [1,5-alpyrimidin-7-amine (21)7-Chloro-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidine $5 \mathbf{5 p}(60 \mathrm{mg}$, 0.32 mmol) was taken in NMP (1 mL) in a 25 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1amine ($59 \mathrm{mg}, 0.39 \mathrm{mmol}$). The reaction mixture was stirred at rt and monitored by TLC analysis (70\% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (30 g) and extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45\% EtOAc-hexane as eluent to afford 21 as a white solid ($34 \mathrm{mg}, 35 \%$). M.P. $70-72^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta 8.36$ (s, 1H), 8.16 (bs, 1H), 7.19 (d, $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $6.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.58(\mathrm{~m}$, $2 \mathrm{H}), 2.86-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 168.4, 157.8, 155.3, 154.1, 147.3, 130.6, 129.8, 113.7, 86.8, 54.9, 43.2, 33.6, 31.1, 13.1. LCMS (ESI) $m / z 298.15$.
4.5.64. 5-Cyclobutyl-N-(4-methoxyphenethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (23)

7-Chloro-5-cyclobutyl-[1,2,4]triazolo[1,5-a]pyrimidine $\quad \mathbf{5 r}$ ($200 \mathrm{mg}, 0.96 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)
ethan-1-amine ($174 \mathrm{mg}, 1.1 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50\% EtOAc-hexane as eluent to afford 23 as an off-white solid ($22 \mathrm{mg}, 7 \%$). M.P. $99-100^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 8.37$ (s, 1H), 8.16 (bs, 1H), 7.18 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, 3.54-3.59 (m, 3H), 2.85-2.89 (m, 2H), 2.20-2.32 (m, 4H), 1.94$2.01(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 169.2,157.8,155.4,154.1,147.3,130.6,129.8,113.7,85.7,54.9$, 43.2, 41.6, 33.7, 27.3, 17.5. LCMS (ESI) m / z 324.36.
4.5.65. 5-Cyclopentyl-N-(4-methoxyphenethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (24)

7-Chloro-5-cyclopentyl-[1,2,4]triazolo[1,5-a]pyrimidine 5s ($260 \mathrm{mg}, 1.2 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine $\mathbf{5 a}(212 \mathrm{mg}, 1.4 \mathrm{mmol})$. The reaction mixture was stirred at rt and monitored by TLC analysis (50\% EtOAc-hexane) until completion. The reaction mixture was then poured into ice water (30 g) and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 28\% EtOAc-hexane as eluent to afford 24 as a white solid ($90 \mathrm{mg}, 23 \%$). M.P. 99- $100^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.56-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.89(\mathrm{~m}, 2 \mathrm{H})$, 1.91-1.95 (m, 2H), 1.75-1.76 (m, 4H), 1.61-1.62 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 170.7,157.8,155.4,154.1,147.2$, 130.6, 129.8, 113.7, 86.6, 54.9, 47.4, 43.3, 33.7, 32.5, 25.5. LCMS (ESI) $m / z 338.36$.

4.5.66. 5-Cyclohexyl-N-(4-methoxyphenethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (25)

7-Chloro-5-cyclohexyl-[1,2,4]triazolo[1,5-a]pyrimidine 5t $(100 \mathrm{mg}, 0.42 \mathrm{mmol})$ was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl) ethan-1-amine ($76 \mathrm{mg}, 0.51 \mathrm{mmol}$). The reaction mixture was stirred at rt and monitored by TLC analysis (100\% EtOAc) until completion. The reaction mixture was then poured into ice water (30 g) and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 25 as a white solid ($40 \mathrm{mg}, 27 \%$). M.P. $193-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}$): $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.62(\mathrm{~m}$, $2 \mathrm{H}), 2.85-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.69-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.38(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 171.2,157.8,155.3,154.1,147.4$, 130.7, 129.8, 113.7, 86.0, 54.9, 46.1, 43.3, 33.8, 31.7, 25.8, 25.5. LCMS (ESI) m / z 352.48.

4.5.67. Ethyl 3-oxo-3-(pyridin-2-yl)propanoate (26)

Sodium hydride ($2.9 \mathrm{~g}, 124 \mathrm{mmmol}$) was taken in dry THF $(50 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 1 -(pyridin-2-yl) ethan-1-one ($5.0 \mathrm{~g}, 41.3 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at rt for 30 min followed by the addition of diethyl carbonate ($20 \mathrm{~mL}, 165 \mathrm{mmol}$). The reaction mixture was then stirred at rt for 12 h . Ice-cooled water was added dropwise to quench
the reaction. It was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further triturated with diethyl ether which afforded $\mathbf{2 6}$ as a pale yellow semi-solid ($4.0 \mathrm{~g}, 50 \%$). LCMS(ESI) $m / z 194.06\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 40 \%$ (purity).

4.5.68. 5-Phenyl-[1,2,4]triazolo[1,5-a]pyrimidine (27)

3-(Dimethylamino)-1-phenylpropan-1-one ($300 \mathrm{mg}, 1.7 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(1 \mathrm{~mL})$ in a 25 mL round bottom flask under N_{2}. To it was added $1 \mathrm{H}-1,2,4$-triazol- 5 -amine 2 ($171 \mathrm{mg}, 2.0 \mathrm{mmol}$). The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 10 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 15\% EtOAc-hexane as eluent to afford 27 as a white solid ($35 \mathrm{mg}, 10 \%$). M.P. $179-181^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 9.47$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.68 ($\mathrm{s}, 1 \mathrm{H}$), $8.29-$ $8.32(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.9,156.4,154.7,137.6,135.8,131.5$, 129.1, 127.7, 107.9. LCMS (ESI) m/z 197.28.

4.5.69. 5-Phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (28)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (500 mg , 2.2 mmol) was taken sealed tube under N_{2}. To it was added methanolic $\mathrm{NH}_{3}(20 \mathrm{~mL})$ and the reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 16 h . The reaction mixture concentrated in vacuo and the crude was purified by flash chromatography on silica gel (100-200 mesh) using 5\% MeOH-DCM as eluent to afford 28 as a yellow solid ($410 \mathrm{mg}, 63 \%$). M.P. $302-304{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.45$ (s, 1H), 8.17 (bs, 2H), 8.05-8.07 (m, 2H), 7.49$7.54(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 159.7, 155.9, 155.0, 149.3, 137.5, 130.2, 128.8, 126.9, 87.0. LCMS (ESI) m / z 212.14.

4.5.70. N -Methyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (29)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg, 1.1 mmol) in NMP (3 mL) was taken sealed tube under N_{2}. To it was added $\mathrm{MeNH}_{2}(2.0 \mathrm{M}$ in THF) $(0.6 \mathrm{~mL}, 1.3 \mathrm{mmol})$ and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 6 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 29 as a white solid ($84 \mathrm{mg}, 34 \%$). M.P. 200$202{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.37$ $(\mathrm{m}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, 3.10 (d, $J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.3$, 155.5, 154.7, 148.6, 137.6, 130.3, 128.6, 127.4, 84.6, 28.6. LCMS (ESI) $m / z 224.28$.

4.5.71. N-Ethyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (30)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg, 1.1 mmol) in NMP (5 mL) was taken sealed tube under N_{2}. To it was added $E t \mathrm{NH}_{2}$ ($59 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 6 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 30 as a white solid ($87 \mathrm{mg}, 34 \%$). M.P. $170-172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{bs}, 1 \mathrm{H}), 8.22-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}$,
$3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.3,155.6,154.7,147.8,137.6$, 130.2, 128.6, 127.4, 84.4, 36.5, 14.1. LCMS (ESI) $m / z 240.40$.

4.5.72. 5-Phenyl-N-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (31)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg, 1.1 mmol) in NMP (3 mL) was taken sealed tube under N_{2}. To it was added 1-propylamine ($77 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 32\% EtOAc-hexane as eluent to afford 31 as a white solid ($100 \mathrm{mg}, 36 \%$). M.P. $139-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{bs}, 1 \mathrm{H}), 8.21-8.22(\mathrm{~m}$, $2 \mathrm{H}), 7.52(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.48-3.53(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.72(\mathrm{~m}$, 2 H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): δ 160.3, 155.6, 154.6, 148.0, 137.7, 130.2, 128.6, 127.4, 84.5, 43.2, 21.8, 11.2. LCMS (ESI) m / z found 252.30.

4.5.73. N-Butyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (32)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (120 mg, 0.5 mmol) in NMP (2 mL) was taken sealed tube under N_{2}. To it was added n-butylamine ($45 \mathrm{mg}, 0.6 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 27\% EtOAc-hexane as eluent to afford 32 as a white solid ($40 \mathrm{mg}, 28 \%$). M.P. $125-126{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.23(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.35-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 160.3,155.6,154.7,147.9,137.6,130.2$, $128.6,127.4,84.5,41.3,30.5,19.4,13.7$. LCMS (ESI) $m / z 268.33$.

4.5.74. N-(2-Methoxyethyl)-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-

 7-amine (33)7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) in NMP (3 mL) was taken sealed tube under N_{2}. To it was added 2 -methoxyethan- 1 -amine ($99 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45\% EtOAc-hexane as eluent to afford 33 as a white solid ($95 \mathrm{mg}, 32 \%$). M.P. 116$118{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.27-8.28$ $(\mathrm{m}, 1 \mathrm{H}), 8.21-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.71-$ $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO d_{6}): $\delta 160.3,155.5,154.8,148.2,137.6,130.3,128.6$, 127.4, 84.9, 70.2, 58.1, 41.4. LCMS (ESI) m / z 268.27.

4.5.75. N-Cyclopropyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7amine (34)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (120 mg, 0.5 mmol) in NMP (2 mL) was taken sealed tube under N_{2}. To it was added cyclopropanamine ($35 \mathrm{mg}, 0.6 \mathrm{mmol}$) and the reaction
mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25\% EtOAc-hexane as eluent to afford 34 as a white solid ($95 \mathrm{mg}, 72 \%$). M.P. $193-195{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.58$ (m, 3H), 7.03 (s, 1H), 2.84-2.89 (m, 1H), 0.88-0.95 (m, 2H), 0.76$0.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.2,155.6$, 154.8, 147.3, 137.6, 130.4, 128.7, 127.3, 85.8, 23.8, 6.6. LCMS (ESI) m / z 252.19.
4.5.76. N-Cyclobutyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7amine (35)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (150 mg, 0.65 mmol) in NMP (5 mL) was taken sealed tube under N_{2}. To it was added cyclobutanamine ($55.4 \mathrm{mg}, 0.78 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25\% EtOAc-hexane as eluent to afford 35 as an off-white solid ($50 \mathrm{mg}, 29 \%$). M.P. $193-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.62$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.48 (s, 1H), $8.21-$ 8.23 (m, 2H), 7.53-7.54 (m, 3H), 6.87 (s, 1H), 4.43-4.53 (m, 1H), 2.38-2.44 (m, 2H), 2.23-2.32 (m, 2H), 1.71-1.78 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.3,155.7,154.6,146.8,137.5$, 130.3, 128.6, 127.4, 85.0, 46.6, 29.4, 14.6. LCMS (ESI) $m / z 266.24$.

4.5.77. N-(2-Cyclohexylethyl)-5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (36)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg, 1.1 mmol) in NMP (3 mL) was taken sealed tube under N_{2}. To it was added 2 -cyclohexylethan- 1 -amine ($99 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45% EtOAchexane as eluent to afford $\mathbf{3 6}$ as an off-white solid ($60 \mathrm{mg}, 29 \%$). M.P. $168-169{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46$ ($\mathrm{s}, 1 \mathrm{H}$), 8.32-8.35 (m, 1H), 8.20-8.22 (m, 2H), 7.53-7.54 (m, 3H), 6.89 (s, 1 H), $3.52-3.57(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.68(\mathrm{~m}, 5 \mathrm{H})$, $1.38(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.13(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.98(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d d_{6}): $\delta 160.3,154.8,147.9,137.7,130.2,128.6$, 127.4, 84.5, 40.1, 35.6, 34.6, 32.6, 26.0, 25.7. LCMS (ESI) $m / z 322.28$.

4.5.78. N-(4-Methoxyphenyl)-5-phenyl-[1,2,4]triazolo[1,5-a]

 pyrimidin-7-amine (37)7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) in NMP (5 mL) was taken sealed tube under N_{2}. To it was added 4-methoxyaniline ($140 \mathrm{mg}, 1.2 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 37 as a white solid ($135 \mathrm{mg}, 39 \%$). M.P. 200-202 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO-d d_{6} : $\delta 10.16$ ($\mathrm{s}, 1 \mathrm{H}$), 8.58 (s, 1H), 7.98 (bs, 2H), 7.44-7.50 (m, $5 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.5,157.7,155.9,155.0,147.3,137.4$, 130.3, 129.2, 128.8, 127.1, 126.6, 114.8, 85.6, 55.3. LCMS (ESI) m/ z 318.38.

4.5.79. N-(4-Methoxybenzyl)-5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (38)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) in NMP (3 mL) was taken sealed tube under N_{2}. To it was added (4 -methoxyphenyl)methanamine ($178 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAchexane as eluent to afford 38 as a white solid ($185 \mathrm{mg}, 51 \%$). M. P. $162-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.98$ (bs, 1 H), 8.49 (s, 1H), 8.13-8.14 (m, 2H), 7.51 (m, 3H), 7.42 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $6.89-6.92$ (m, 3H), 4.71 (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO $\left.-d_{6}\right): \delta 160.1,158.5,155.6,154.8,147.9,137.5$, 130.3, 129.8, 128.7, 128.6, 127.3, 113.9, 85.1, 54.9, 44.0. LCMS (ESI) $m / z 332.43$.
4.5.80. N-Phenethyl-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7amine (39)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) was taken in NMP (5 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-phenylethan-1-amine (140 mg , 1.2 mmol) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford 39 as an off-white solid ($210 \mathrm{mg}, 61 \%$). M.P. $164-165{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 8.46 (s, 1H), 8.37-8.39 (m, 1H), 8.17-8.18 (m, 2H), 7.52-7.53 (m, 3 H), 7.27-7.34 (m, 4H), 7.16-7.20 (m, 1H), $6.89(\mathrm{~s}, 1 \mathrm{H}), 3.78-$ 3.83 (m, 2H), 2.99-3.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.7,155.5,154.7,147.9,138.9,137.6,130.2,128.9,128.6$, 128.3, 127.4, 126.3, 84.8, 42.9, 34.6. LCMS (ESI) m / z 316.20.

4.5.81. 5-Phenyl-N-(3-phenylpropyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (40)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (120 mg, 0.5 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 3-phenylpropan-1-amine (84 mg , 0.6 mmol) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford 40 as a white solid (80 mg , 46%). M.P. $143-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46-$ $8.49(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.69-$ $2.73(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.03(\mathrm{~m}, 2 \mathrm{H}$). LCMS (ESI) m/z 330.20.
4.5.82. 5-Phenyl-N-(2-(pyridin-2-yl)ethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (41)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (200 mg, 0.8 mmol) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-2-yl)ethan-1-amine (127 mg , 1.0 mmol) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35% EtOAc-hexane as eluent to afford 41 as an off-white solid ($135 \mathrm{mg}, 49 \%$). M.P. $111-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 8.52 (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46$ (bs, 2H), 8.17-8.19 (m, 2H), 7.70 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-$ 7.23 (m, 1H), 6.92 (s, 1H), 3.91-3.96 (m, 2H), 3.15-3.19 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.2,158.7,155.5,154.7$, 149.1, 147.9, 137.6, 136.5, 130.3, 128.6, 127.4, 123.5, 121.7, 84.8, 41.3, 36.5. LCMS (ESI) m/z 317.19.

4.5.83. 5-Phenyl-N-(2-(pyridin-3-yl)ethyl)-[1,2,4]triazolo[1,5-a]

 pyrimidin-7-amine (42)7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-3-yl)ethan-1-amine (159 mg , 1.3 mmol) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 8 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 45% EtOAc-hexane as eluent to afford 42 as an off-white solid ($146 \mathrm{mg}, 42 \%$). M.P. $169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): δ 8.53 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.43-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.38-8.40(\mathrm{~m}, 1 \mathrm{H})$, 8.17-8.20 (m, 2H), $7.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 3 \mathrm{H})$, $7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.81-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.05(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 160.3,155.5,154.7,150.1$, $147.9,147.5,137.6,136.5,134.3,130.3,128.6,127.4,123.3,84.8$, 42.4, 31.6. LCMS (ESI) m/z 317.48.

4.5.84. 5-Phenyl-N-(2-(pyridin-4-yl)ethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (43)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (400 mg , 1.7 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-4-yl)ethan-1-amine (256 mg , 2.1 mmol) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50% EtOAc-hexane as eluent to afford 43 as an off-white solid ($120 \mathrm{mg}, 22 \%$). M.P. $231-233^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 8.41-8.46 (m, 4H), 8.19-8.21 (m, 2H), 7.52-7.54 (m, 3H), 7.36 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 3.83-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.06(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $_{6}$): $\delta 160.9,160.3,155.5,154.7$, 149.4, 147.9, 147.8, 137.6, 130.3, 128.6, 127.4, 124.4, 84.8, 41.7, 33.6. LCMS (ESI) m/z 317.38.

4.5.85. N-(4-Methylphenethyl)-5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (44)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg , 1.1 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask
under N_{2}. To it was added 2-(p-tolyl)ethan-1-amine (176 mg , 1.3 mmol) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford 44 as a white solid (85 mg , 23\%). M.P. $167-168{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46$ (s, $1 \mathrm{H}), 8.35(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.74-$ 3.79 (m, 2H), 2.94-2.97 (m, 2H), 2.21 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO $-d_{6}$): $\delta 160.2,155.5,154.7,147.9,137.6,135.8,135.2$, 130.2, 128.9, 128.8, 128.5, 127.4, 84.8, 43.1, 34.3, 20.5. LCMS (ESI) $m / z 330.39$.

4.5.86. N-(4-Ethylphenethyl)-5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (45)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (100 mg, 0.43 mmol) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-ethylphenyl)ethan-1-amine ($78 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 45 as a pale yellow solid ($107 \mathrm{mg}, 72 \%$). M.P. $152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{bs}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.21-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 2 \mathrm{H}), 2.96$ ($\mathrm{m}, 2 \mathrm{H}$), $2.49(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. LCMS (ESI) m / z 344.37.

4.5.87. N-(4-Fluorophenethyl)-5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (46)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (250 mg, 1.1 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-fluorophenyl)ethan-1-amine ($181 \mathrm{mg}, 1.3 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25% EtOAc-hexane as eluent to afford 46 as an off-white solid ($120 \mathrm{mg}, 33 \%$). M.P. $169-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.46$ ($\mathrm{s}, 1 \mathrm{H}$), $8.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-$ 8.19 (m, 2H), 7.52-7.53 (m, 3H), 7.34-7.38 (m, 2H), 7.01 (t, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.98-3.02(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.9(\mathrm{~d}, J=240 \mathrm{~Hz}), 160.3$, 155.5, 154.7, 147.9, 137.6, $135.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 130.7$ (d, $J=8.0 \mathrm{~Hz}), 130.2,128.6,127.4,114.9(\mathrm{~d}, J=21 \mathrm{~Hz}), 84.8,42.9$, 33.7. LCMS (ESI) m/z 334.37.
4.5.88. 5-Phenyl-N-(4-(trifluoromethyl)phenethyl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (47)

7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (150 mg, 0.65 mmol) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-(trifluoromethyl)phenyl) ethan- 1 -amine ($147 \mathrm{mg}, 0.78 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the
organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50\% EtOAc-hexane as eluent to afford 47 as a light colour solid ($120 \mathrm{mg}, 20 \%$). M.P. $183-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.43-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.16-8.17(\mathrm{~m}, 2 \mathrm{H})$, $7.63-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.85(\mathrm{~m}$, 2H), 3.09-3.13 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.3$, 155.4, 154.7, 147.8, 143.9, 137.5, 130.2, 129.7, 128.5, 127.4, $127.2,125.0(\mathrm{q}, ~ J=4.0 \mathrm{~Hz}), 124.3(\mathrm{q}, ~ J=270 \mathrm{~Hz}), 84.8,42.5,34.3$. LCMS(ESI) m/z 384.38.

4.5.89. 5-Phenyl-N-(4-(trifluoromethoxy)phenethyl)-[1,2,4]triazolo

 [1,5-a]pyrimidin-7-amine (48)7-Chloro-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidine 6 (150 mg , 0.65 mmol) was taken in NMP (5 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-(trifluoromethoxy)phenyl) ethan-1-amine ($267 \mathrm{mg}, 0.78 \mathrm{mmol}$) and the reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 25\% EtOAc-hexane as eluent to afford 48 as an off-white solid ($170 \mathrm{mg}, 39 \%$). M.P. $179-180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.46$ (s, 1H), 8.39-8.42 (m, 1H), 8.17$8.18(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 3.79-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.03-3.06(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.3,155.5,154.7,147.9$, $146.9,138.4,137.6,130.7,130.2,128.5,127.4,120.8,120.0$ (q, $J=256 \mathrm{~Hz}$), 84.8, 42.7, 33.8. LCMS (ESI) $m / z 400.43$.

4.5.90. 2-(4-Methoxyphenyl)-N-(5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-yl)acetamide (49)

5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine 28 (150 mg , 0.71 mmol) was taken in $\mathrm{DMF}(5 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2} and cooled it to $0^{\circ} \mathrm{C}$. To it were sequentially added 2-(4-methoxyphenyl)acetic acid ($141 \mathrm{mg}, 0.85 \mathrm{mmol}$), EDCI. HCl ($216 \mathrm{mg}, \quad 1.1 \mathrm{mmol}$), HOBt $(148 \mathrm{mg}, 1.1 \mathrm{mmol})$ and DIPEA $(181 \mathrm{mg}, 1.4 \mathrm{mmol})$. The reaction mixture was then heated at $90^{\circ} \mathrm{C}$ for 24 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 49 as an off-white solid ($70 \mathrm{mg}, 27 \%$). M.P. $220-222{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H})$, 8.11-8.12 (m, 2H), 7.57-7.58 (m, 3H), 7.31 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.91(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 172.1,161.5,158.2,155.2,142.1,136.7$, 130.9, 130.5, 129.0, 127.3, 126.4, 113.8, 94.1, 55.0, 41.9. LCMS (ESI) $m / z 360.35$.
4.5.91. 2-(3,4-Dimethoxyphenyl)-N-(5-phenyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-yl)acetamide (50)

5-Phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine 28 (120 mg , 0.57 mmol) was taken in THF: $\mathrm{CHCl}_{3}(1: 2,6 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2} and cooled it to $0^{\circ} \mathrm{C}$. To it were sequentially added 2-(3,4-dimethoxyphenyl)acetic acid ($334 \mathrm{mg}, 1.7 \mathrm{mmol}$), EDCI. $\mathrm{HCl}(163 \mathrm{mg}, 0.85 \mathrm{mmol})$, HOBt ($116 \mathrm{mg}, 0.85 \mathrm{mmol}$) and DIPEA ($181 \mathrm{mg}, 1.4 \mathrm{mmol}$). The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and
the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 22\% EtOAc-hexane as eluent to afford 50 as a white solid ($38 \mathrm{mg}, 17 \%$). M.P. $202-204{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 11.56(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H})$, $8.12(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ $171.9,161.5,155.3,155.2,148.6,147.8,142.1,136.7,131.1$, 129.1, 127.3, 126.9, 121.6, 113.4, 111.9, 94.2, 55.5, 55.4, 42.4. LCMS (ESI) m / z 390.08.

4.5.92. N-Phenethyl-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (51)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ $(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was taken in NMP $(4 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 2-phenylethan-1-amine ($63 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min. The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2}{ }^{-}$ SO_{4} and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50\% EtOAc-hexane as eluent to afford 51 as an off-white solid ($60 \mathrm{mg}, 44 \%$). M.P. $214-215{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): δ 8.75 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.52$ (bs, 2H), 8.46 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.05(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 159.0, $155.5,154.9$, 153.8, 149.2, 148.0, 138.6, 137.4, 128.7, 128.4, 126.3, 125.2, 121.4, 84.4, 43.2, 34.2. LCMS (ESI) m / z 317.22.
4.5.93. 5-(Pyridin-2-yl)-N-(2-(pyridin-2-yl)ethyl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (52)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ $(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-2-yl)ethan-1amine ($63 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 52 as a pale yellow solid ($52 \mathrm{mg}, 38 \%$). M.P. $156-157{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.75-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.58(\mathrm{bs}, 1 \mathrm{H}), 8.51-$ $8.53(\mathrm{~m}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.67-$ $7.71(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.20(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \quad$ DMSO- d_{6}): δ 159.0, $158.4,155.5,154.9$, 153.8, 149.2, 149.1, 148.0, 137.4, 136.6, 125.2, 123.4, 121.7, 121.3, 84.4, 41.5, 36.3. LCMS (ESI) $m / z 318.27$.
4.5.94. 5-(Pyridin-2-yl)-N-(2-(pyridin-3-yl)ethyl)-[1,2,4]triazolo[1,5-alpyrimidin-7-amine (53)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine 5k $(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-3-yl)ethan-1amine $5 \mathbf{i}(63 \mathrm{mg}, 0.52 \mathrm{mmol})$ and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc
($3 \times 15 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford 53 as a pale yellow solid ($104 \mathrm{mg}, 76 \%$). M.P. $212-213{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.74-8.75$ (m, 1H), 8.56-8.59 (m, $1 \mathrm{H}), 8.50-8.52(\mathrm{~m}, 2 \mathrm{H}), 8.46$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.39-8.40(\mathrm{~m}$, $1 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.37$ (s, 1H), 7.29-7.32 (m, 1H), 3.77-3.82 (m, 2H), 3.03-3.07 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.0,155.5,154.9$, 153.8, 149.9, 149.2, 148.0, 147.6, 137.4, 136.3, 134.2, 125.2, 123.4, 121.4, 84.5, 42.7, 31.3. LCMS (ESI) m / z 318.37.
4.5.95. 5-(Pyridin-2-yl)-N-(2-(pyridin-4-yl)ethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (54)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(pyridin-4-yl)ethan-1amine ($63 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 54 as a pale yellow solid ($70 \mathrm{mg}, 51 \%$). M.P. 201-202 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.75$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.57 (bs, 1H), 8.51 (s, 1H), 8.45-8.46 (m, 3H), 7.99-8.03 (m, 1H), 7.54-7.57 (m, 1H), $7.38(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.08$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.1,155.5,155.0$, 153.8, 149.5, 149.2, 148.0, 147.7, 137.4, 125.3, 124.3, 121.4, 84.5, 42.0, 33.3. LCMS (ESI) $m / z 318.27$.
4.5.96. N -(4-Methylphenethyl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (55)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(p-tolyl)ethan-1-amine ($70 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 10 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2}{ }^{-}$ SO_{4} and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford $\mathbf{5 5}$ as a pale yellow solid ($60 \mathrm{mg}, 42 \%$). M.P. $194-196{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSOd_{6}): $\delta 8.75$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.51 (bs, 2H), 8.45 (d, $J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.08 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ (m, 2H), 2.96-2.99 ($\mathrm{m}, 2 \mathrm{H}$), $2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.0$, $155.5,154.9,153.8,149.2,148.0,137.4,135.5,135.3,128.9$, 128.6, 125.2, 121.3, 84.5, 43.3, 33.8, 20.5. LCMS (ESI) m / z 331.16.

4.5.97. N-(4-Ethylphenethyl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (56)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine 5k $(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was taken in NMP $(4 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-ethylphenyl)ethan1 -amine ($70 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 10 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pres-
sure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30% EtOAc-hexane as eluent to afford 56 as a pale yellow solid ($75 \mathrm{mg}, 50 \%$). M.P. $154-155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.75(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.55(\mathrm{~m}$, $1 \mathrm{H}), 7.33$ (s, 1H), 7.20 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.72-3.73 (m, 2H), 2.96-3.00 (m, 2H), 2.37 (m, 2H), 1.09 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$). LCMS (ESI) $\mathrm{m} / \mathrm{z} 345.39$.
4.5.98. N-(4-Fluorophenethyl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine (57)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-fluorophenyl)ethan1 -amine ($72 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 57 as a white solid ($69 \mathrm{mg}, 48 \%$). M.P. 190-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.75$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.51 (bs, 2H), 8.45 (d, J=7.9 Hz, 1H), 7.98-8.02 (m, 1H), 7.53-7.56 (m, 1H), 7.32$7.35(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.03$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.4(\mathrm{~d}, J=240 \mathrm{~Hz}$), 159.0, 155.5, 154.9, 153.8, 149.1, 148.0, 137.4, 134.8 (d, $J=2.9 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 125.2,121.3,115.0(\mathrm{~d}, J=21 \mathrm{~Hz})$, 84.4, 43.2, 33.3. LCMS (ESI) $m / z ~ 335.26$.

4.5.99. 5-(Pyridin-2-yl)-N-(4-(trifluoromethyl)phenethyl)-

[1,2,4]triazolo 1,5 -alpyrimidin-7-amine (58)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-(trifluoromethyl)phe-nyl)ethan-1-amine ($98 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50\% EtOAc-hexane as eluent to afford 58 as a pale yellow solid ($80 \mathrm{mg}, 48 \%$). M.P. $186-188^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.74$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.56 (bs, 1 H), 8.51 $(\mathrm{s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.64$ (m, 2H), 7.52-7.56 (m, 3H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.11-$ 3.14 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.0,155.5$, 154.9, 153.8, 149.1, 148.0, 143.8, 137.4, 129.6, 127.1 (q, $J=32 \mathrm{~Hz}), 125.1(\mathrm{q}, J=5 \mathrm{~Hz}), 124.3(\mathrm{q}, J=270 \mathrm{~Hz}), 121.3,115.6$, 84.5, 42.8, 34.0. LCMS (ESI) $m / z ~ 385.21$.

4.5.100. 5-(Pyridin-2-yl)-N-(4-(trifluoromethoxy)phenethyl)-

[1,2,4]triazolo[1,5-a]pyrimidin-7-amine (59)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\quad \mathbf{5 k}$ ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (4 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-(trifluoromethoxy) phenyl)ethan- 1 -amine ($107 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 0.5 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 32\% EtOAc-hexane as eluent to afford 59
as a white solid ($45 \mathrm{mg}, 48 \%$). M.P. $163-165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.74(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{bs}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.45$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.80(\mathrm{~m}$, 2H), 3.04-3.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 159.0$, $155.5,154.9,153.8,149.2,148.1,146.9,138.3,137.4,130.6$, 125.2, 121.4, 120.9, 120.0 (q, $J=260 \mathrm{~Hz}$), 84.5, 43.0, 33.5. LCMS (ESI) $m / z 401.10$.
4.5.101. N -(4-Chlorophenethyl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidin-7-amine ($\mathbf{6 0}$)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine $\mathbf{5 k}$ ($120 \mathrm{mg}, 0.52 \mathrm{mmol}$) was taken in NMP (3 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-chlorophenyl)ethan1 -amine ($96 \mathrm{mg}, 0.62 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 30\% EtOAc-hexane as eluent to afford 60 as a white solid ($60 \mathrm{mg}, 33 \%$). M.P. $194-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.75(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~m}, 2 \mathrm{H}), 8.45$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.33$ (m, 5H), 3.74-3.76 (m, 2H), 3.00-3.04 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}): $\delta 159.5,156.0,155.4,154.3,149.6,148.5$, 138.3, 137.9, 131.5, 131.2, 128.7, 125.7, 121.8, 84.9, 43.5, 33.9. LCMS (ESI) m/z 351.10.

4.5.102. N-(4-Methoxyphenethyl)-N-methyl-5-phenyl-[1,2,4]triazolo [1,5-a]pyrimidin-7-amine (61)

Sodium hydride ($25 \mathrm{mg}, 1.1 \mathrm{mmmol}$) was taken in anhydrous DMF (5 mL) in a 50 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of N -(4-methoxyphe-nethyl)-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine ($250 \mathrm{~g}, 0.72 \mathrm{mmol}$) in DMF (1 mL). It was kept stirred at rt for 30 min. Methyl iodide ($120 \mathrm{mg}, 0.86 \mathrm{mmol}$) was then added to it and the reaction mixture was stirred at rt for 2 h . Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 50% hexane-EtOAc as eluent to afford 61 as a pale yellow solid ($180 \mathrm{mg}, 69 \%$). M.P. $170-171^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.53-$ $7.54(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H})$, $4.32-4.35(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.96(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): δ 159.7, 157.8, 157.2, 154.2, 149.9, 137.4, 130.3, 130.2, 129.8, 128.6, 127.3, 113.6, 89.8, 54.9, 54.1, 40.1, 33.3. LCMS (ESI) $m / z 360.22$.
4.5.103. 7-(3-(4-Methoxyphenyl)pyrrolidin-1-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (62)

7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine 5k $(100 \mathrm{mg}, 0.43 \mathrm{mmol})$ was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 3-(4-methoxyphenyl) pyrrolidine ($92 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 2 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using $3 \% \mathrm{MeOH}-\mathrm{DCM}$ as eluent to afford $\mathbf{6 2}$ as a light yellow solid ($46 \mathrm{mg}, 29 \%$). M.P. $222-223{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.64-8.66(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.16-$ $2.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.0,158.9,158.0$, 154.6, 154.5, 148.9, 148.3, 137.2, 132.0, 128.2, 125.0, 122.4, 114.3, 88.2, 55.5, 51.0, 43.3, 32.1, 22.8. LCMS (ESI) m / z 373.19.

4.5.104. 7-(3-(4-Methoxyphenyl)piperidin-1-yl)-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine (63)

(a) 1-Bromo-4-methoxybenzene ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) was taken in DMF (8 mL) in a 50 mL round bottom flask under N_{2}. To it were sequentially added pyridin-3-ylboronic acid ($394 \mathrm{mg}, 3.2 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(60 \mathrm{mg}, 0.27 \mathrm{mmol})$, dppf ($149 \mathrm{mg}, 0.27 \mathrm{mmol}$), CuCl ($27 \mathrm{mg}, 0.27 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.7 \mathrm{~g}, 5.4 \mathrm{mmol})$. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 2 h . It was then filtered through sintered funnel with a pad of Celite, washed with EtOAc (40 mL). The filtrate was then poured into ice water (40 g) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel (100200 mesh) using 15% EtOAc-hexane as eluent to afford 3-(4-methoxyphenyl)pyridine as a light brown liquid ($325 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.50-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.02(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$. (b) A par flask was charged with 3-(4-methoxyphenyl)pyridine 49 ($140 \mathrm{mg}, 0.75 \mathrm{mmole}$) and MeOH $(5 \mathrm{~mL})$ followed by addition of HCl() and $\mathrm{PtO}_{2}(205 \mathrm{mg}, 0.9 \mathrm{mmol})$. The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (20 psi) for 6 h . It was then filtered through sintered funnel with a pad of Celite, washed with $\mathrm{MeOH}(20 \mathrm{~mL})$ and concentrated under reduced pressure to afford 3-(4-methoxyphenyl)piperidine as a white solid ($100 \mathrm{mg}, 69 \%$) that was used as such for the next step without any further purification. LCMS(ESI) $\mathrm{m} / \mathrm{z} 192.10$ (M $+\mathrm{H})^{+}, 97.34 \%$ (purity). (c) 7-Chloro-5-(pyridin-2-yl)-[1,2,4]triazolo [1,5-a]pyrimidine 35 ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP $(3 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 3-(4-methoxyphenyl)piperidine ($99 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 34\% EtOAc-hexane as eluent to afford 63 as a semi-solid ($50 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}): $\delta 8.75$ (d, J= $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.54 (s, 1H), 8.48 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.28$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.64-$ $4.68(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.94(\mathrm{~m}, 1 \mathrm{H})$, 1.95-1.98 (m, 2H), 1.81-1.89 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 158.8,158.0,157.1,154.6,153.4,150.4,149.3$, 137.6, 134.9, 128.1, 125.5, 121.4, 113.9, 90.8, 55.0, 54.4, 48.4, 31.2, 24.8. LCMS (ESI) m / z 387.23.
4.5.105. 2-(4-Methoxyphenyl)-4-(5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-alpyrimidin-7-yl)morpholine (64)
(a) 2-Bromo-1-(4-methoxyphenyl)ethan-1-one ($4.0 \mathrm{~g}, \quad 17.5$ mmmol) was taken in dry THF (45 mL) in a 100 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added a solution of 2-(benzylamino)ethan-1-ol ($3.7 \mathrm{~g}, 24.4 \mathrm{mmol}$) in THF $(5 \mathrm{~mL})$. The reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 12 h . Icecooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 75 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced
pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 15% hexane-EtOAc as eluent to afford 2-(benzyl(2-hydroxyethyl)amino)-1-(4-methoxyphenyl) ethan-1-one as a brown solid ($2.5 \mathrm{~g}, 48 \%$). LCMS(ESI) m/z 300.09 $\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 52 \%$ (purity). (b) 2-(Benzyl(2-hydroxyethyl)amino)-1-(4-methoxyphenyl)ethan-1-one ($2.5 \mathrm{~g}, 8.3 \mathrm{mmmol}$) was taken in $\mathrm{MeOH}(20 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2} and cooled it down to $0^{\circ} \mathrm{C}$. To it was added sodiumboro hydride ($3.7 \mathrm{~g}, 24.4 \mathrm{mmol}$) in portion-wise. The reaction mixture was stirred at rt for 3 h . The reaction mixture was evaporated to dryness. Ice-cooled water was added dropwise to quench the reaction. It was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. This afforded 2-(benzyl(2-hydroxyethyl) amino)-1-(4-methoxyphenyl)ethan-1-ol as a brown solid (1.2 g, 48%). This was then used in the next step without any further purification. LCMS(ESI) $m / z 302.21\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 42 \%$ (purity). (c) 2 -(Benzyl(2-hydroxyethyl)amino)-1-(4-methoxyphenyl)ethan-1-ol $(1.2 \mathrm{~g}, 3.9 \mathrm{mmmol})$ was taken in $\mathrm{HCl}: \mathrm{H}_{2} \mathrm{O}$ mixture $(10 \mathrm{~mL}, 60 \% \mathrm{HCl}$ in $\mathrm{H}_{2} \mathrm{O}$) in a 50 mL round bottom flask fitted with a condenser. The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was evaporated to dryness under reduced pressure. This was triturated with $\mathrm{Et}_{2} \mathrm{O}$ which afforded 4-benzyl-2-(4methoxyphenyl)morpholine as a brown semi-solid ($800 \mathrm{mg}, 71 \%$). This was then used in the next step without any further purification. LCMS(ESI) $m / z 284.10\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 98.71 \%$ (purity). (d) A par flask was charged with 4-benzyl-2-(4-methoxyphenyl)morpholine $(800 \mathrm{mg}, 2.8 \mathrm{mmmol})$ and $\mathrm{MeOH}(20 \mathrm{~mL})$ followed by the addition of $\mathrm{Pd}(\mathrm{OH})_{2}$ ($393 \mathrm{mg}, 2.8 \mathrm{mmol}$). The flask was evacuated under vacuum and then purged with hydrogen. The reaction was stirred under hydrogen atmosphere (20 psi) for 4 h . It was then filtered through sintered funnel with a pad of Celite, washed with MeOH $(20 \mathrm{~mL})$ and concentrated under reduced pressure to afford 2-(4methoxyphenyl)morpholine as a white solid ($500 \mathrm{mg}, 92 \%$) that was used as such for the next step without any further purification. LCMS(ESI) m/z $194.28(\mathrm{M}+\mathrm{H})^{+}$; 85\% (purity). (e) 7-Chloro-2-methyl-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine (200 mg, 0.86 mmol) was taken in NMP (6 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)morpholine ($200 \mathrm{mg}, 1.04 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 1 h . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2}{ }^{-}$ SO_{4} and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 40% EtOAc-hexane as eluent to afford 64 as a white solid ($130 \mathrm{mg}, \quad 39 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \quad$ DMSO- d_{6}): $\delta 8.75$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.06(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.70-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.19(\mathrm{~m}, 1 \mathrm{H})$, 3.92-3.97 (m, 1H), 3.76 (s, 3H), 3.39-3.46 (m, 1H), 3.21-3.27 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d d_{6}): $\delta 159.1,159.0,156.9,154.8$, $153.3,150.5,149.3,137.6,131.2,127.6,125.6,121.4,113.7,90.9$, 76.3, 65.6, 55.1, 53.3, 47.2. LCMS (ESI) $m / z 389.16$.
4.5.106. N-(4-Methoxyphenethyl)-2-methyl-5-(pyridin-2-yl)[1,2,4]triazolo 1,5 -alpyrimidin-7-amine (67)
(a) Ethyl 3-oxo-3-(pyridin-2-yl)propanoate (400 mg , $2.07 \mathrm{mmol})$ was taken in $\mathrm{AcOH}(10 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 5-methyl-4H-1,2,4-triazol-3-amine ($334 \mathrm{mg}, 2.49 \mathrm{mmol}$). The reaction mixture was heated at $115^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl
ether. This was finally dried under high vaccum which affored 66a as a brown solid ($350 \mathrm{mg}, 75 \%$). This was then used in the next step without any further purification. LCMS(ESI) $\mathrm{m} / \mathrm{z} 226.03\left[\mathrm{M}-\mathrm{H}^{+}\right]$; 56% (purity). (b) To a solution of 2-methyl-5-(pyridin-2-yl)pyra-zolo[1,5-a]pyrimidin-7-ol 66a ($350 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(6 \mathrm{~mL}, 60 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/ $\mathrm{EtOAc}=1: 1$). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 15\% EtOAc-hexane as eluent to afford 7-chloro-2-methyl-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine as a brown solid ($125 \mathrm{mg}, 33 \%$). LCMS(ESI) m/z 246.20 [M $\left.+\mathrm{H}^{+}\right] ; 49 \%$ (purity). (c) 7-Chloro-2-methyl-5-(pyridin-2-yl)pyra-zolo[1,5-a]pyrimidine ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$) was taken in NMP $(2 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1-amine 5a ($74 \mathrm{mg}, 0.49 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAchexane as eluent to afford 67 as a white solid ($80 \mathrm{mg}, 54 \%$). M.P. $139-141{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.73-8.74(\mathrm{~m}, 1 \mathrm{H}$), 8.39-8.42 (m, 2H), 7.97-8.01 (m, 1H), 7.51-7.55 (m, 1H), $7.27(\mathrm{~s}$, 1 H), 7.20 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.70(\mathrm{~m}$, 5H), 2.92-2.95 (m, 2H), $2.50(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right): \delta 164.1,158.4,157.8,155.9,153.9,149.1,147.5,137.3,130.5$, 129.7, 125.1, 121.2, 113.8, 84.2, 54.9, 43.4, 33.4, 14.8. LCMS (ESI) m / z 359.06.

4.5.107. N-(4-Methoxyphenethyl)-2-phenyl-5-(pyridin-2-yl)-

[1,2,4]triazolo[1,5 -alpyrimidin-7-amine ($\mathbf{6 8}$)

(a) Ethyl 3-oxo-3-(pyridin-2-yl)propanoate ($500 \mathrm{mg}, 2.6 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(50 \mathrm{~mL})$ in a 250 mL round bottom flask under N_{2}. To it was added 3-phenyl-1H-1,2,4-triazol-5-amine (497 mg , 3.1 mmol). The reaction mixture was heated at $115^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{6 6 b}$ as a deep brown solid ($300 \mathrm{mg}, 40 \%$). This was then used in the next step without any further purification. LCMS(ESI) m/z 288.02 $\left[\mathrm{M}-\mathrm{H}^{+}\right] ; 57 \%$ (purity). (b) To a solution of 2-phenyl-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 66b ($300 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(2 \mathrm{~mL}, 21 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc = 3:7). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 17% hexane-EtOAc as eluent to afford 7-chloro-2-phenyl-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a] pyrimidine as a brown solid ($150 \mathrm{mg}, 47 \%$).LCMS(ESI) m/z 307.99 $\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 87.88 \%$ (purity). (c) 7-Chloro-2-phenyl-5-(pyridin-2-yl)-[1,2,4]triazolo[1,5-a]pyrimidine ($125 \mathrm{mg}, 0.41 \mathrm{mmol}$) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1-amine ($74 \mathrm{mg}, 0.49 \mathrm{mmol}$)
and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 50\% EtOAchexane as eluent to afford $\mathbf{6 8}$ as a white solid ($65 \mathrm{mg}, 38 \%$). M.P. $146-148{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.76$ (d, $J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.47$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.25-8.27$ (m, 2H), 8.00-8.05 (m, $1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.97-3.01(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 163.6,158.8,157.8,156.3$, 153.9, 149.2, 147.8, 137.4, 130.8, 130.5, 130.3, 129.7, 128.8, 126.8, 125.3, 121.3, 113.9, 84.8, 54.9, 43.6, 33.5. LCMS (ESI) m / z 423.20.

4.5.108. N-(4-Methoxyphenethyl)-5-(pyridin-2-yl)pyrazolo[1,5-a] pyrimidin-7-amine (69)

(a) Ethyl 3-oxo-3-(pyridin-2-yl)propanoate ($500 \mathrm{mg}, 2.6 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(6 \mathrm{~mL})$ in a 50 mL round bottom flask under N_{2}. To it was added $1 H$-pyrazol-3-amine ($258 \mathrm{mg}, 3.1 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vaccum which affored 66c as a colourless solid ($420 \mathrm{mg}, 77 \%$). This was then used in the next step without any further purification. MS (ESI) $m / z 213.08\left[\mathrm{M}+\mathrm{H}^{+}\right]$. (b) To a solution of 5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidin-7-ol 66c (400 mg, $1.8 \mathrm{mmol})$ was added $\mathrm{POCl}_{3}(6 \mathrm{~mL}, 66.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc =3:7). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ to pH 8 . It was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using $5 \% \mathrm{MeOH}-\mathrm{DCM}$ as eluent to afford 7-chloro-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine as a brown liquid ($320 \mathrm{mg}, 74 \%$). LCMS(ESI) $\mathrm{m} / \mathrm{z} 231.06\left[\mathrm{M}+\mathrm{H}^{+}\right]$; 75.59% (purity). (c) 7-Chloro-5-(pyridin-2-yl)pyrazolo[1,5-a] pyrimidine ($100 \mathrm{mg}, 0.43 \mathrm{mmol}$) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methox-yphenyl)ethan- 1 -amine ($79 \mathrm{mg}, 0.52 \mathrm{mmol}$) and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using 35\% EtOAc-hexane as eluent to afford 69 as a light yellow solid ($30 \mathrm{mg}, 20 \%$). M.P. $116-117{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.72-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.98(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.23$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (s, 1H), 6.86 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.71(\mathrm{~m}, 5 \mathrm{H})$, 2.95-2.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): $\delta 157.8,154.8$, 154.6, 149.0, 148.6, 147.0, 143.9, 137.1, 130.6, 129.6, 124.6, 120.9, 113.8, 95.3, 81.2, 54.9, 43.2, 33.4. LCMS (ESI) m / z 346.18.
4.5.109. N-(4-Methoxyphenethyl)-7-(pyridin-2-yl)imidazo[1,2-a] pyrimidin-5-amine (70)
(a) Ethyl 3-oxo-3-(pyridin-2-yl)propanoate ($2.0 \mathrm{~g}, 10.3 \mathrm{mmol}$) was taken in $\mathrm{AcOH}(20 \mathrm{~mL})$ in a 100 mL round bottom flask under N_{2}. To it was added 1 H -imidazol-2-amine ($1.03 \mathrm{~g}, 12.4 \mathrm{mmol}$). The reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mix-
ture was then evaporated to dryness using toluene as an azeotropic solvent and triturated with diethyl ether. This was finally dried under high vacuum which afforded $\mathbf{6 6 d}$ as a deep brown solid $(1.0 \mathrm{~g}, 45 \%)$. This was then used in the next step without any further purification. LCMS(ESI) $m / z 212.98\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 52 \%$ (purity). (b) To a solution of 7-(pyridin-2-yl)imidazo[1,2-a]pyrimidin-5-ol 66d ($700 \mathrm{mg}, 3.3 \mathrm{mmol}$) was added $\mathrm{POCl}_{3}(10 \mathrm{~mL}, 105.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then heated at $100^{\circ} \mathrm{C}$ and monitored by TLC analysis (Hexane/EtOAc = 3:7). Upon completion, the reaction mixture was concentrated using toluene as an azeotropic solvent and quenched with ice cooled saturated NaHCO_{3} solution (20 mL) to pH 8 . It was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude was further purified by flash chromatography on silica gel (60-120 mesh) using 5% MeOH-DCM as eluent to afford 5-chloro-7-(pyri-din-2-yl)imidazo[1,2-a]pyrimidine as a brown liquid (350 mg , 46\%). LCMS(ESI) m/z $231.03\left[\mathrm{M}+\mathrm{H}^{+}\right] ; 92.15 \%$ (purity). (c) $5-$ Chloro-7-(pyridin-2-yl)imidazo[1,2-a]pyrimidine (100 mg , 0.43 mmol) was taken in NMP (2 mL) in a 50 mL round bottom flask under N_{2}. To it was added 2-(4-methoxyphenyl)ethan-1amine $5 \mathbf{5 a}(79 \mathrm{mg}, 0.52 \mathrm{mmol})$ and the reaction mixture was stirred at rt for 30 min . The reaction mixture concentrated in vacuo and the resulting solid taken up in EtOAc and $\mathrm{H}_{2} \mathrm{O}$, the organic layer was separated and the aqueous layer extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layers combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The crude was purified by flash chromatography on silica gel (100-200 mesh) using $2 \% \mathrm{MeOH}-\mathrm{DCM}$ as eluent to afford 70 as a light yellow solid ($32 \mathrm{mg}, 21 \%$). M.P. 234-235 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.71-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (d, $J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.51$ (m, 1H), 7.23 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, $J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.93-$ 2.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 157.9,155.6$, 154.7, 149.8, 149.0, 147.4, 137.2, 133.9, 130.7, 129.7, 124.7, $120.8,113.8,106.2,81.4,54.9,43.9,33.1$. LCMS (ESI) $m / z 346.19$.

Acknowledgements

Funding: This work was supported by the Bill \& Melinda Gates Foundation, Seattle, WA [grant number OPP1024038]; and Eli Lilly and Company [Lilly TB Drug Discovery Initiative].

We thank Dean Thompson, Lindsay Flint, Olena Anoshchenko, James Vela and David Roberts for technical assistance.

References

1. WHO, Global Tuberculosis Report 2015, Geneva, 2015.
2. Zhang N, Ayral-Kaloustian S, Nguyen T, et al. Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem. 2007;50:319-327.
3. DeNinno MP, Wright SW, Etienne JB, et al. Discovery of triazolopyrimidinebased PDE8B inhibitors: exceptionally ligand-efficient and lipophilic ligandefficient compounds for the treatment of diabetes. Bioorg Med Chem Lett. 2012;22:5721-5726.
4. El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H. Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot (Tokyo). 2008;61:149-157.
5. Gujjar R, Marwaha A, El Mazouni F, et al. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem. 2009;52:1864-1872.
6. Gujjar R, El Mazouni F, White KL, et al. Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem. 2011;54:3935-3949.
7. Coteron JM, Marco M, Esquivias J, et al. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem. 2011;54:5540-5561.
8. Caballero AB , Rodríguez-Diéguez A, Quirós M, et al. Triazolopyrimidine compounds containing first-row transition metals and their activity against the neglected infectious Chagas disease and leishmaniasis. Eur J Med Chem. 2014;85:526-534.
9. Patil V, Kale M, Raichurkar A, et al. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg Med Chem Lett. 2014;24:2222-2225.
10. Ballell L, Bates RH, Young RJ, et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem. 2013;8:313-321.
11. Candice Sde M, Feng TS, van der Westhuyzen R, et al. Aminopyrazolo[1,5-a] pyrimidines as potential inhibitors of Mycobacterium tuberculosis: structure activity relationships and ADME characterization. Bioorg Med Chem. 2015;23:7240-7250.
12. Moraski GC, Markley LD, Hipskind PA, et al. Advent of imidazo[1,2-a]pyridine-3-carboxamides with potent multi- and extended drug resistant antituberculosis activity. ACS Med Chem. 2011;2:466-470.
13. Abrahams KA, Cox JA, Spivey VL, et al. Identification of novel imidazo[1,2-a] pyridine inhibitors targeting M. tuberculosis QcrB. PLoS ONE. 2012;7:e52951.
14. Ollinger J, Bailey MA, Moraski GC, et al. A dual read-out assay to evaluate the potency of compounds active against Mycobacterium tuberculosis. PLoS ONE. 2013;8:e60531.
15. Sirgel FA, Wiid IJ, van Helden PD. Measuring minimum inhibitory concentrations in mycobacteria. In: Parish T, Amanda Claire B, eds. Mycobacteria Protocols. Totowa, NJ: Humana Pres; 2009:173-186.

[^0]: ＊Corresponding author．
 E－mail address：tanya．parish＠idri．org（T．Parish）．

[^1]: the concentration required to reduce the viability of HepG 2 cells by 50%. Selectivity index $(\mathrm{SI})=I C_{50} / \mathrm{MIC}_{90}$.

