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Abstract

Introduction: We describe findings from a large study that provide empirical support

for the emerging construct of cognitive frailty and put forth a theoretical framework

thatmay advance the future study of complex aging conditions.While cognitive impair-

ment and physical frailty have long been studied as separate constructs, recent stud-

ies suggest they share common etiologies. We aimed to create a population predictive

model to gain an understanding of the underlying biological mechanisms for the rela-

tionship between physical frailty and cognitive impairment.

Methods: Data were obtained from the longitudinal “Invecchaiare in Chianti” (Aging in

Chianti, InCHIANTI Study)with a representative sample (n=1453) of older adults from

two small towns in Tuscany, Italy. Our previous work informed the candidate 132 single

nucleotide polymorphisms (SNPs) and 155 protein biomarkers we tested in association

with clinical outcomesusing a treeboosting,machine learning (ML) technique for super-

vised learning analysis.

Results: We developed two highly accurate predictive models, with a Model I area

under the curve (AUC) of 0.88 (95% confidence interval [CI] 0.83-0.90) and a Model

II AUC of 0.86 (95% CI 0.80-0.90). These models indicate cognitive frailty is driven by

dysregulation across multiple cellular processes including genetic alterations, nutrient

and lipid metabolism, and elevated levels of circulating pro-inflammatory proteins.

Discussion: While our results establish a foundation for understanding the underly-

ing biological mechanisms for the relationship between cognitive decline and physical

frailty, further examination of the molecular pathways associated with our predictive

biomarkers is warranted. Our framework is in alignmentwith other proposed biological

underpinnings of Alzheimer’s disease such as genetic alterations, immune system dys-

function, and neuroinflammation.
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1 INTRODUCTION

1.1 Objective

We present data from a large study that provide empirical support

that there are shared clinical and biological mechanisms for cognitive

impairment and physical frailty, termed “cognitive frailty.”1 Our results

suggest that a larger number of prognostic factors contribute to the

heterogeneity seen inAlzheimer’s disease (AD) than is currently recog-

nized. Based on these study findings, we propose an updated hypothe-

sis ofmulti-systemdysfunction thatwill help operationalize the emerg-

ing understanding of cognitive frailty and advance the future study of

complex aging conditions.

1.2 Historical evolution and rationale

Associating cognitive impairment and physical frailty began approx-

imately 20 years ago in studies of individuals with mild cognitive

impairment (MCI) and AD. Prior to that time, few older adults with

cognitive impairment were included in frailty studies.2 The term

“cognitive frailty” was first used in 2001 in relation to the clock

drawing task as a measure for identifying individuals at high risk

for AD.3 Since 2001, definitions of cognitive frailty have evolved as

shared features between physical frailty and cognitive impairment

were identified and described. In 2013, the International Consensus

Group from the International Academy of Nutrition and Aging (IANA)

and the International Association of Gerontology and Geriatrics

(IAGG) examined this connection based on epidemiologic evidence

and common etiologies suggesting that cognitive frailty may represent

a precursor to neurodegenerative disorders.1 The recommendations

from IANA “Cognitive Frailty: Rationale and Definition” now provide

a foundation from which to study the complex heterogeneity seen

in AD.1 Evidence of a common pathophysiology between the two

conditions is mounting, including a shared brain AD pathology found in

individuals with physical frailty.4,6-8

Physical frailty and cognitive impairment are considered complex

aging syndromes with pathology that often involves more than one

physiological system. In studying complex aging syndromes, scien-

tists have often focused on a small number of variables in associa-

tion with one type of pathology or phenotype. Yet, a growing number

of seemingly unrelated factors are now associated with dementia risk

including: impaired sleep, depression, inflammation, toxicity exposure

(eg, pesticides, medications), and vascular and genetic risk factors.9-11

These risk factors collectively can cause a “deficit accumulation.”9

Deficit accumulation occurs when the number of insults to the body

surpasses the ability for the damage to be removed or repaired.12

Therefore, research that accounts for multiple risk factors using

system-based approaches has the potential to greatly facilitate our

understanding of complex aging syndromes.8

Such considerations also inform our approach with the view that

machine learning (ML) statistical approaches can model complex bio-

logical systems such as diseases of aging. One emerging analytical tool

RESEARCH INCONTEXT

1. Systematic review: The study was informed by a pre-

viously published systematic review using traditional

sources (e.g., PubMed) to investigate shared biological

predictors for cognitive frailty. While there is shared

pathophysiology, there have been few studies exploring

the biological predictors for individuals presenting with

cognitive frailty. These relevant citations are appropri-

ately cited.

2. Interpretation: Our findings led to an updated hypothe-

sis describing cognitive frailty as a result of multi-system

dysfunction. This hypothesis closely aligns with the aging

theory of cellular senescence; the concept of biological

cellular damage and aberrant gene expression.

3. Future directions: We propose a theoretical framework

and two statistical models that will allow for the gener-

ation of future hypotheses, and that can guide the design

of additional studies of complex aging. Future exploration

can include: (a) patterns of biomarker change, disease

progression, and directions and rates of change over

time; (b) the potential pathways associated with signifi-

cant genes and protein biomarkers; (c) the relationship

between high risk medications and associated gene vari-

ants for drug metabolism; and (d) the role of cellular

senescence in cognitive frailty.

is the use of bioinformatics; the process of analyzing complex biologi-

cal data such as genetic codeswithMLpredictive analyticmethods.ML

methods for studying large amounts of available clinical and biological

(“big-omics”) data can behypothesis generating, expandour capacity to

learn from data, and accelerate discovery and disease prediction with

the potential to impact clinical care.13

In recent studies, our team has demonstrated ML methods to

be effective in distinguishing patients with Parkinson’s disease from

healthy patients and identifying individuals with prodromal or preclin-

ical Parkinson’s disease.12 We now seek to apply these methods to

understanding the clinical and biological factors for individuals with

cognitive frailty.

1.3 Updated hypothesis

Our study designwas informed by findings from a previously published

systematic review. In this review we collated results from previous

studies on physical frailty and cognitive impairment and examined

the overlap between predictive variables in these two historically

independent conditions.14 From a review of 342 studies, 456 protein

and genetic single nucleotide polymorphisms (SNPs) were found to

be predictive of both physical frailty and cognitive impairment. From

this systematic review we identified overlapping cardiovascular risk
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F IGURE 1 Theoretical framework for future study of cognitive frailty

factors (diabetes, dyslipidemia, hypertension); neuroinflammatory

proteins (IL-6, tumor necrosis factor [TNF]-alpha, IL-18, and IL-1

beta) and their associated SNPs (IL6 rs1800796, TNF rs1800629,

IL-18 rs360722, and IL1-beta rs16944); and multi-system physio-

logical changes such as nutritional, hematologic, renal, and hormonal

biomarkers.14-17 These findings informed the current study goal to

explore multi-system dysfunction as the underlying pathology for the

association of physical frailty with cognitive impairment. Herein, we

put forth a theoretical framework of complex systems for the future

study of cognitive frailty (Figure 1).
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2 METHODS

2.1 Study design

Participants were a part of the longitudinal study in aging Invecchiare

in Chianti. All human subjects provided informed consent and all sam-

ple and data collection was approved by the ethics committee at Cen-

tre de recherché Clinique du CHUS. Two statistical predictive models

were built to evaluate genetic variants (eg, SNPs), protein expression,

and clinical markers as predictors of cognitive frailty. Model I tested

prediction of genetic, protein, and clinical markers of cognitive frailty

using criteria from the Mini-Mental State Examination (MMSE), while

Model II tested prediction of genetic, protein, and clinical markers of

cognitive frailty with additional neuropsychological testing using the

Trail Making Tests (TMT, Part A and B).18,19 Three instruments were

used to measure neuropsychological dimensions of cognitive frailty as

determined by Delrieu et al.20 The MMSE as a test of global mental

status, the TMT-A as a test of executive function, and the TMT-B to

assess attention.21 TMT, part A and B cutoff scores are based on estab-

lished norms for mild neurocognitive disorders,19 and normative data

for time to complete the TMT tests in secondswas stratified by age and

education category.19 The criteria of cognitive impairment was based

on an MMSE score ≦23, a TMT-A ≧78, and a score of ≧106 on the

TMT-B.18,19 The InCHIANTI criteria for frailty is defined by Fried et al.

as exhaustion, slowness, low physical activity, weakness, and weight

loss.2 Additional description of the InCHIANTI data collection and

frailty classifications have been previously published.22,23 Individuals

with evidence of both physical frailty and cognitive impairment with-

out a baseline clinical diagnosis of AD or other dementia were defined

as having the cognitive frailty phenotype.20 (See the Appendix in sup-

porting information for study population and measurement details.)

Based on our previously published systematic review, which identi-

fied shared biological markers for physical frailty and cognitive impair-

ment, we tested 132 SNPs and 155 protein biomarker (total of 287)

variables that were available in the InCHIANTI database in association

with frailty and cognitive impairment (see the Appendix in supporting

information for biomarker details).14

2.2 Statistical approach

In this cross-sectional study we used Extreme Gradient Boosting

(xgboost) in R statistical software, to build a reproducible predictive

model with large numbers of predictors. xgboost provides more effi-

cient and accurate predictive modeling with large datasets and a rapid

effective framework for feature selection.24 The advantage of using

a tree boosting approach model for the evaluation of multiple vari-

ables simultaneously is that it provides a high predictive value with

low bias.24 Boosted trees use individual decision trees that account

for multi-collinearity between variables and that retain only the best

features in the final model.24 Additionally, parameters are set to pre-

vent overfitting of the models. The statistical analysis was completed

in three steps: (1) analysis of all available variables for feature selection

and data reduction; (2) model discovery followed by model validation;

and (3) univariate analysis, t-tests for continuous, and chi-squared tests

for binomial traits with a Bonferroni correction used to determine the

significanceof the variables between cognitive frailty andhealthyolder

adults. To evaluate additive effects of the SNPs, a positive regression

coefficient was used to indicate that each copy of the allele of interest

increased the risk for cognitive frailty.25

To evaluate the statistical models, we used the metric “area under

the curve” (AUC). AUC was calculated from each model and used to

determine discrimination of participants with cognitive frailty (cases)

from healthy older adults (controls) in the training cohort. Covariates

were selected to control for potential confounding effects, including

sex, age, education, baseline diagnosis of dementia (n = 82), vascu-

lar dementia (n = 41), depression (n = 412), and Parkinson’s disease

(n= 16). (See theAppendix in supporting information forworkflow and

statistical analysis details.)

3 RESULTS

Of the1453adults participating, 1326providedblood samples at study

entry. (SeeTable 1 for sample characteristics of participantswith cogni-

tive frailty.) For discrimination of participantswith cognitive frailty ver-

sus healthy older adults, the AUC ofModel I was 0.88 (95% confidence

interval [CI] 0.83–0.90) and 0.86 (95% CI 0.80–0.90) for Model II. We

noted a normal distribution of AUCs across all iterations, with no sta-

tistically significant deviation from the expected values in any group,

suggesting a good model fit. Both models showed high accuracy with

AUCs ranging from 0.81–0.88 forModel I and 0.81–0.86Model II.

The biomarkers identified as statistically significant between

healthy older adults and individuals with cognitive frailty are discussed

below. Biomarkers are ranked by level of importance based on its con-

tribution to themodel in Figures 2 and 3. (See Appendix Tables III–IV in

supporting information for detail on significant biomarkers and associ-

ation with specific cognitive domains.)

3.1 Genomic predictors of cognitive frailty for
Models I and II

Table 2 represents statistically significant gene polymorphisms (SNPs)

for cognitive frailty. SNPs with significant differences between

healthy older adults and cognitive frailty included: Model I (ACOT11)

rs12752888 (P = .001), DAB1 rs1539053 (P = .01), (MMP3) rs948399

(P = .01), CD33 rs3865444 (P = .03),MTRR rs1801394 (P = .001), and

Model II (ACOT11) rs12752888 allele C (TMT, P = .01), apolipopro-

tein E (APOE) rs429358 allele C (P = .01), SLCO1B1 rs4363657 allele

C (P = .02), TOMM40 rs8106922 allele G ( P = .05), and (MMP3)

rs948399 allele C (P = .05). In this study, genetic factors for cogni-

tive frailty support functional genes that have been associated with

AD and physical frailty. These include genes such as APOE allele

C that is associated with executive function, TOMM40 associated

with attention, rs12752888 allele C associated with all domains of
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TABLE 1 Sample characteristics of participants with cognitive frailty forModel I andModel II

Model I P-value Model II P-value

Phenotype (n)

Control 898 733

Cognitive Frailty 257 412

Sex, (n) Male Female Male Female

Control 418 480 372 372

Cognitive frailty 82 175 150 150

Age, mean (SE)

Control 73 (0.22) <.0001 61 (.50) <.0001

Cognitive frailty 82 (0.41) 76 (.67)

Anticholinergic Burden, mean (SE)

Control 2.2 (0.10) <.0001 1.9 (.08) <.0001

Cognitive frailty 3.0 (0.21) 3.0 (.21)

Education, % ≧High school ≧High school

Control 6% <.0001 10% <.0001

Cognitive frailty 0 2%

Abbreviation: SE, standard error

cognitive decline, DAB1 associated with global cognition, and MTRR

polymorphisms linked to two to four times greater odds of having phys-

ical frailty.26 The level of importance and contribution of each SNP in

predicting cognitive frailty can be evaluated amongst other biological

markers in the statistical model (see Figures 2 and 3).

3.2 Medication genetic variants and risk

One of the interesting genomic findings was the SLCO1B1 rs4363657

allele C (P = .02) in predictive Model II. SLCO1B1 has been associ-

ated with the metabolite X12063, both of which are markers of lean

muscle mass loss.27SLOCO1B1 has been linked to drug metabolism

that results in higher blood concentrations of statins.28SLOCO1B1 is

essential for drug hepatic uptake and the C variant is associated with

reduced OATP1B1 activity. OATP1B1 can facilitate drug uptake at the

blood-brain barrier andmay lead to drug toxicity in the central nervous

system.29 Additionally, anticholinergic medications were significantly

associated with both attention (TMT-A), executive functioning (TMT-

B), andglobal cognition for individualswith cognitive frailty. Anticholin-

ergic drug burden (ACB)was ranked as oneof the toppredictors of cog-

nitive frailty in both models. A detailed description and analysis of the

relationshipbetweenACBandcognitive frailty is available in a separate

publication.11

3.3 Neuroinflammatory cytokinemarkers

This study found elevated levels of neuroinflammatory cytokines,

specifically interleukins IL1, IL6, IL6sR 1&2, TNF-alpha, ESR, and

TNFsR1&2 in association with cognitive frailty. Additionally, partici-

pantswith cognitive frailty hadhigher levels of resistin (P< .0001) com-

pared to healthy adults in both models; notably, resistin regulates IL-

6, TNF, and C-reactive protein (hs-CRP).30 Both fibrinogen (P < .0001)

and advanced glycation end product (AGE; P < .0001) were found to

be elevated. Such increases in AGE have been linked to oxidative stress

and high levels of alpha-2 globulin (A2M; P < .0001) and alpha-1 glob-

ulin (A1M; P < .0001). A2M and A1M are protease inhibitor cytokine

transporters, whose aberrant expression has been linked to AD, and

in this study, were also found in participants with cognitive frailty, but

not in healthy older adults.31 TNF-related apoptosis-inducing ligand

(TRAIL) was found to be lower (P < .0001) in individuals with cogni-

tive frailty. Lower serum TRAIL levels are associated with a decrease

in cellular apoptosis and an increased risk of stroke and cardiovascular

disease.32 Taken together, these findings support the theory of chronic

neuroinflammation as playing a role in neuro-immuno-endocrine dys-

function that may contribute to cognitive frailty.33

3.4 Nutrient and lipidmetabolism

We found distinct nutrient and lipid biomarkers were predictive of

cognitive frailty. Specifically, the following nutrient pattern associated

with cognitive frailty included lower levels of vitamin E alpha toco-

pherol (P < .0001), albumin (P < .0001), omega-6 and 3 (P < .0001)

were found in cognitively frail older adults with global cognitive

decline and lower vitamin B6 (P< .0001); albumin (P< .0001), omega-6

and 3 (P < .001) with poor attention and executive functioning. Low

vitamin E alpha tocopherol was associated with global cognitive

decline (P < .0001) and poor attention (P = .037) but not executive

functioning. Interestingly, a second association pattern was character-

ized by low trans fats measured by low- and high-density lipoprotein

(LDL and HDL). Frail older adults with poor global cognitive decline

had lower levels of LDL (P < .0001) and HDL (P < .047) than healthy
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F IGURE 2 Feature importance scores for cognitive frailty inModel I. Note: Feature importance scores are generated by xgboost for cognitive
frailty and ranked by their level of importance in themodel. The figure demonstrates different weights for each feature’s importance in predicting
cognitive frailty from healthy individuals
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F IGURE 3 Feature importance scores for cognitive frailty inModel II. Note: Feature importance scores are generated by xgboost for cognitive
frailty and ranked by their level of importance in themodel. The figure demonstrates different weights for each feature’s importance in predicting
cognitive frailty from healthy individuals
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TABLE 2 Genomic features for cognitive frailtyModel I andModel II

Model I Gene

SNP-associated

allele Chromosome

xgboost rank

importance 𝜷 SE P-value

CD33 rs3865444_A 19 0.0036 0.62 0.28 .03

ACOT11 /LOC105378734 rs12752888_C 1 0.0035 -0.47 0.18 <.01

MTRR rs1801394_G 5 0.0029 0.80 0.23 <.01

DAB1 rs1539053_A 1 0.0017 0.50 0.20 .01

MMP3 rs948399_C 11 0.0011 0.41 0.17 .01

Model II

APOE rs429358_C 19 0.0042 -0.59 0.23 .01

ACOT11 / LOC105378734 rs12752888_C 1 0.0024 -0.37 0.15 .01

TOMM40 rs8106922_G 19 0.0011 -0.31 0.16 .05

SLCO1B1 rs4363657_C 12 0.0008 0.38 0.16 .02

MMP3 rs948399_C 11 0.0003 0.29 0.15 .05

Notes: Statistically significant genes are shown in association with cognitive frailty compared to healthy adults Models I and II use Mini-Mental State Exam-

ination (MMSE) and Trail Making Tests (TMT) parameters, respectively, to define cognitive frailty. Bold text indicates the closest gene to an intergenic single

nucleotide polymorphism (SNP). The xgboost rank importance: xgboost ranks each SNP by level of importance based on its contribution to the model. Beta

coefficients, standard error (SE), and P-values for each SNPwere derived from subsequent logistic regression analysis after xgboost ranking.

older adults. Overall, significantly lower levels of these lipids were

present for older adults with cognitive frailty compared to healthy

older adults.

3.5 Metabolites

Metabolomic ceramides C16:0, C20:0, C20:5, C24:0, and C:22:0mark-

erswere predictive of cognitive frailty in both analyticmodels;with sig-

nificant differences in C20:0 (P = .041), C20:5 (P < .0001) and C16:0

fatty acid weight (P = .008) fatty acid area ( P = .013) between cogni-

tively frail and healthy older adults. Ceramides C16:0 and C20:0 have

been associated with greater risk of impairment in attention as mea-

sured with the TMT-A,34 and in this study, we found C20:5 to be lower

inolder adultswith cognitive frailty andpredictive for attentiondeficits

asmeasured by TMT-A (P= .028) but not executive function. Addition-

ally, serum ceramides variedwith some high and others low supporting

the finding that timing and onset of memory impairment may be a fac-

tor affecting levels.34

3.6 Renal function

Poor renal function was predictive of cognitive frailty; with lower 24-

hour urinary creatinine (P < .0001), higher blood urea nitrogen (BUN;

P < .0001), higher urine proteins (P = .03) and nitrates (P < .0002),

higher serum creatinine (P = .022), lower serum and urinary calcium

(P < .001), higher uric acid (P < .01), and higher cystatin C (P < .0001)

than healthy older adults. Taken together, markers of poor renal func-

tion have been linked to changes in mobility disability35 with higher

cystatin C associatedwith increased likelihood of converting fromMCI

to AD.36

3.7 Hematologic/immune function

Iron deficient anemia was associated with individuals with cognitive

frailty as notedby lowhemoglobin (P< .0001), high red cell distribution

width (RDW;P< .0001), lowmeancorpuscular hemoglobin (MCH) con-

centration (P< .0001), high soluble transferrin receptor (P= 0.01), and

low mean platelet volume (MPV; P = .08). Furthermore, immune dys-

function was indicated by high white blood cell count (WBC; P = .007),

low lymphocytes (P < .0001), high neutrophils (P < .0001), and low

CD14 (P < .0001). Collectively, these findings support a theory of

immune system dysfunction seen in both predictive models suggest-

ing individuals with cognitive frailty have a decreased humoral immune

response.37

3.8 Endocrine/hormone function

Dehydroepiandrosterone sulfate (DHEA), testosterone, and urinary

cortisol were found to be low for those with cognitive frailty compared

to healthy adults (P < .001). DHEA has been found to inhibit IL-6, thus

providing a connection between endocrine and immune function.38-40

Another interesting findingwas the connection betweenbiomarkers of

nutrition, low fatty acid levels, and high levels of c-terminal telopeptide

of type-1 collagen l (PINP; P < .0001) and parathyroid hormone (PTH;

P < .0001) in association with cognitive frailty. Both PINP and PTH

have been linked to low levels of vitamin D (P < .0001), which we also

found in our participants with cognitive frailty.41 Total insulin-like

growth factor, plasma insulin (P = .04), and free thyroxine fT4 were

low in individuals with cognitive frailty (P < .0001). Methylmalonic

acid (MMA) is linked to high levels of vitamin B12 and high levels of

homocysteine (P < .0001) together with the MTRR SNP rs1801394,

all of which share the same pathway and are predictive of cognitive
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frailty. This pathway interaction has been linked to both cognitive

performance and increased risk for physical frailty.26,42

Figures 2 and 3 summarize the top SNPs and protein biomarkers

ranked by the level of importance in predicting cognitive frailty. These

feature importance scoreswere generated during statistical analysis in

xgboost.

4 DISCUSSION

When the results are interpreted by individual biological pathways,

several proposed theories on AD are supported including (1) immuno-

logical system dysfunction, (2) environmental exposures and toxicities

(ie, ACB), (3) genetic factors, and (4) chronic neuroinflammation.37 In

contrast, when the results are summarized using the updated hypoth-

esis of multi-system dysfunction, the findings closely align with the

aging theory of cellular senescence.12,43,44 Cellular senescence the-

ory is based on the concept of biological cellular damage and aber-

rant gene expression leading to loss of cell function and age-related

disease.7,9,43 For example, participantswith cognitive frailty hadhigher

levels of inflammatory protein markers including; hs-CRP, resistin,

and A2M compared to healthy older adults. Resistin regulates IL-

6, TNF, IL-1, and A2M which are protease inhibitor cytokine trans-

porters linked to AD.30,31 These findings highlight specific pathway

interactions for neuroinflammatory cytokines coupled with gene SNPs

associated with cellular senescence; eg, MMP3 rs948399 and CD33

rs3865444. Functional studies in AD have shown when CD33 is over-

expressed, microglia-mediated neuroinflammation pathways are acti-

vated and amyloid beta (A𝛽) phagocytosis is inhibited.45,46Additional

markers of cellular senescence in this study include metabolomic

ceramides C16:0, C20:0, and C20:5. Ceramides regulate cellular pro-

liferation and apoptosis and have been positively correlated with the

numberofA𝛽 plaquesonpostmortembiopsy.34 At low levels, ceramides

regulate cellular proliferation and apoptosis; at high levels they inhibit

cell division and are intermediates of inflammatory cytokines and sub-

clinical atherosclerosis.47 Together, these biological markers define

the senescence-associated secretor phenotype (SASP).44 While cellu-

lar senescence in peripheral tissues has been linked to aging and age-

related diseases, its involvement in neurogenerative diseases and AD

is still being explored.44,48

The findings from the proposed models herein allows hypothesis

testing for additional study including (1) examining specific pathway

associations with significant SNPs and protein biomarkers to deter-

mine whether the identified genes are clinically relevant; (2) exploring

gene variant risk of medication metabolism, thereby expanding upon

findings in this study to better understand the relationship between a

group of high-riskmedications (ACB) and specific gene variants associ-

ated with drug metabolism;11,49 and (3) understanding the role of cel-

lular senescence in cognitive frailty.

Nevertheless, challenges still exist in generating hypothesis test-

ing based on our models. Generalizability may be limited due to the

cross-sectional analysis of existing data with a primarily homogeneous

European population. Additionally, the systemsmodel proposed in this

study accounts for known human genetic, clinical, and laboratory data;

yet, systems models must also be able to suggest causal roles for the

findings andultimately offer interventions.48,50 At this time, our results

should be replicated in other large studies with similar biomarkermea-

sures such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Although ML methods are promising for reducing complex biological

systems and characterizing key contributing variables, the results pre-

sented in this studydonotprovide insight into thedynamic relationship

of multisystem dysfunction and AD over time. Future systems mod-

els should include longitudinal observational studies to better under-

stand patterns of biomarker change associated with AD, elucidate dis-

ease progression, and examine the direction and rate of change over

time.Oneway to accomplish this goal is to useML statistical analysis to

model changes in protein, genetic, and neuroimaging markers in exist-

ing population-based studies. Innovative data sharing and collabora-

tions such as the Integrative Analysis of Longitudinal Studies on Aging

(IALSA) will be important for generalizability and modeling of complex

biological interactions in future dementia studies. Considering the pro-

gressive course of AD, studies that use ML predictive analytic meth-

ods to model biomarker changes longitudinally will be essential. This

effortwill require specialized training for research teams, collaborative

efforts between computer science and basic science disciplines, and

epidemiological studies with consistent biomarker measures over the

participants’ lifetime.Our results support the theoretical framework of

cognitive frailty as a complex systemwhenmodeled with aML statisti-

cal approach (Figure 1). Fortunately, analytical tools are now available

to explore complex aging syndromes that may be pivotal in shedding

light on themultiple dimensions of cognitive frailty.
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