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Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in

response tomechanical or chemical stimulation. EC cell 5-HT has physiological effects on

gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs

in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT

may represent a key player in the pathogenesis of intestinal inflammation. The

focus of this review is on mechanism(s) involved in EC cell “mechanosensation”

and critical gaps in our knowledge for future research. Much of our knowledge

and concepts are from a human BON cell model of EC, although more recent

work has included other cell lines, native EC cells from mouse and human and

intact mucosa. EC cells are “mechanosensors” that respond to physical forces

generated during peristaltic activity by translating the mechanical stimulus (MS) into

an intracellular biochemical response leading to 5-HT and ATP release. The emerging

picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains,

and tight regulation of 5-HT release by purines. The “purinergic hypothesis” is that

MS releases purines to act in an autocrine/paracrine manner to activate excitatory

(P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate

5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway,

an A2A/A2B–Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and

an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated

and A2B is up regulated in EC cells, but the pathophysiological consequences of

abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell

mechanosensation remains poorly understood.
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INTRODUCTION

The enterochromaffin cell (EC) synthesizes and releases 5-
hydroxytryptamine (5-HT), which is involved in mucosal
secretory reflexes, motility and transmission of information
about visceral pain sensation (Cooke and Christofi, 2006;
Christofi, 2008; Mawe and Hoffman, 2013). The available
evidence suggests that alterations in 5-HT regulation and
signaling mechanisms (e.g., 5-HT secretion, availability, and
re-uptake mechanisms) may contribute to the pathogenesis of
inflammatory bowel diseases (IBD), irritable bowel syndrome
(IBS, including post-infectious IBS), carcinoid syndrome,
vomiting and diarrhea after radiotherapy or platinum
chemotherapy, and diarrhea associated with bacterial toxin
induced enterocolitis (Fujimiya et al., 1997; Linden et al.,
2003; Coates et al., 2004; Crowell, 2004; Crowell et al., 2004;
Galligan, 2004; Gershon, 2004; Kordasti et al., 2004; O’Hara et al.,
2004; Linan-Rico et al., 2013a). Possible associations also exist
with celiac disease, diverticular disease and colorectal cancer
(Manocha andKhan, 2012). Our challenge is to better understand
how EC cells regulate 5-HT release before we can truly appreciate
the consequences of abnormal 5-HT signaling in diseases.

EC cells function as chemical and mechanical transducers.
EC cells act as chemosensors by detecting changes in the
chemical milieu of the luminal environment of the gut and
respond to nutrients (such as free fatty acids, monosaccharides,
peptides, amino acids), purines such as adenosine and ATP,
the concentration of the solute or changes in pH to alkaline
or acidic—chyme (Kim et al., 2001a; Cooke et al., 2003). For
example, human EC cells can act as glucose sensors during
ingestion of a meal and respond by secreting 5-HT (Kim et al.,
2001b). Gut EC cells can also act as oxygen sensors (Haugen
et al., 2012). In addition, EC cells are sensory detectors of
mechanical forces operating during intestinal peristalsis, i.e., by
acting as “mechanosensors.” Various mechanical forces lead to
5-HT release to initiate or contribute to gut neural reflexes
that coordinate motility and secretion, peristaltic waves, mixing
movements (fed state), the migrating motor complex (fasted
state), and mass movement during the defecation reflex. During
such complex motor behaviors, mechanical forces that may
trigger 5-HT release under physiological conditions include
tensile force and flow shear stress, intraluminal pressure,
turbulent and centrifugal forces, stretch/distension, touch,
compression, membrane distortion/deformation and changes in
cell volume.

In vitro studies on EC cells have explored the impact of
mechanical stimulation on 5-HT release, and data in freshly

Abbreviations: 5-HT, 5-hydroxytryptamine; AC, adenylyl cyclase; CD, Crohn’s

Disease; CFP, cyan fluorescent protein; CgA, Chromagranin A; CNS, central

nervous system; DRG, dorsal root ganglion; EC, enterochromaffin cells; ENS,

enteric nervous system; FFA, free fatty acids; FRET, Fluorescence Resonance

Energy Transfer; GFAP, glial fibrillary acidic protein; GFP, green fluorescence

protein; GI, gastrointestinal; GPCRs, G protein coupled receptors; hEC, human

enterochromaffin cells; IBD, Inflammatory Bowel Disease; IBS, Irritable Bowel

Syndrome; KO, knock out; MS, mechanical stimulus; PKA, cAMP dependent

protein kinase A; PLC, phospholipase C; Tph1, tryptophan hydroxylase 1; UC,
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isolated EC cells and EC cell lines have provided important new
insights into the mechanosensory signaling pathways. While it is
now possible to isolate human EC cells from surgical specimens
(Kidd et al., 2006; Raghupathi et al., 2013) or mouse EC cells
from CFP expressing Tph1-CFP cells (Li et al., 2014) to study
5-HT release, much of our knowledge comes from studies using
the BON cell model. This model has provided significant new
insights into mechanisms and processes involved in translating
a mechanical stimulus into 5-HT release to trigger gut reflexes.
We forward a unified purinergic hypothesis of mechanosensation
for modulation of 5-HT release, gut reflexes, visceral sensation and
pain, and summarize the evidence in this review to support it
(illustrated in Figures 1, 2). Enteric neural regulation of mucosal
secretion and purinergic signaling in secretomotor function were
previously extensively reviewed (Cooke and Christofi, 2006;
Christofi, 2008).

More than a decade ago, we published an article in News
in Physiological Sciences titled “The Force Be with You”: ATP
in Gut Mechanosensory Transduction (Cooke et al., 2003). The
article emphasized a fundamental principle that mechanical
stimulation releases nucleotides, ATP and UTP from cells in
the body. Mechanical forces generated during peristalsis release
nucleotides leading to secretion of the sensory mediator 5-HT
from EC cells and act as autocrine, paracrine or neurocrine
mediators in neural reflexes regulating chloride secretion.
Despite some progress in the field, there are still many unresolved
questions: How do these cells detect “physical forces” due to
mechanical activation and convert them to biological responses
in the intestine? What is the mechanosensor? What is the
mechanotransducer? What are the critical signaling pathways
linked to 5-HT release? What is the influence of intestinal
inflammation or GI disease on mechanosensation in EC cells? The
focus of this review will be on mechanotransduction in EC cells
to address some of these questions, with special attention to
mechanogated channels, adenosine, ATP, UTP, G protein coupled
receptors (GPCRs), the lipid membrane layer and caveolin-1.
The precise molecular mechanisms by which EC cells transduce
a mechanical stimulus (MS) into the physiological response, 5-
HT release, are currently under investigation. Emerging evidence
supports a role for abnormal purinergic modulation of 5-HT
secretion during intestinal inflammation that could affect a
wide variety of physiological responses. Based on our current
understanding of purinergic signaling in health, disease and
therapeutics (Ochoa-Cortes et al., 2014), we further propose that
purinergic pathways in EC cells are a potential therapeutic target
in gastrointestinal (GI) disorders associated with abnormal 5-HT
signaling.

The Human BON Cell Model
EC cells synthesize 95% of the total body’s 5-HT and the release
of 5-HT has important physiological effects in the gut. However,
to date, there are only a few studies on the cellular and molecular
mechanisms of 5-HT release from single primary human EC cells
(Kidd et al., 2006; Chin et al., 2012; Raghupathi et al., 2013).
Most of our knowledge comes from studies in cell line models
of EC cells, including KRJ-1 (Siddique et al., 2009), RIN14B
(Nozawa et al., 2009), and in particular BON cells (Kim et al.,
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FIGURE 1 | Working Hypothesis of mechanotransduction in EC cells. Mechanical stress (MS) activates a mechanosensor in EC and epithelial cells to induce

release of 5′nucleotide triphosphates (NTP) such as ATP and UTP that act in an autocrine or paracrine manner to modulate 5-HT release. The Piezo 2 mechanogated

channel was recently identified as a critical component of the mechanosensor and mechanotransduction signaling pathway activated by MS in EC cells leading to

5-HT release (in pathways 1 and 2 in the diagram). Mechanically evoked NTP release activates a predominant P2Y1/Gαq/PLC/PIP2/IP3/IP3R/SERCA

pump–Ca2+signaling pathway leading to 5-HT release. Caveolin-1 (CAV-1) associated with cholesterol-rich micro-domains in caveolae (specialized invaginations in

the lipid bilayer of the EC cell membrane) forms a scaffold to support the functional coupling of the P2Y1-GPCR, Gαq, PLC and NTP secretion from the cell. In this

model, caveolae and cholesterol rich caveolin-1 microdomains are essential for both NTP release and down-stream Ca2+dependent 5-HT release. Therefore,

manipulations that disrupt the structure or assembly of caveolae by treating cells to filipin or β-cyclodextrin (β-CD) prevent the mechanically evoked NTP (ATP) and

5-HT secretion. A minor mechanosensitive pathway is an A2/Gs/AC-cAMP/PKA signaling pathway of 5-HT release. Ca2+ and cAMP-dependent transcriptional

regulation occurs in response to mechanical stimulation that can further modulate EC cell function(s). In this model, it is postulated that Piezo 2 activation could also

stimulate 5-HT secretion via a separate purine-independent pathway (pathway 2 in diagram).

2001a). Novel isolation techniques for EC cells from normal
or diseased tissues in recent years provide an opportunity to
test important hypotheses generated using the BON cell model
system. A rapid filtration/isolation technique of human and
guinea pig EC cells (without the need for FACS sorting) allows
analysis of single EC cell function by monitoring real-time 5-HT
release by electrochemical detection, Ca2+imaging and patch-
clamp recording (Raghupathi et al., 2013).

Parekh et al. (1994) first described the in vitro characterization
of the human carcinoid BON cell line over 20 year ago. BON
cells originated from an operative specimen of the peripancreatic
lymph node in a 28 year old man with a metastatic carcinoid
tumor of the pancreas. BON cells grow in culture and provide
a suitable in vitro model to study 5-HT secretion or other
mediators in human enterochromaffin cells (EC). Cells in
culture express 5-HT, 5-HT transporter (SERT), pancreastatin,
neurotensin, chromogranin A (CgA), bombesin, GABA,
synaptophysin, and secretogranin II. The cells do not express
glial (glial fibrillary acidic protein) or neuronal (neurofilament)
markers. Functional receptors exist for acetylcholine, 5-
HT, somatostatin (SST2), isoproterenol (β-adrenergic), VIP

(VPAC1), PACAP, CRF1, TRPA1 channels, TRPM8 channels,
CRH, CRF, dopamine, bradykinin, immunologics (e.g., IL-13),
VMAT2, VGLUT2, adenosine receptors (A1, A2A, A2B, and
A3), and nucleotide receptors for P2X and P2Y1, P2Y4, P2Y6,
and P2Y12 receptors. Purinergic receptors for adenosine and
nucleotides (ATP, ADP) have been linked to mechanosensory
signaling pathways in EC cells (Cooke et al., 2003; Cooke
and Christofi, 2006; Christofi, 2008; Linan-Rico et al., 2013a,
2014).

5-HT, 5-hydroxytryptophan (5-HTP), and 5-
hydroxyindoleacetic-acid (5-HIAA) are detected by HPLC
in BON cells and in the media of cultured cells. Deamination of
5-HT to 5-HIAA is catalyzed by the enzyme monoamine oxidase
(MAO) that is present in BON cells. 5-HT receptors are likely
to be expressed on BON cells, since 5-HT that is synthesized
and secreted by BON cells could stimulate the release of other
mediators such as neurotensin and pancreastatin (Feldman,
1989). BON cells possess a specific transport system for the
uptake of 5-HT demonstrated by showing that 3H-5-HT uptake
is inhibited by fluoxetine (Parekh et al., 1994). The transport
system is a mechanism for modulation of the biological effects
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FIGURE 2 | Interactions between serotonergic and purinergic signaling

in gut physiology. Mechanical stress activates a mechanosensor on EC to

release 5-HT that has a myriad of physiological functions, including activation

of enteric neural secretory and motility reflexes, transmission of satiety signals,

transmission of pain signals, and induction of emesis. Mechanical stress also

releases purinergic mediators (ATP and UTP) from EC and epithelial cells to

tightly modulate the secretion of 5-HT as well as gut reflexes. Abnormal 5-HT

signaling occurs in GI disorders and IBD, but little is known about how this

occurs in EC cells. 5-HT is also implicated in the pathogenesis of inflammation.

Purinergic signaling is very sensitive to inflammation, and this is also the case

in EC cells. Our working hypothesis is that purinergic mechanisms are linked

to abnormal 5-HT secretion and hence signaling in inflamed gut.

of amines by reducing their local concentration (Bonanno and
Raiteri, 1987).

Similarities and Differences between
Primary EC Cells and BON Cells
Despite its pancreatic origin, the BON cell line has been
the most widely used in vitro EC cell model to date.
It is therefore, important to briefly highlight some of the
similarities and differences between the BON cell line, EC-cell
derived cell lines and normal EC cells. Siddique et al. (2009)
carried out a comparative analysis between the BON cell line
and the small intestine EC-cell derived ileal neuroendocrine
tumor cell line KRJ-1 in order to define an appropriate EC
cell neuroendocrine tumor model. Pharmacological analysis
indicated that isoproterenol, noradrenaline and PACAP could

stimulate 5-HT release in both cell lines, but agonists had
lower efficacy in BON cells. Somatostatin inhibited 5-HT release
with a similar efficacy. On the other hand, acetylcholine and
cholecystokinin inhibited release of 5-HT in KRJ-1 cells but
stimulated release in BON cells. Molecular analysis revealed
substantial differences in gene transcriptome profiles between
the two cell lines, and in comparison to normal jejunum.
Differences also occurred in receptor expression profiles for
muscarinic receptors (M1-M4), TGFβR2 and somatostatin
receptors. Substance P, guanylin, CgA and NSE were expressed
in both cell lines. Differences in cell origin (i.e., EC-cell derived
KRJ-1 vs. pancreatic origin of BON), regional differences, or
neoplastic transformation in each cell line can account for
differences between the two cell lines.

Tph1, the enzyme involved in 5-HT synthesis is present in
normal EC cells and KRJ-1 cells, indicating that 5-HT synthesis
is regulated by the Tph1 isoform; the Tph2 isoform is not present
in these cells or normal EC cells. In contrast, BON cells express
Tph1 and Tph2 transcripts and DOPA decarboxylase, an enzyme
implicated in the synthesis of dopamine and 5-HT (Siddique
et al., 2009). This may account for some of the variability in
5-HT secretion seen in BON cells placed in culture over-time
(i.e., continuous culture for 7 days) and this is an important
consideration for release experiments in BON cells.

TRPA1 is a sensor molecule for EC cells (Nozawa et al., 2009).
It is highly expressed in EC cells and TRPA1 agonists stimulate
EC cell functions including elevating intracellular Ca2+ levels and
5-HT release in highly concentrated rat EC cell fractions (i.e.,
81% of cells were positively stained for 5-HT) or the RIN14B,
a rat pancreatic EC cell line; its role in BON cells, another EC
cell model of pancreatic origin remains unknown. Similar to
BON cells, Mastomys ileal EC cells (Kidd et al., 2006) express
VPAC1 and somatostatin 2 receptors. Forskolin, isoproterenol
and PACAP stimulate 5-HT release. Isoproterenol also stimulates
cAMP levels in these cells. Osteotride and GABAA inhibit 5-HT
release. These characteristics are shared with BON cells, whereas
other responses such as those to acetylcholine and bombesin are
different (see reviews by Christofi, 2008; Cooke and Christofi,
2006). Finally, BON cells and human EC cells express functional
A2B receptors that are positively linked to mechanotransduction
pathways, described further later (Chin et al., 2012). Overall,
BON cells, and various other EC cell lines have significant
limitations as EC cell models, and there is no replacement for
normal EC cells. However, and in particular BON cells, have been
instrumental in delineating some of the fundamental properties
of mechanosensation in EC cells as will be described further in
this review.

Mechanosensitivity
5-HT release from EC cells activates secretory and peristaltic
reflexes that are necessary for lubrication, mixing movements
during digestion, and propulsion of intestinal luminal contents.
In general, the process of mechanotransduction has been the
subject of intense investigation. The mechanisms operating in
other cells (endothelial, epithelial, dendritic cells, Merkel cells,
glial cells, sensory neurons) (Kunze et al., 2000; Weinbaum et al.,
2011; Zagorodnyuk and Spencer, 2011) to convert the MS into
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an intracellular biochemical signal may be relevant to EC cells.
Mechanotransduction in cells of intact tissues are regulated
by their microenvironment that includes neighboring cells (i.e.
epithelial cells, other enteroendocrine cells and immune cells in
the case of EC cells), and the extracellular matrix (ECM). The
connections between the cell-ECM are dynamically regulated
by integrins (Teräväinen et al., 2013). Mechanotransduction is
known to involve mechanosensitive ion channels (Arnadóttir
and Chalfie, 2010). Mechanotransduction could be the result
of a coordinated response between a variety of membrane
molecules and microdomains, ion channels, receptors, G
proteins, the cytoskeleton and lipid bilayermembrane supporting
cell structure, caveolae, and adhesion molecules; membrane
fluidity is an important mechanism as well (Weinbaum et al.,
2011; Teräväinen et al., 2013; Ranade et al., 2014; Woo
et al., 2014). Cells may respond to MS by activation of
various intracellular signaling pathways leading to modulation
of gene or protein expression and release of “mechanosignaling”
molecules to regulate cell-to-cell communication and cellular
functions. ATP, nitric oxide, prostaglandins or adenosine are
important mechanosignaling molecules for such communication
(Weinbaum et al., 2011).

The BON cell model was used to study the mechanisms and
signaling pathways involved in mechanosensitivity, including
shear stress and pressure. In the original study Kim et al. (2001a),
rotational shaking was used as a MS to evoke 5-HT release in
the cells, in intact guinea-pig colon or intact human colon. This
type of stimulus is associated with shear stress and pressure, and
increasing rotation from 0-100 rpms elicits a graded increase in
5-HT release without affecting cell viability (Kim et al., 2001a).
The maximum shear stress calculated from the equation Tmax =
a
√

ρη(2πf) 3 for 60 rpm is 2.6 dyn/cm2 (Christofi, 2008). Use
of a special laminar flow chamber to study shear stress indicates
that 2.0 dyn/cm2 shear stress is sufficient to evoke release of 5-
HT in BON cells {calculated using the formula T = 6µQ/bh
2(dyn/cm2)}. A parallel flow microchamber allows exposure of
cells to fluid shear stress from 1 - 300 dynes / cm2 in a flow
channel (2 mm wide) that is optically accessible through a
coverslip-based window to monitor Ca2+ responses (Vilardaga
et al., 2003; Hoffmann et al., 2005). This is worth pursuing in
future studies to investigate impact of fluid shear stress on normal
EC cell function.

With rotational shaking, the maximum hydrostatic pressure
imposed on the cell surface by movement of assay buffer at
100 rpm is 1.33mm Hg according to the Unit conversion
Factor (1g/cm2 = 0.74mm Hg; Kim et al., 2001a; Christofi,
2008). In fact, very high pressures in the noxious range are
needed to stimulate 5-HT release from BON cells (e.g., 50–75
mm Hg) using a special chamber to increase pressure. Such
high intraluminal pressures can occur in pathologic states of
over distended gut or patients with severe constipation. In
pathophysiological conditions, abnormal distension associated
with painful sensation involves release of ATP to activate
EC/enteric nervous system/motor pathways and visceral afferent
pain pathways (Wynn et al., 2004; Burnstock, 2009).

Overall, BON cells are much more sensitive to “shear stress”
(i.e., produced by increasing fluid flow in tubular structures like
the intestine) than increase in “pressure” for releasing 5-HT. This

information could only be obtained in isolated cells, since in vivo,
multiple mechanical forces are operating at the same time in the
gut during peristalsis, and it is not possible to separate the effects
of pressure, shear stress, distension, compression, deformation, or
centrifugal forces during peristalsis.

P2Y1/Gαq/PLC/IP3/IP3R-SERCA Ca2+

Signaling Pathway in
Mechanotransduction
MS released 5-HT fromBON cells, as well as guinea pig or human
jejunum EC cells during neural blockade with tetrodotoxin (Kim
et al., 2001a; Linan-Rico et al., 2013a). In BON cells, it was shown
that blockade of Gαq and other G-proteins by GDP-β-S or use
of a synthetic peptide derived from the COOH terminal tail of
Gαq which interferes with receptor—G protein coupling (with
amino acid sequence, VFAAVKDTILQLNLKEYNLV) abolished
mechanically evoked 5-HT release, whereas the NH2-terminal
peptide (EEAKEARRINDEIERQL) had no effect. An antisense
phosphorothioated oligonucleotide targeting Gαq reduced Gαq
protein levels and abolished mechanically evoked 5-HT release
without affecting expression of another G-protein, Gα11. These
pharmacological observations suggest that receptor-G protein
coupling is necessary for 5-HT release (Kim et al., 2001a)
but do not completely rule out direct activation of Gαq or
PLC by physical forces. The study also pointed to a G-
protein coupled P2Y receptor since MS releases both ATP and
UTP that activate these receptors. MS of the phospholipid
bilayer could potentially activate G proteins directly without
the necessity of an agonist-occupied receptor (Gudi et al.,
1998). It should be noted however, that it is difficult to
identify the most upstream event in mechanotransduction,
and which is the sensor or down-stream target without
electrophysiological studies to identify the precise timing/kinetics
of responses, i.e., activation of a mechanogated channel as
described later. As suggested previously, it is also possible that
different stimuli are detected by different mechanosensory—
mechanotransduction pathways (Cooke et al., 2003) and this
remains to be evaluated.

Caveolin-Associated Cholesterol Rich
Membrane Domains in
Mechanotransduction
The cell membrane is a phospholipid bilayer interspersed with
lipid rafts rich in cholesterol and sphingolipids. Caveolae are
a subfamily of lipid rafts (Shaul and Anderson, 1998; Smart
et al., 1999; Oh and Schnitzer, 2001; Chini and Parenti, 2004)
that are likely involved in EC cell mechanotransduction—these
structures are small (50–100 nm) flask-shaped plasmamembrane
invaginations rich in caveolins, sphingolipids, and cholesterol.
They have been hypothesized to play a critical role in signal
transduction by forming a scaffold on which ion channels,
receptors, and signaling factors are anchored or assembled (Shaul
and Anderson, 1998). There is convincing evidence that caveolae
are implicated in shear stress mechanotransduction in vascular
endothelial cells (Ando and Yamamoto, 2013).

In the BON cell model, mechanical stimulation elevates
intracellular free Ca2+ levels and stimulates 5-HT release (that
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is a Ca2+-dependent process; Kim et al., 2001a; Cooke et al., 2003
review; Christofi et al., 2004b; Linan-Rico et al., 2013a). Indeed
manipulations that disrupt caveolae inhibit both intracellular
Ca2+ signals and the Ca2+ dependent 5-HT release in response
to mechanical stimulation. Disassembly of caveolae with a
cholesterol binding agent filipin or treatment with methyl-
β-cyclodextrin (β-CD) to disrupt the caveolar structure by
depleting membrane cholesterol suppresses both touch-induced
Ca2+ responses and rotational shaking—induced 5-HT release.
These agents also block the release of ATP in response to MS.
Therefore disruption of caveolae is a critical determinant of
mechanosensitivity, ATP and 5-HT release (Kim et al., 2007).

A novel ATP imaging technique has been used to demonstrate
that highly concentrated ATP release (>10 µM ATP) occurs
locally from caveolae-rich regions of the plasma membrane
(caveolin-1, marker protein of caveolae); visualization of ATP
release was done using biotin-luciferase protein attached to
a biotinylated cell surface with streptavidin (i.e., ATP release
triggers the luciferin-luciferase chemiluminescence reaction; Ando
and Yamamoto, 2013). EC cells release ATP in response to
mechanical stimulation (Linan-Rico et al., 2013a) and this
mechanism deserves further consideration.

In endothelial cells, caveolin-1 is a scaffolding protein that
holds Gαq subunits in the inactive GDP-bound state until
activation of Gαq terminates association with caveolin-1 and
releases Gαq. As such one of the functions of caveolin-1-
associated domains is presumed to be to concentrate and stabilize
Gαq (Li et al., 1995; Okamoto et al., 1998; Oh and Schnitzer,
2001; Chini and Parenti, 2004). In fact, activation of Gαq is
essential for mechanosensitive release of 5-HT in BON cells,
because as noted earlier GDP-β-S or the antisense oligonucleotide
to a specific sequence of Gαq blocked mechanically-induced
5-HT release (Kim et al., 2001a; Cooke et al., 2003 review).
This has not yet been evaluated in normal mouse or human
EC cells. Methyl-β-cyclodextrin and filipin disrupt the structure
of caveolae and the caveolin-1/Gαq protein interactions (Liu
et al., 1997; Hailstones et al., 1998). In the only study done, MS
of BON cells uncoupled Gαq from the caveolin-1 fraction as
shown in co-precipitation studies and increased 5-HT release.
Caveolin-1 transcripts and protein expression were detected
in BON cells. Disassembly of caveolin-associated membrane
domains using filipin or by cholesterol depletion with β-CD
abolished 5-HT release. Therefore, caveolin-1 and caveolin-1
associated cholesterol rich membrane microdomains in the lipid
bilayer are critical regulators in the mechanically evoked 5-HT
release (Kim et al., 2007). This is consistent with other reports
that altering membrane cholesterol levels alters the activity of
G-protein coupled receptors (Gimpl et al., 1995, 1997, 2000).

Down-Stream 5′-nucleotide Autocrine
Modulation of Mechanosensitivity in EC
Cells
The P2Y1receptor is a critical component of the
mechanotransduction pathway in sensory neurons and BON
cells. P2Y1 purinergic receptors in sensory neurons contribute to
touch-induced impulse generation (Nakamura and Strittmatter,

1996). In that study, a single cRNA derived from sensory neurons
encoding a P2Y1 receptor renders Xenopus laevis oocytes
mechanosensitive. Hence, in oocytes, the P2Y1 is required
for mechanotransduction. The P2Y1 mRNA is expressed in
large-fiber DRG neurons (unlike P2X3, in small-fiber sensory
neurons). Therefore, a transduction system based on P2Y1

that may form the sole basis for generating nerve impulses
might be an essential early step in touch-sensitivity. Studies
in BON cells identified a P2Y1/Gαq/PLC-IP3-Ca

2+ signaling
pathway as an essential transduction pathway involved in
converting physical forces generated by mechanical stimulation
to a physiological response 5-HT release. This pathway likely
represents an essential component of the mechanotransducer
assembled in the plasma membranes of BON cells tethered with
other components. Again, the significance of the P2Y1 pathway
needs to be confirmed in normal EC cells.

Are GPCRs Mechanosensors?
G protein coupled receptors (GPCRs) have a myriad of roles
in transducing extracellular signals into cellular responses.
Membrane potential may regulate GPCRs. A voltage-induced
conformational change in the receptor may alter (enhance) its
ability to couple the G protein and influences its affinity for an
agonist (Mahaut-Smith et al., 2008). For amajority of Gq-coupled
receptors (e.g., P2Y1), depolarization enhances downstream
Ca2+ mobilization. EC cells have been shown to be excitable cells
displaying Na+ sensitive action potentials (Strege et al., 2016)
and therefore such an interaction deserves further consideration.
The P2Y1—membrane potential synergistic interaction might
be important at low levels of agonist where depolarization can
still evoke substantial Ca2+ mobilization (Voltage-dependence of
GPCRs or their signaling pathways).

Mechanical stress can activate GPCRs (i.e., angiotensin II
type 1 receptor) independently of agonist being present. That is,
GPCRs can potentially serve as mechanosensors. First, stretching
the cell membrane may directly change the conformation of the
receptor to an active state. Second, mechanical stretch could
activate specific mechanical sensors, which then activate the
receptor from insight the cell, i.e. potential stretch sensors are
integrins, stretch-sensitive ion channels (Sachs, 2010; Delmas
et al., 2011; Reed et al., 2014). G protein coupled receptors
in endothelial cells sense fluid shear stress (Chachisvilis et al.,
2006). It was shown that changes in cell membrane tension
and membrane fluidity affect conformational dynamics of
GPCRs, suggesting that GPCRs are involved in mediating
primary mechanochemical signal transduction in endothelial
cells. They used time-resolved fluorescence microscopy and
GPCR conformation-sensitive FRET (Fluorescence Resonance
Energy Transfer), and were able to show that stimulation of
cells with fluid shear stress, hypotonic stress, or membrane
fluidizing agent leads to an increase in activity of bradykinin
B2 GPCR in the cells. Such studies are needed in EC cells,
and on the effects of changes in lipid bilayer environment on
GPCR conformational dynamics. GPCR are a major target of
drug development, and a detailed analysis of mechanochemical
signaling via GPCR pathways may be relevant for development of
new GI medications targeting 5-HT abnormalities in IBD or IBS.
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Fine-tuning of GPCR activity occurs via receptor-interacting
proteins (Ritter and Hall, 2009). The angiotensin II type
1 (AT1) receptor was the first GPCR implicated to be
mechanosensitive (Mederos y Schnitzler et al., 2011). Indeed, MS
(shear stress) can activate G proteins reconstituted into liposomes
(in the absence of any other potential mechanosensors)
suggesting that the lipid bilayer membrane plays a key
role in mediating mechanomechanical signal transduction
(Gudi et al., 1998). By using time-resolved fluorescence
microscopy and GPCR conformation-sensitive FRET, it was
shown that changes in cell membrane tension due to fluid shear
stress and membrane fluidity could cause ligand-independent
conformational transitions of a GPCR to an active conformation
in endothelial cells. It has been suggested that GPCRs
could mediate primary mechanochemical signal transduction
(Chachisvilis et al., 2006).

There is a significant sub-population of EC cells that
do not require endogenous ATP or other nucleotides
for mechanotransduction as demonstrated by indirect
pharmacological experiments (Linan-Rico et al., 2013a).
Therefore, MS (touch/stretch) is blocked in 77% of BON cells
by a 5′ectonucleotidase apyrase, is enhanced in 63% of cells by
ARL67156, is blocked in ∼50% of cells by a P2Y1 antagonist
MRS2179 or a general P2 antagonist PPADS. Whether MS can
directly activate the P2Y1 GPCR (or other GPCRs, i.e., A2A/A2B;
Christofi et al., 2004b) or whether activation of mechanogated
channels such as Piezo 2 (see later) can activate 5-HT release
directly without ATP release in EC cells remains unknown. It is
possible to use FRET technology to study G-protein—receptor
interactions in response to mechanical stimulation.

Mechanical stress can operate to increase membrane fluidity
and affect mechanotransduction. This is likely involved in EC cell
mechanotransduction, but there is as yet no evidence to support
it. Measurements of membrane fluidity with the fluorescent
dye 4-(dicyanovinyl)julolidine have provided direct proof that
mechanical stress increases membrane fluidity in an intensity-
dependent manner in human blood vessel endothelial cells
(Haidekker et al., 2000; Butler et al., 2001).

Findings in BON cells established that endogenous purines are
critical determinants of 5-HT release evoked by MS. However,
as described later, mechanotransduction is a complex process
that also requires the activation of mechanogated channels. A
proposed model of purinergic mechanosensory signaling in EC
cells is illustrated in Figure 1. MS releases ATP (and UTP) to
act in an autocrine manner to modulate 5-HT release. It has
been proposed that purines provide a mechanism of fine-tune
modulation of 5-HT release in regulating gut mechanical reflexes.
ATP could also act directly in vitro to activate reflexes in rodents
(Christofi et al., 2004a; Cooke et al., 2004). MS releases ATP
(or ADP) to activate a slow P2Y1-Gq/PLC/IP3-IP3R—SERCA
pump—Ca2+ dependent pathway to evoke release of 5-HT. In
a separate population of human EC cells, ongoing activation of
a slow P2Y12-Gi/oAC/cAMP/PKA signaling pathway by ADP (or
ATP) inhibits 5-HT release that is expected to attenuate reflexes.
In addition to these GPCRs (P2Y1 and P2Y12), ATP can activate a
fast ATP-gated P2X3 (or P2X1) channel to stimulate 5-HT release
(Linan-Rico et al., 2013a).

A study by Linan-Rico et al. (2014) showed that several ionic
conductances are implicated in the regulation of 5-HT release
in BON cells. Patch-clamp and Ca2+ studies provided evidence
for regulation of 5-HT release by UTP. Data suggest that UTP
activates a predominant P2Y4 receptor to elicit Ca2+ responses
by activating a Gq/PLC/IP3/IP3R/SERCACa2+ pump—signaling
pathway to stimulate 5-HT release. UTP stimulated voltage-
sensitive Ca2+ currents, (Ica), caused Vm-depolarization and
inhibited IK (not IA) currents. Membrane depolarization evoked
by UTP was linked to a PLC/IKv pathway, but it was not linked
to changes in intracellular Ca2+ levels in BON cells (Linan-Rico
et al., 2013b, 2014). UTP stimulated 5-HT release in BON or
freshly isolated human EC cells (identified by their expression
of tryptophan hydroxylase 1 (Tph1), 5-HT, and mRNA for
P2Y4/P2Y6) (Linan-Rico et al., 2013b, 2014). Overall, UTP-gated
signaling pathways are considered to be important regulators of
5-HT signaling. The role of UTP in mechanosensory signaling in
EC cells is largely unexplored.

Release of ATP or UTP from surrounding epithelial cells
contributes to paracrine stimulation of EC cells (Figure 1). Cell
to cell communication in response to mechanical stress occurs
via bilateral release of ATP and UTP in polarized epithelia
(Homolya et al., 2000). ATP release (Linan-Rico et al., 2013a)
and adenosine release (Christofi et al., 2004b) is shown to
occur during MS of BON cells, but although it is possible that
UTP is also released by EC cells and surrounding epithelial
cells, it has not yet been shown to occur. Moreover, it is
not known whether the same or different mechanosensory—
mechanotransduction pathways, including those involved in
releasing purines (ATP and UTP) operate in EC cells and
surrounding epithelial cells during peristalsis. Furthermore, it is
also not clear what physiological conditions favor autocrine (EC
release of purines) or paracrine (epithelial release of purines)
purinergic regulation. Our hypothesis is that autocrine regulation
provides local, moment-by-moment fine tune modulation of
5-HT release, whereas paracrine regulation by surrounding
epithelia provides more global regulation of 5-HT secretion to
coordinate the movements of large portions of the gut.

Adenosinergic Modulation of Mechanically
Evoked 5-HT Release
The tonic ongoing release or mechanically evoked release of
endogenous adenosine is a critical determinant of differential
activation of adenosine receptors with potentially important
implications for gut mechanosensory reflexes (Christofi et al.,
2004b). Adenosine A1, A2a, A2b, and A3 receptors are
expressed in BON cells as revealed by pharmacological, RT-
PCR, immunochemical and western blot techniques. Adenosine
release to MS was detectable by the LC-MS/MS technique.
MS evoked adenosine release, and the nucleoside (adenosine)
uptake inhibitor {S - (p-nitrobenzyl)-6-thio-inosine, NBTI}
enhanced mechanically evoked adenosine release. Treatment
with an adenosine / nucleoside uptake inhibitor NBTI enhances
adenosine release to ∼100 nM (from 30 nM) in the medium
bathing the cells and suppressed mechanically evoked 5-HT
release. The enzyme adenosine deaminase that catalyzes the
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breakdown of adenosine caused a concentration-dependent
increase in 5-HT release, suggesting that endogenous adenosine
is providing an ongoing inhibitory modulation of 5-HT
release. The resting level of endogenous adenosine acts as a
“physiological break” on baseline 5-HT release by activation
of A3 receptors. These and other observations support the
hypothesis that adenosine is a key autocrine modulator of 5-
HT release. Endogenous adenosine provides dual modulation
of mechanically evoked 5-HT release via Ca2+ dependent
inhibitory A3 and A1 linked signaling pathways, or cAMP-
dependent- excitatory A2a or A2b receptor linked pathways.
In the physiological setting, mucosal stroking, stretch or
other mechanical stimuli release adenosine, ATP (or UTP?)
to modulate mechanosensitive secretory reflexes (Cooke et al.,
1999, 2004; Christofi et al., 2004a). Adenosinergic signaling
represents a key regulatory mechanism linked to 5-HT release
from EC cells, and they have important implications for chemo-
or mechanosensory reflexes in the gut and possibly for tumor
therapy (i.e., since they were also expressed in human gastric and
intestinal 5-HT containing carcinoid tumors).

Effects of Purines on Mechanically-Evoked
Mucosal Secretory Reflexes
5-HT release stimulates the enteric nervous system (ENS) to
influence neural secretory reflexes, peristaltic activity, and plays
a role in digestive motility (i.e., segmenting pattern of motility
involved in mixing movements during digestion), ascending
contraction and descending relaxation reflexes (reviewed by
Mawe and Hoffman, 2013). Recent studies raised doubt as to
whether EC cell 5-HT is essential for colonic peristalsis or
colonic migrating motor complexes (CMMCs). In this regard,
colonic peristalsis was shown to occur without endogenous 5-
HT. Therefore, it was shown that intestinal transit and colonic
bead expulsion was not changed in Tph1 knockout (KO) mice
that cannot synthesize or release 5-HT from EC cells. TPh1 KO
mice can still synthesize 5-HT via Tph2 in myenteric (and raphe)
neurons. Tph1 can be found in EC cells, but also in some immune
cells and other cell types in the periphery (Amireault et al., 2013).
Specifically, these mice did not have any inhibitory deficits in
intestinal transit (Yadav et al., 2010; Li et al., 2011) and CMMCs
still occurred in the Tph1 KO mice (Heredia et al., 2013). Along
these lines, Spencer and co-workers were still able to trigger
peristalsis by stretching the tissue after removing the mucosa,
and still record spontaneous and evoked CMMCs (Keating and
Spencer, 2010; Spencer et al., 2011). In mucosa-free preparations,
release of 5-HT was abolished.

In the rat distal colon mechanically evoked reflex electrogenic
chloride secretion is triggered by endogenous nucleotides (ATP,
UTP, and UDP) acting at P2Y1, P2Y2, and P2Y4 receptors
(Christofi et al., 2004a). These receptors are expressed on
both EC cells and submucosal neurons, and therefore, both
autocrine activation of EC cells to secrete 5-HT, as well as
direct activation of neural P2Y receptors are suggested to be
involved in secretomotor functions. Species differences exist
in purinergic modulation of neural reflex chloride secretion,
and in the guinea-pig, MS by stroking the mucosa releases

nucleotides that act predominantly at neural P2Y1 receptors to
trigger chloride secretion (Cooke et al., 2004). In the rat, other
purinergic receptors are also involved in regulating secretomotor
function (Christofi et al., 2004a). Overall, release of ATP or other
nucleotides by MS can trigger secretomotor reflexes in rodents.
Similar studies in human intestine are lacking.

Mechanogated Piezo2 Channels
The identity of the mechanosensor(s) in EC cells remains
unclear. Mechanosensitivity may be conferred by the open or
closed state of a mechanogated ion channel, a receptor such as
the P2Y1 receptor, G-proteins, caveolae, integrins, or receptor
tyrosine kinases. Recent evidence suggests Piezo 2 mechanogated
channels are an important component of mechanosensitivity in
EC cells.

The EC cell is an important mechanosensory cell in the GI
epithelium, and it is well established that mechanical stimulation
causes 5-HT release. Contractile activity of the gut and mucosal
compression of the gut wall triggers release of mucosal 5-HT
(Bertrand, 2006). In human gut in vitro preparations, mechanical
stimulation to mimic mechanical forces during peristalsis
induces 5-HT release (Linan-Rico et al., 2013a). However,
mechanical stimulation, mucosal compression or mechanical
deformation can distort or stimulate several cell types in the
gut wall besides EC cells, including epithelial cells (Burnstock,
2008a,b, 2009), other enteroendocrine cells, mechanosensitive
AH neurons of the myenteric plexus (Kunze et al., 2000) and
enteric glial cells (Zhang et al., 2003; Liñán-Rico et al., 2016).
Direct evidence for mechanosensitivity in EC cells was obtained
from BON cells for Ca2+responses and 5-HT release (Kim et al.,
2001a; Linan-Rico et al., 2013a), human EC cells isolated from
surgical specimens for 5-HT release (Chin et al., 2012) and the
QGP-1 EC cell model for mechanosensitive currents (Wang et al.,
2016).

While the EC cell mechanotransduction mechanisms have
received their due attention, the primary mechanosensor
has been an important unanswered question. Primary
mechanotransducers in other systems (e.g., hearing, touch)
rely on mechanosensitive ion channels, which couple mechanical
forces to changes in ion conductances (Arnadóttir and Chalfie,
2010). The EC cell has substantial developmental (Yan et al.,
2001; Li H. J. et al., 2011; Roach et al., 2013; Wright et al., 2015)
and functional similarities (Raybould et al., 2004; Nakatani et al.,
2014; Chang et al., 2016) to theMerkel cells, which are light touch
sensors in the skin. During development for example, there is a
requirement for Atoh1 for secretory cell lineage commitment in
mouse intestine and Merkel cells. Loss of Atoh1 in progenitor
cells prevents differentiation of secretory cells, including
enteroendocrine cells and EC cells of the gut and Merkel cells.
Recent discoveries have unveiled the mechanosensitive ion
channel Piezo2 as critical primary mechanosensor for Merkel
cell mechanosensitivity (Ikeda and Gu, 2014; Ranade et al., 2014;
Woo et al., 2014). These studies prompted the investigation of
Piezo2 channel involvement in EC cell mechanotransduction.
Piezo2 was found specifically expressed in EC cells of human
and mouse small bowel (Wang et al., 2016). An EC cell model
of pancreatic origin, QGP-1had mechanosensitive currents with
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biophysical and pharmacologic properties of Piezo2 channels
and these currents were nearly eliminated by Piezo2 siRNA.
Importantly, stretch-induced 5-HT release was inhibited by
the pharmacologic and siRNA inhibition of Piezo2 (Wang
et al., 2016). In mouse small bowel, pharmacologic blockade
of Piezo channels resulted in a substantial decrease of 5-HT
mediated pressure-induced secretion. Therefore, Piezo2 is an
important EC cell mechanosensitive ion channel. However,
many questions remain.

Firstly, does Piezo2 serve as the primary mechanosensitive ion
channel, or does it work in concert with other mechanosensors?
Previous studies have identified several membrane proteins
that may collaborate with Piezo2. Transient receptor potential
channel TRPA1 is another cation selective ion channel, which
is specifically expressed in EC cells (Nozawa et al., 2009).
TRPA1 is known to be critical for mechanosensation in other
cellular systems (Corey et al., 2004). Interestingly, the light touch
sensory neurons (Aβ) use the Piezo2 as primary mechanosensors
(Ranade et al., 2014). TRPA1 alters mechanosensory adaptation
to long-lasting stimuli (Kwan et al., 2009), suggesting that TRPA1
collaborates with Piezo2. However, the involvement of TRPA1
channel in the molecular mechanism of mechanosensation
remains unknown. Similarly, P2X are purine gated cation
ion channels involved in EC cell mechanosensation (Christofi,
2008; Linan-Rico et al., 2013a). While P2X channels are not
themselves mechanosensitive, it is well known that ATP release
is a common response to mechanical stimulation in many
mechanosensory systems. In the bladder epithelium, Piezo
activation is critical for ATP release, and therefore it may
provide a positive feedback loop upon mechanical stimulation
(Miyamoto et al., 2014). Caveolae are well known to be involved
in mechanosensation (Yu et al., 2006), and specifically in the
BON cells caveolae disruption alters mechanosensory response
(Kim et al., 2007). Mechanosensitive ion channels, such as Piezo,
have been previously shown to localize within microdomains
(Gottlieb et al., 2012), where their mechanosensitivity properties
are strongly affected. In addition to the Piezo2 channels, Piezo1
mechanosensitive ion channels have recently been shown to be
important for the response to static forces by GI epithelial cells
(Eisenhoffer et al., 2012). In chondrocytes, Piezo1 and Piezo2
channels cooperate to produce a mechanosensitive response (Lee
et al., 2014). However, it is currently not known whether Piezo1
channels are expressed in EC cells and if expressed, if they
cooperate with Piezo2 channels. In all, Piezo2 has emerged as an
important EC cell mechanosensor, but it is not yet clear whether
it works within a mechanosensitive complex.

Secondly, what is the downstream mechanism of mechanical
Piezo2 activation in EC cells (Figure 1)? Piezo2 is a non-selective
cation ion channel with rapid activation and inactivation kinetics
(Coste et al., 2010; Ranade et al., 2014). Upon mechanical
stimulation Piezo2 opens and inactivates within roughly 10
ms, which is significantly shorter than the subsequent 5-HT
release (Bertrand, 2004). This implies that while Piezo2 may
directly stimulate 5-HT secretion due to Ca2+ influx through
Piezo2 leading to exocytosis, signal amplification is required
for full response (Figure 1). This may come via either or both,
ionotropic or metabotropic pathways, both of which exist in

EC cells. As described above, it is now established that Piezo
channels are upstream of ATP release by regulating the density of
Ca2+ influx, but the details of this mechanism remain unknown
(Miyamoto et al., 2014; Cinar et al., 2015). In the Merkel cells,
Piezo2 activation leads to a complex downstream response,
which culminates in activation of voltage-gated calcium channels
(Nakatani et al., 2014). In EC cells, several possibilities exist. First,
Piezo2 activation leads to the initial depolarization that activates
voltage-gated ion channels, such as NaV or CaV channels,
which provide the final common pathway to Ca2+ influx that
is required for exocytosis. Second, Piezo2 may conduct enough
calcium to initiate a calcium-dependent-calcium release from the
internal stores. For example, intracellular calcium is known to be
important for the mechanosensitive response in the human EC
cell model BON (Kim et al., 2001a).

In summary, Piezo2 mechanosensitive ion channels are
critical for 5-HT release but several important details on
the EC cell primary mechanosensory complex and molecular
signaling mechanisms downstream of the Piezo2 channels
remain unknown. Figure 1 shows how Piezo 2 channels
could be involved in mechanotransduction leading to 5-HT
release.

Impact of Inflammation on Purinergic
Modulation of 5-HT Release
The topic of inflammation and alterations in 5-HT availability
has been previously reviewed (Coates et al., 2004; Gershon,
2004; Manocha and Khan, 2012; Mawe and Hoffman, 2013).
Briefly, 5-HT availability is increased in human inflammatory
diseases and in animal models of gut inflammation (Coates
et al., 2004; Manocha et al., 2012; Mawe and Hoffman, 2013).
Emerging evidence suggests abnormal regulation of 5-HT in
GI disorders and IBD (Manocha et al., 2012). Studies of EC
cell numbers, tryptophan hydroxylase 1 (Tph1) mRNA levels,
serotonin transporter (SERT) expression and/or 5-HT synthesis
indicate alterations in 5-HT signaling and bioavailability in
IBS and IBD (Coates et al., 2004; Manocha et al., 2012). Such
effects are observed in ulcerative colitis (UC), Crohn’s Disease
(CD), diarrhea-predominant IBS (IBS-D) and Constipation-
predominant IBS (IBS-C). Inflammation of the intestinal mucosa
alters 5-HT signaling in both humans and animal models (Magro
et al., 2002; Wheatcroft et al., 2005; Ghia et al., 2009). In IBS,
several studies reported associations of symptoms of IBS and
numbers of EC cells, expression of mRNA levels of Tph1, and
SERT expression in mucosal biopsy; 5-HT content is also altered
in IBS (Miwa et al., 2001; Coates et al., 2004; Spiller, 2008;
Camilleri, 2009; Malinen et al., 2010; Cremon et al., 2011).
Alterations in 5-HT signaling were also shown to be associated
with colorectal cancer, diverticular disease (Costedio et al., 2008)
and celiac disease (Wheeler and Challacombe, 1984; Coleman
et al., 2006) as well. In some cases, excess release of 5-HT
from EC cells such as occurs with the chemotherapeutic agent
cisplatin can cause intense GI discomfort and vagal afferent
stimulation of 5-HT3 receptors can lead to nausea and vomiting
(Tyers and Freeman, 1992; Gale, 1995; Hillsley and Grundy,
1999).
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Localization of 5-HT expressing EC cells in the intestinal
mucosa provides direct access of oral medications to modulate
5-HT release or synthesis. Clinical trials with a small molecule
inhibitor of Tph1 to suppress synthesis of 5-HT in EC cells was
shown to be efficacious in alleviating the symptoms of diarrhea-
predominant IBS—it increased stool consistency, relieved pain
and discomfort in the patients and reduced bioavailability of 5-
HT (Sanger, 2008; Brown et al., 2011). Experimental medicines
given by oral administration show efficacy in pre-clinical animal
models of IBD and IBS. A better understanding of purinergic
regulation of 5-HT release in health and disease may also
provide potential novel therapeutic targets on EC cells. In fact,
oral drugs targeting adenosine receptors are being pursued
in clinical trials for rheumatoid arthritis, CD, bladder pain
syndrome, uveitis, IBS and functional dyspepsia (Ochoa-Cortes
et al., 2014).

Inflammatory mediators from immune cells such as IL-13
regulate EC cell hyperplasia and 5-HT production in the gut
(Manocha et al., 2013). In IL-13−/− deficient mice infected
with Trichuris muris parasite, the numbers of EC cells and
5-HT amount were lower compared to wild-type mice after
infection. IL-13−/− mice fail to clear the parasite from the
gut unlike wild-type mice. Treatment of control or IL-13−/−

mice with IL-13 had the opposite effect to increase EC cell
numbers and 5-HT amount. BON cells produced more 5-HT in
response to IL-13 (Manocha et al., 2013). This provides proof
of concept for immunologic control of 5-HT release in the gut
that may be relevant in GI disorders, IBD or GI infections
and may provide a paradigm for investigation of the impact of
immune/inflammatory mediators on mechanotransduction and
5-HT release from EC cells.

Available data suggest that vagal afferent signaling via 5-
HT receptors is involved in regulation of satiety and hunger
in humans. Nutrients (i.e., glucose, carbohydrate breakdown
products, lipids/free fatty acids) can activate a vago-vagal
reflex to inhibit gastric emptying (Raybould et al., 2003) and
also contribute to satiety signals to suppress food intake by
simultaneous activation of 5-HT3 and CCK1 receptors. In the
inflamed intestine 5-HT can activate extrinsic spinal afferents
to transmit pain signals to the brain (Mawe and Hoffman,
2013).

5-HT3 receptors on intrinsic or extrinsic nerve fibers of the
mucosa are activated by 5-HT release from EC cells (Grundy,
2008; Mawe and Hoffman, 2013). Intrinsic primary afferent AH
neurons of the myenteric plexus (i.e., IPANs) projecting to the
mucosa can be activated by 5-HT application to the mucosa
to activate 5-HT3 receptors on the afferent process (Bertrand
et al., 2000). 5-HT3 antagonists are effective drugs for IBS-D to
treat the diarrhea (Houghton et al., 2000; Camilleri et al., 2001;
review by Fayyaz and Lackner, 2008). Inhibition of motility by
blocking excitatory 5-HT3 receptors on intrinsic afferents and
other neurons in the ENS contributes to the anti-diarrheal effect.
5-HT3 antagonists are also effective against GI discomfort and
pain sensation by blocking 5-HT3 receptors on both intrinsic
and extrinsic afferent fibers. 5-HT3 agonists are also being tested
for the treatment of constipation for IBS-C for their ability to
promote motility (Choung et al., 2008).

Impact of Pathologic Conditions, GI
Diseases and GI Disorders on Gut
Mechanotransduction
In vivo serotonin release has been induced by intestinal smooth
muscle contraction and other mechanical forces (Kirchgessner
et al., 1996; Bertrand, 2006). EC cells, epithelial cells and
other cells of the intestinal tract (enteric glial cells, ICCs,
mechanosensitive neurons) experience a “myriad of physical
forces” during peristaltic activity including mucosal pressure,
deformation, compression, shear stress, strain, centrifugal forces
(i.e., during segmenting movements of the digestive phase) and
other forces. GI disease, disorders and pathologic conditions
alter these forces leading to adverse effects in the biology of
EC (or other cells). For example, during chronic intestinal
inflammation, an increase in intraluminal pressures can alter
gut physiology (Kellow and Phillips, 1987; Brodribb et al.,
1997; Basson et al., 2000). Abnormalities in these forces
and hence “mechanotransduction” in EC cells can result in
pathophysiological changes and even contribute to motility
disorders (Kuemmerle, 2000). Inflammation (and injury) from
an inflammatory bowel disease (i.e., Crohn’s Disease) or bowel
wall edema caused by surgical procedures can further elevate
intraluminal pressures and cause abnormal motility (Granger
and Barrowman, 1983). Following intestinal surgery, the bowel
takes up fluid and becomes edematous, and intra-abdominal
pressure can increase as high as 15–40 mm Hg above normal for
several days (Williams and Simms, 1997; Madl and Druml, 2003).
Furthermore, in IBD, substantial increase in colonic blood flow
(i.e., 2 to 6-fold) can increase capillary pressures (Hultén et al.,
1977) and also interstitial pressures. In IBS patients, intraluminal
pressures in the small bowel can reach 50 mm Hg (Kellow and
Phillips, 1987). Mucosal atrophy is a common feature in IBD
(Surawicz et al., 1994), in states of ileus or after prolonged fasting.
Normal gut forces are altered withmucosal atrophy, and aberrant
peristaltic contractions could be a contributing factor in GI
pathology. Furthermore, during open intestinal surgery, physical
manipulations of the bowel activate mechanosensitive cells of
the gut wall. Mechanical forces in the gut can also influence
epithelial cancers (Basson et al., 2000; Fernandez-Sanchez et al.,
2015). Therefore, pathologic conditions of the GI tract influence
mechanotransduction, and hence ATP and 5-HT release from
EC cells with important consequences to serotonergic signaling
in the gut.

Role of 5-HT in the Pathogenesis of
Intestinal Inflammation
EC derived 5-HT plays a key role in the pathogenesis of intestinal
inflammation and activation of dendritic cells in the mucosa
has been suggested as a mechanism (Li et al., 2011). First, in
DSS or DNBS colitis, reduction in the availability of mucosal
5-HT by deletion of Tph1, the enzyme that synthesizes 5-
HT reduces the severity of inflammation (Ghia et al., 2009).
Similarly, colitis animals treated with a selective Tph1 inhibitor
LP533401 to suppress 5-HT synthesis had reduced intestinal
inflammation Margolis et al. (2011). The severity of colitis is
increased if the animals are treated with the 5-HT precursor
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5-hydroxytryptophan to bypass Tph1 in the Tph1 KO mice. In
SERT deficient mice, higher bioavailability of 5-HT aggravates
the intestinal inflammatory response in animal models of colitis,
i.e., TNBS or IL10 KO mice (Bischoff et al., 2009; Haub et al.,
2010).

5-HT release is tightly regulated by purinergic autocrine and
paracrine mechanisms and purinergic signaling is very sensitive
to inflammation (Ochoa-Cortes et al., 2014). Emerging evidence
indicates abnormal purinergic signaling in EC cells, i.e., A2B,
P2X3, and 5-HT release although our knowledge remains very
limited. ATP-gated - P2X2/3 and P2X3 channels represent a
potential therapeutic target for analgesia/pain (Antonioli et al.,
2008; Burnstock, 2008a,b; Ochoa-Cortes et al., 2014). ATP release
from EC cells (or from surrounding epithelial cells) can activate
these ATP-gated P2X channels on afferent fibers in the mucosa to
transmit pain sensation to the brain (Burnstock, 2008a,b, 2009).
Wynn et al. (2004) showed that the purinergic P2X component
of mechanosensory transduction in response to in vivo luminal
distension is increased in experimental colitis. P2X receptors
are also linked to mechanosensitivity in BON cells and P2X3

receptors are expressed on human colonic EC cells identified by
their 5-HT immunoreactivity and a P2X agonist α, β-MeATP
can induce 5-HT release (Linan-Rico et al., 2013a). Multiple
mechanisms have been proposed to regulate ATP release in
a variety of cells, and among them, pannexin and connexin
channels are receiving a great deal of attention (Huang et al.,
2007; Anselmi et al., 2008; Beckel et al., 2014; Lohman and
Isakson, 2014). The mechanisms regulating ATP release from EC
cells are unknown in normal or inflamed states.

Discrete alterations in P2X3 and A2B purine receptor
expression occur in EC, epithelial cells and lamina propria
from sigmoid colon of 11 UC surgical cases compared with
10 non-inflamed diverticulitis controls. A striking effect of
mucosal inflammation in UC is the down-regulation of P2X3R.
Detectable P2X3-immunoreactivity in hEC (5-HT+) cells was
reduced from 15% to <0.2% of cells, whereas expression was not
reduced in HuC/D+ neurons or inflammatory cells. In contrast,
adenosine A2B-immunoreactivitity was reduced in both EC cells
and neurons. The functional consequence of down-regulation of
P2X3 (or A2B) receptors in UC is not known. In a colitis model,
there is a loss of P2X-purinergic vascular regulation in mouse
colon, but that was associated with up regulation of CD39, an
enzyme that reduces the availability of ATP for activating P2X
receptors (Neshat et al., 2009). P2X receptor mediated visceral
hyperalgesia occurs in a rat model of visceral hypersensitivity
(Xu et al., 2008). Functional upregulation of P2X3R rather than
down regulation occurs in the chronically compressed dorsal
root ganglion of the rat (Xiang et al., 2008). In our UC study
described above, UC caused down regulation of A2B, and in
68% of EC cells A2B was not detectable, where as in FACS-
sorted human EC (hEC) cells isolated from surgical specimens
in CD patients it was shown to cause upregulation of A2B (Chin
et al., 2012). Our study did not determine if in the remaining
32% of cells still expressing A2B in UC specimens, it was up
regulated. A2B receptors are up regulated in both UC and CD
biopsy, but the cell types were not identified (Rybaczyk et al.,
2009). Differences in A2B expression in EC from UC and CD

could be due to differences between diseases (i.e. CD vs. UC),
severity, chronicity or treatment of disease. Also, these cells are
very sensitive to mechanical stimulation, and unavoidable EC cell
handling, enzymatic dispersion, and mechanical agitation of EC
cells from CD during isolation and FACS sorting (compared to
intact EC cells in mucosa of UC) may affect their expression in
different ways.

Despite the evidence for abnormal regulation of 5-HT in
various diseases, it remains unknown how these changes in
5-HT occur (5-HT content, purinergic receptors, abnormal
purinergic regulation associated with 5-HT release, content,
Tph1 mRNA, etc.). Our hypothesis is that abnormal purinergic
modulation of 5-HT release from EC cells is involved in the
pathophysiology of several different GI disorders including
IBS and IBD. Our knowledge of how inflammation leads
to abnormal 5-HT signaling in the gut is marginal, and
the role of purines, Piezo2 channels, GPCRs and other
molecular components illustrated in Figure 1 deserves serious
attention.

Emerging evidence from recent studies indicates that 5-HT
contributes to the pathogenesis of intestinal inflammation. EC
cell specific KO mice are proposed to be used in determining if
changes in purinergic modulation of 5-HT release can influence
the extent of gut inflammation. It may be a better/alternative
strategy to figure out how to selectively reduce 5-HT release and
bioavailability to limit the inflammatory response, rather than
eliminating synthesis of 5-HT in EC cells that is important in
so many physiological functions in and outside the gut. It is
proposed that targeting purinergic modulation of 5-HT release
and signaling at the level of the EC cell is a potential therapeutic
strategy to treat GI Disorders and IBD, but this remains to
be proven.

Adenosinergic A2B Mechanosensitivity in
IBD
A recent study by Chin et al. evaluated the role of mechanical
forces and adenosine in the regulation of human intestinal
EC cell 5-HT secretion in normal and Crohn’s (IBD) EC cells
(Chin et al., 2012). Human EC cells express stimulatory A2B

receptors and MS using a rhythmic flex model induces A2B

activation. An adenosine agonist NECA stimulated, whereas an
A2B receptor antagonist MRS1754 inhibited secretion of 5-HT,
associated with corresponding changes in intracellular cAMP
levels and pCREB. MS induced 5-HT secretion that could be
inhibited by the A2B antagonist and amplified by NECA. Normal
and IBD-EC cells responded to A2B receptor activation and A2B

receptor activation and A2B antagonists could block mechanical
evoked 5-HT secretion. This confirmed earlier findings on
the role of A2B receptors in mechanosensory signaling in
the BON cell model (Christofi et al., 2004b). MS activated a
PKA dependent 5-HT secretory pathway, and PKA/MAPK/IP3-
dependent transcription. They also found that IBD-EC cells from
Crohn’s mucosa compared to normal mucosa from diverticulitis
patients, and neoplastic EC cells (KRJ-1) overexpressed A2B

(and A2A) receptors and released more 5-HT (Chin et al.,
2012).
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Further studies can identify abnormal purinergic
mechanosensory signal transduction mechanisms in EC
regulating 5-HT release in UC and CD and in animal models
of IBD or functional GI disorders. A bigger challenge is to
develop more sophisticated approaches to evaluate impact of
abnormal purinergic mechanosensory signaling in EC cells
in intestinal reflexes (i.e. mucosal secretory reflexes, digestive
motility, ascending and descending reflexes), as well as visceral
pain sensation in IBD and IBS.

Purinergic Mechanosensory Transduction
and Visceral Pain and Interactions with
5-HT
Visceral pain occurs in various diverse disorders including
IBS, renal colic, dyspepsia, IBD, dysmenorrhea, interstitial
cystitis, and angina. A subset of IBD patients in clinical
remission without any signs of intestinal inflammation continue
to experience pain and visceral hypersensitivity (IBS-like
symptoms). Burnstock proposed the purinergic mechanosensory
transduction hypothesis of visceral pain—the main concept is
that purinergic mechanosensory transduction occurs in visceral
tubes (ureter vagina, salivary and bile ducts and gut) and sacs
(urinary bladder, gall bladder, lungs). Specifically in the gut,
ATP released from epithelial cells during distension acts on
P2X3 or P2X2/3 receptors to modulate peristalsis via intrinsic
sensory reflexes (involving the ENS) or subepithelial sensory
nerves transmitting pain signals via the dorsal root ganglia and
spinal afferents to the central nervous system (CNS). Evidence
for the hypothesis was obtained from a rat pelvic sensory nerve-
colorectal preparation. By distending the colorectum, there
was pressure-dependent increase in ATP release from epithelia
lining the mucosa, and causes pelvic nerve excitation. ATP
released during extreme (colic) distension acts on P2X3 and/or
P2X2/3 receptors on high-threshold extrinsic sensory nerve fibers
transmitting pain signals to the CNS (Burnstock, 2009). ATP
release and P2X receptor mediated nociceptive sensory nerve
responses are enhanced in a model of colitis (Wynn et al.,
2004). P2X receptor mediated visceral hyperalgesia has also been
reported in a rat model of chronic visceral hypersensitivity (Xu
et al., 2008). Experimental evidence in the ferret esophagus
suggests that ATP sensitization of vagal afferents to MS is
also implicated in visceral hypersensitivity in non-erosive reflux
disease (Page et al., 2002; Banerjee et al., 2006; Knowles and Aziz,
2008). ATP interacts with other mediators that can activate pelvic
afferent fibers in the colorectum including 5-HT, bradykinin,
prostaglandins and substance P (Barthó et al., 1999; Wynn
and Burnstock, 2006). As shown in Figure 2, ATP release from
epithelial cells or EC cells can have a paracrine (or autocrine)
effect on 5-HT secretion and influence pain signals in an
indirect way as well. 5-HT secretion acts on 5-HT3 receptors
on extrinsic afferents transmitting pain information to the CNS.
Furthermore, TRPV1 channels are sensitized by ATP released
during distension, especially in pathologic states such as colitis
(Lakshmi and Joshi, 2005; Sugiura et al., 2007; De Schepper
et al., 2008; Christianson et al., 2009; Malin et al., 2009). In
addition to P2X receptors, P2Y receptors are also involved in

the initiation or modulation of nociception. A recent study by
Hockley et al. (2016) showed that P2Y1 and P2Y2 receptor
activation (i.e., by ADP and UTP) stimulate mouse and human
visceral nociceptors suggesting the possible involvement of P2Y-
dependent mechanisms in the generation of visceral pain in GI
disorders.

Future Directions
Work done in the BON cell model on purinergic signaling
will need to be verified in normal hEC cells from surgical
specimens. A caveat is that EC cells are extremely sensitive
to mechanical stimulation or any manipulations that alter the
shape of the cells or deformation of the membrane in EC cells.
Therefore, one of the unavoidable short-comings of enzymatic
isolation, FACS sorting of EC cells is that such extreme isolation
techniques, necessary to separate and purify hEC cells from their
natural environment, will undoubtedly alter their responsiveness,
and could lead to alterations in transcriptional regulation of
receptors, channels and other proteins involved in the physiology
of EC cells. This makes it more difficult to interpret data on
EC cells from control and inflamed/IBD tissues. Therefore, a
fluorescently tagged EC cell mouse model with either GFP
(Schmidt et al., 2013) or CFP (Li et al., 2014) could provide
a means to target single EC cells in vitro in their intact
microenvironment, the mucosa lining the GI tract, by Ca2+

imaging, patch-clamp, electrochemical detection of 5-HT or
purines to study modulation of 5-HT secretion.

Information is lacking on the role of Piezo, purinergic or
other components of the mechanotransductive pathway in EC
cells in gut motility reflexes. The technology is available to
explore ways to engineer EC-cell specific KO mouse models for
purinergic receptors (P2Y1, P2Y12, A2B) or Piezo 2 channels
to study their role in the physiological regulation of mucosal
gut reflexes or the involvement in the pathophysiology of GI
disorders or inflammatory bowel diseases. Different molecular
approaches can be taken in order to identify and sort out EC
cells of the intestine in vivo. A Bacterial Artificial Chromosome
(BAC) transgene approach uses long fragments of genomic
DNA containing all the regulatory region of a specific gene to
generate cell-specific transgenic animals. This approach has been
used to successfully generate mouse lines faithfully mimicking
the endogenous locus expression especially for the study of a
specific neuronal population (Heintz, 2001; Yang and Gong,
2005). This technology can be explored further to generate EC-
cell specific transgenic mouse models to study physiological
regulation of specific purinergic or other targets linked to
mechanotransduction in gut reflexes.

A novel revolutionary technology to effectively edit the mouse
genome and generate new mouse lines in a fraction of the time
required with the classical methods has recently become available
to the mouse modeling community (Wang et al., 2013; Yang
et al., 2013; Singh et al., 2015). This technology, called CRISPR
(Clustered Regularly Interspaced Palindromic Repeats, which
the Mouse Modeling Core at OSU has optimized) will allow
us to create better models modifying and tagging genes in the
endogenous context bypassing the need of extra pieces of DNA
and the inherent issues associated with their forced expression.
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Responses to purines (and perhaps Piezo 2 channels)
are likely to be polarized, as has been shown for A2B

receptor activation of epithelial cells (reviewed by Cooke
and Christofi, 2006). Therefore, studies that can discriminate
between luminal and basolateral effects of purines on 5-
HT secretion are essential to address the physiological and
pathophysiological regulation of purines on 5-HT secretion
and initiation of gut reflexes. It is worth pursuit, to carry
out such studies in human mucosal biopsy from endoscopic
examination, to study normal, IBD and IBS biopsy. The
receptors and mechanisms involved can thus be investigated.
Polarized responses could potentially have differential sensitivity
to intestinal inflammation.

Patch-clamp analysis was used to evaluate the effects of the
uridine neucleotide UTP on currents and membrane potential
(Vm) linked to mechanosensitivity and purinergic modulation—
Findings to date indicate that UTP can modulate Vm and KV

channels in BON cells (Linan-Rico et al., 2014). Studies on ionic
mechanisms of purinergic modulation of mechanosensitivity are
worth pursuit. One possibility is that ATP release occurs as a
result of activation of one or more mechanosensitive channels
in EC cells, given that ATP release occurs in response to
mechanical stimulation. Studies in normal EC cells are needed
to confirm their presence and levels of expression in normal (or
disease states), and involvement inmechanosensory transduction
leading to 5-HT release. The Piezo 2 channel is a mechanogated
channel identified in EC cells for mechanotransduction in
secretomotor reflexes (Wang et al., 2016). Whether Piezo 2
activation (or other mechanogated channels) leads to ATP release
in EC cells is a fundamental question.

There are known species differences in P2Y4, P2Y11,
P2X1/P2X2, A3, and A1 receptors, and ligands that are suitable
in the mouse (guinea pig or rat) may not necessarily work the
same in human EC cells. Secondly, notable species differences in
purinergic signaling between animals and humans (Cooke et al.,
1999, 2004; Kennedy et al., 2000; Wunderlich et al., 2008; Liñán-
Rico et al., 2015), make it necessary for studies to compare mouse
and human EC, to identify suitable targets in mouse for detailed
mechanistic studies and take advantage of genomic animal
models, that could also be relevant to human EC physiology and
pathophysiology.

In the physiological setting, extracellular ATP or UTP levels
(or their metabolites adenosine, ADP, AMP, and UDP) are kept
low (∼10 nM) that may be sufficient to cause a transient increase
in IP3-dependent Ca

2+ signals (Koizumi et al., 2002). However,
cellular injury, mechanical stress, inflammation or activation and
degranulation of mast cells may increase levels of nucleotides
to levels that are sufficient to evoke much larger, and more
persistent global Ca2+ signals in cells (Osipchuk and Cahalan,
1992; Lazarowski et al., 1997, 2003) including EC cells. These
aspects are worth investigation.

SUMMARY AND CONCLUSIONS

Our hypothesis for mechanotransduction in EC cells is illustrated
in Figure 1. The focus of studies on mechanotransduction in
EC cells studied in BON cells, other cell lines, mouse EC cells

or most recently human EC cells refer to purinergic autocrine
modulation of 5-HT release by ATP, UTP and adenosine for
moment-to-moment fine-tune modulation of 5-HT release from
EC cells. Release of these purines from surrounding epithelial
cells contributes to paracrine stimulation of EC cells. Cell to
cell communication in response to mechanical stress occurs via
bilateral release of purines in polarized epithelia. Moreover, it
is not known whether the same or different mechanosensory—
mechanotransduction pathways, including those involved in
releasing purines (ATP and UTP) operate in EC cells and
surrounding epithelial cells during peristalsis. Furthermore, it
is also not clear what physiological conditions favor autocrine
(EC release of purines) or paracrine (epithelial release of
purines) purinergic regulation. Both 5-HT and ATP can trigger
intrinsic sensory reflexes, although to date, the most completely
studied signaling pathway is 5-HT. Our unified hypothesis is
that autocrine purinergic regulation provides local, moment-
by-moment fine tune modulation of 5-HT release involved
in intrinsic sensory gut reflexes, whereas paracrine purinergic
regulation by surrounding epithelia provides more global
regulation of 5-HT secretion and coordination of the movements
of large portions of the gut. The mechanisms are not understood.

Release of 5-HT has a myriad of functions beyond intrinsic
gut reflexes, including transmission of satiety signals, pain
signals, induction of emesis, and the pathogenesis of intestinal
inflammation (Figure 2). Abnormal 5-HT signaling occurs in
IBD and GI disorders, but little is known about how it
occurs in EC cells. Purinergic signaling is very sensitive to
inflammation, and this is also the case in EC cells. 5-HT
release is tightly regulated by purines, and it is therefore
likely that purinergic mechanisms are linked to abnormal 5-
HT secretion and hence signaling in inflamed gut. Beyond
the EC cell, according to Burnstock’s hypothesis of purinergic
mechanosensory transduction of visceral pain, excess, bulk ATP
release from surrounding epithelial cells activates subepithelial
sensory nerves transmitting pain signals to the CNS via
P2X3 receptor activation. The emerging picture is a complex
regulation of intestinal reflexes by 5-HT and ATP with important
interactions occurring between them in normal and inflamed
diseases. Arguably, a better understanding of such interactions
is a critical step in elucidating mechanisms of abnormal 5-HT
signaling in disease states.

Mechanotransduction is a fundamental physiological
mechanism in EC cells, leading to 5-HT and ATP release,
but there are still many unanswered questions. What is the
mechanosensor(s)? What is the relationship between Piezo 2
channels and ATP release? Are other mechanogated channels
involved? Can the GPCRs act as the mechanosensor? What is the
physiological role of Piezo 2 channels and purinergic receptors
in EC cells in gut motor reflexes and visceral sensation? What
are the purinergic receptors linked to mechanotransduction in
normal mouse and human EC cells compared to those in human
BON cells (see Figure 3)? To what extend is altered purinergic
signaling in EC cells responsible for abnormal 5-HT signaling in
IBD and IBS?

Answering these questions raises the possibility that
drugs targeting several distinct signaling pathways linked
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FIGURE 3 | Purinergic receptors provide dual modulation of

mechanically—evoked 5-HT release in BON cells. MS releases purines to

act on stimulatory A2 (A2A and A2B receptors activated by ADO), ATP-gated

P2X3 (activated by ATP), P2Y1 (activated by ADP), P2Y4 (activated by UTP),

or P2Y6 (activated by UDP) receptors to stimulate 5-HT release. During MS,

activation of inhibitory A1 (activated by ADO), A3 (activated by ADO/INO,

inosine), or P2Y12 (ADP) receptors leads to attenuation of 5-HT release. Not all

receptors are expressed on the same cells, and stimulatory P2Y1 and

inhibitory P2Y12 receptors are expressed on different populations of EC cells.

to mechanical stimulation, including Piezo 2 mechanogated
channels, the P2Y1,4,6—Gαq/PLC/IP3-SERCA—Ca2+ signaling
pathway, P2Y12—AC/cAMP signaling pathway, P2X—channels,
or adenosine GPCRs (A1, A2A, A2B, and A3) could provide
important novel targets for therapeutic interventions where
improper mechanosensation of EC cells (and abnormal gut
reflexes) can contribute to symptoms of diarrhea, constipation or
visceral pain. Finally, off-target GI effects should be considered
for drugs such as clopidogrel (Plavix) that irreversibly binds
P2Y12 receptors (Berger, 2013) that could potentially disrupt
motor functions.
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