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Specific IL-1 family cytokines are expressed by cells as cytosolic pro-forms that require cleavage for their activity and cellular
release. IL-1β, IL-18, and IL-37 maturation and secretion is governed by inflammatory caspases within signaling platforms called
inflammasomes. By inducing pyroptosis, inflammasomes can also drive the release of the alarmin IL-1α. Recent advances
have transformed our mechanistic understanding of inflammasome signaling, cell death decisions, and cytokine activation and
secretion. Here, we provide an updated view of inflammasome signaling; mechanisms underpinning IL-1α, IL-1β, IL-18, and IL-37
maturation and release; and the functions of these cytokines in protective and pathological inflammation.

Introduction
IL-1α and IL-1β are potent proinflammatory cytokines in immu-
nity and immune pathology. IL-1α/β (collectively termed IL-1) is
the founding member of the IL-1 family of cytokines, which also
includes IL-1 receptor antagonist (IL-1Ra), IL-18, IL-33, IL-36Ra,
IL-36α, IL-37, IL-36β, IL-36γ, and IL-38 (Dinarello et al., 2010).
The IL-1 family of cytokines possesses a multitude of biological
activities in immunity and inflammation. Many members of this
family are proinflammatory (e.g., IL-1α and IL-1β), while some are
anti-inflammatory (e.g., IL-37, IL-38, IL-1Ra), and others can be
pro- or anti-inflammatory, depending on the context (e.g., IL-18).

Specific members of the IL-1 family are expressed by cells as
cytosolic pro-forms that require cleavage for secretion of their
active forms.Maturation and secretion of IL-1β, IL-18, and IL-37 are
mediated by inflammatory caspases within inflammasome signal-
ing complexes (Monteleone et al., 2015). Inflammasome signaling
often induces pyroptosis, a form of programmed cell lysis that al-
lows the passive release of alarmins, including IL-1α. Research over
the last few years has transformed our understanding of in-
flammasome biology, and in particular, the molecular mechanisms
underlying the activation and secretion of these IL-1 cytokines.
This article will briefly overview our current understanding of the
functions of IL-1α, IL-1β, IL-18, and IL-37 in host defense and dis-
eases (Table 1); for furthermechanistic details therein, we refer the
reader to recent reviews (Chen and Schroder, 2013; Mantovani
et al., 2019). We then provide an updated understanding of in-
flammasome signaling and inflammasome-driven maturation and
secretion of IL-1 family cytokines in host defense and disease.

IL-1 family members promote or suppress inflammation
IL-1α/β: The archetypal proinflammatory cytokine
IL-1α and IL-1β are produced during infection and in a wide
range of inflammatory diseases (Dinarello, 2009). While gen-
erally host-protective during infection, IL-1 contributes to sev-
eral inflammatory pathologies, such as rheumatoid arthritis,
osteoarthritis, gout, and type 2 diabetes. Elevated IL-1 signaling
also drives the pathogenesis of several hereditary auto-
inflammatory diseases, including cryopyrin-associated periodic
syndromes, familial Mediterranean fever, and TNF receptor–
associated periodic syndrome (Gabay et al., 2010; Dinarello et al.,
2012; Lopalco et al., 2015). IL-1α and IL-1β signal via a common
cell surface receptor (Table 1). These cytokines thus induce
many overlapping biological effects systemically and at sites of
local inflammation. IL-1 activates cells of the innate and adaptive
immune system and exerts a wide range of biological activities
that are protective during infection, such as promoting fever,
vasodilation, hematopoiesis, angiogenesis, the acute phase re-
sponse, leukocyte attraction and extravasation, lymphocyte ac-
tivation, and antibody synthesis (Garlanda et al., 2013). IL-1α and
IL-1β are, however, expressed by different cell types, and their
activity is controlled by distinct mechanisms, engendering some
differences in their functions. IL-1α is expressed in a wide range
of cell types, including keratinocytes, epithelial cells, endothelial
cells, fibroblasts, and hepatocytes, whereas IL-1β is primarily
produced bymyeloid cells (Hacham et al., 2002; Dinarello, 2011).
Both cytokines can be released extracellularly, but IL-1α can also
translocate to the nucleus to restrain its proinflammatory

.............................................................................................................................................................................
Institute for Molecular Bioscience and Institute for Molecular Bioscience Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia.

Correspondence to Kate Schroder: k.schroder@imb.uq.edu.au.

© 2019 Chan and Schroder. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after
the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0
International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

Rockefeller University Press https://doi.org/10.1084/jem.20190314 1

J. Exp. Med. 2019

https://orcid.org/0000-0001-9261-3805
mailto:k.schroder@imb.uq.edu.au
http://www.rupress.org/terms/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1084/jem.20190314
http://crossmark.crossref.org/dialog/?doi=10.1084/jem.20190314&domain=pdf


activity (Cohen et al., 2010) or allow it to function as a proin-
flammatory transcription factor (Werman et al., 2004). IL-1α is an
alarmin released by dying cells to initiate the early phase of sterile
inflammation, while IL-1β is produced by inflammasomes at sites
of tissue infection or sterile injury. Both IL-1α and IL-1β induce
local inflammation and the recruitment and activation of neu-
trophils, monocytes, and macrophages, with some distinctions in
timing and activity (Rider et al., 2011). These cytokines thus serve
overlapping functions to coordinate local inflammation.

IL-18: A moonlighting inflammatory modulator?
IL-18 is constitutively expressed in myeloid cells and epithelial
cells, such as keratinocytes. IL-18 signals via a heteromeric receptor
(Table 1), and this interaction is antagonized by the IL-18–binding
protein. IL-18 is generally considered to be a proinflammatory
cytokine, as it up-regulates cell adhesion molecules for leukocyte
trafficking, induces nitric oxide synthesis and chemokine pro-
duction, and instructs adaptive immunity (Dinarello, 2018). A
key function of IL-18 is to cooperate with IL-12 in inducing IFN-γ
production from T helper cells and natural killer cells, leading to
natural killer cell activation, T helper type 1 cell skewing, up-
regulated antigen presentation, and antiviral and antitumor
functions (Schroder et al., 2004). Several diseases are driven by
elevated production of IL-18, including multiple sclerosis, in-
flammatory bowel disease, Crohn’s disease, rheumatoid arthri-
tis, systemic lupus erythematosus, and graft-versus-host disease
(Dinarello, 2007; Dinarello et al., 2013). Despite its proin-
flammatory functions, a growing number of studies indicate
important physiological functions for IL-18 in homeostasis. IL-18
deficiency in mice leads to hyperphagia, obesity, and insulin
resistance (Netea et al., 2006; Zorrilla et al., 2007). IL-18 in-
sufficiency is also associated with colitis and macular degener-
ation in mice (Chen et al., 2007; Elinav et al., 2011; Hirota et al.,
2011; Doyle et al., 2012). Interestingly, IL-18 exerts a protective
function in suppressing aberrant neuronal transmission in
Alzheimer’s disease (Tzeng et al., 2018). Thus IL-18 has both
harmful and protective functions in inflammatory pathologies.

IL-37: An immune suppressor
IL-37 is an anti-inflammatory cytokine expressed by human
blood monocytes, tissue macrophages, lymphocytes, and syno-
vial, neoplastic, and epithelial cells (Nold et al., 2010). Human
IL-37 lacks a mouse orthologue, so many studies characterizing
IL-37 function employ overexpression of the human cytokine
in murine cells, where it exerts several anti-inflammatory

functions. IL-37 translocates to the nucleus to down-regulate
expression of inflammatory mediators (Sharma et al., 2008;
Nold et al., 2010). The anti-inflammatory program of IL-37 is,
however, primarily mediated via signaling through its receptor
(Table 1; Molgora et al., 2016). Some inflammatory and diabetic
diseases are associated with lower levels of IL-37, suggestive of a
dysregulated anti-inflammatory program (Ballak et al., 2014;
Zeng et al., 2017). Somewhat counterintuitively, expression of
this anti-inflammatory cytokine is elevated in several human
disease conditions, which may represent a mechanism to attempt
to dampen pathological inflammatory responses. For example,
IL-37 is elevated in patients with inflammatory bowel disease
(Imaeda et al., 2013;Weidlich et al., 2014) and rheumatoid arthritis
(Zhao et al., 2014; Xia et al., 2015a,b; Yang et al., 2015).

Inflammasomes govern the maturation of IL-1β, IL-18, and
IL-37
IL-1β and IL-18 are expressed as inactive precursors (pro–IL-1β and
pro–IL-18) and require processing at specific sites (Fig. 1) for their
activity and secretion (Afonina et al., 2015). IL-37 cleavage also
enhances its biological activity (Fig. 1). The maturation and secre-
tion of these cytokines are controlled by cysteine proteases called
caspases within inflammasomes. Inflammasomes are activation
platforms for the inflammatory caspases, caspase-1 (canonical in-
flammasomes), or caspase-4/5/11 (noncanonical inflammasomes),
but these signaling platforms also crosstalk to apoptotic caspases
(e.g., caspase-8) for the regulation of IL-1 cytokines.

Canonical inflammasomes cleave IL-1β and IL-18 to generate the
mature cytokines
Canonical inflammasomes are composed of an inflammasome
sensor protein bound to pro–caspase-1, usually via an adapter,
ASC (apoptosis-associated speck-like protein containing the
caspase activation and recruitment domain [CARD]). Canonical
inflammasome sensor proteins are NLRP1, NLRP3, NLRP6,
NAIP/NLRC4, AIM2, and PYRIN, which each respond to speci-
fic signals. These sensors recognize pathogen- and danger-
associated molecular patterns indicative of infection, cellular
damage, or cell stress (Schroder and Tschopp, 2010). Recogni-
tion of these signals triggers sensor protein oligomerization,
which in turn drives ASC recruitment and polymerization into a
∼1-µM structure (the “ASC speck”). The CARD of ASC, or the
CARD of the inflammasome sensor protein (NLRP1 and NLRC4),
recruits caspase-1 monomers via CARD–CARD interactions.
Clustering upon the inflammasome promotes caspase-1 dimer-
ization, thereby unleashing protease function (Boucher et al.,
2018; Fig. 2 A). Caspase-1 contains two linker regions that are
sensitive to autoprocessing. A CARD domain linker connects the
N-terminal CARD domain to the C-terminal protease domain,
while the protease domain contains large (p20) and small (p10)
enzymatic subunits separated by an interdomain linker. Upon
inflammasome-mediated dimerization, caspase-1 autocleaves at
the interdomain linker to generate a fully active p33/p10 species,
which remains bound to the inflammasome (Fig. 2 A). Cleavage
at this interdomain linker is required for caspase-1 to process
pro-IL-1β in macrophages (Broz et al., 2010), which occurs at
two sites (D26 and D116 of pro–IL-1β) to produce either a 26-kD

Table 1. Specific members of the IL-1 family and their receptors and
function

IL-1 family member Receptor complex Function

IL-1α IL-1R1/IL-1R3 Proinflammatory

IL-1β IL-1R1/IL-1R3 Proinflammatory

IL-18 IL-1R5/IL-1R7 Proinflammatory

Anti-inflammatory

IL-37 IL-1R5/IL-1R8 Anti-inflammatory
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product or the mature 17-kD form (Afonina et al., 2015; Fig. 1).
Caspase-1 cleaves pro–IL-18 at residue D36 to convert the inac-
tive 23-kD precursor into the 18-kD active cytokine (van de
Veerdonk et al., 2011; Fig. 1). Caspase-1 also cleaves another
substrate, gasdermin D (GSDMD), to generate a pore-forming
fragment that targets the plasma membrane (Aglietti et al.,
2016; Ding et al., 2016; Liu et al., 2016; Sborgi et al., 2016). If
the GSDMD pore burden in the plasma membrane overwhelms
the naturalmembrane-repair mechanisms of the cell (Rühl et al.,
2018), a lytic form of cell death called pyroptosis ensues (He
et al., 2015; Kayagaki et al., 2015; Shi et al., 2015; Chen et al.,
2018).

Following full caspase-1 activation by autoprocessing at the
interdomain linker, caspase-1 self-cleaves again, this time at the
CARD domain linker, to generate p20/p10. This releases
caspase-1 from the inflammasome and terminates protease ac-
tivity and cytokine processing. Since active p33/p10 is a tran-
sient species, caspase-1–dependent cytokine processing occurs
within a set time frame (Boucher et al., 2018). Interestingly, the
duration of caspase-1 activity is dictated by the size of the sig-
naling platform (and the resulting number of available binding
sites for caspase-1), which differs between distinct in-
flammasomes and cell types. Macrophages form large ASC in-
flammasomes that rapidly activate caspase-1 but also turn over
caspase-1 protease activity quickly, so mature IL-1β is generated
within a short time frame. Neutrophils express substantially less
ASC per cell and so form smaller signaling hubs with prolonged
caspase-1 activity and sustained kinetics of IL-1β maturation
(Chen et al., 2014; Boucher et al., 2018). Likewise, small in-
flammasomes, such as the macrophage NLRC4–caspase-1 in-
flammasome that signals independently of ASC, facilitate
prolonged caspase-1 activity (Boucher et al., 2018). Thus, the
kinetics of IL-1 family cytokine production is dictated by the
identity of both the inflammasome and the cell.

Canonical inflammasomes cleave IL-37 to up-regulate cytokine
activity
While pro-IL-37 is active in vitro and in vivo, IL-37 maturation
promotes its biological activity (Moretti et al., 2014; Li et al.,
2015). IL-37 maturation appears to be primarily mediated by
caspase-1 (Kumar et al., 2002; Sharma et al., 2008; Nold et al.,
2010; Bulau et al., 2014). The IL-37 transcript undergoes alter-
native splicing to generate five isoforms (IL-37a–e), of which IL-
37b–e contain a caspase-1 cleavage site (D20; Fig. 1; Kumar et al.,
2002; Bulau et al., 2014). To date, only IL-37b is studied in detail.
The 25-kD pro-IL-37b is cleaved to generate a 19-kDmature form
in cells stimulated with bacterial LPS plus ATP to activate the
NLRP3 inflammasome in a caspase-dependent manner (Bulau
et al., 2014). Mature IL-37 can be secreted or can translocate to
the nucleus to suppress proinflammatory cytokine expression
(Sharma et al., 2008; Bulau et al., 2014). Pro–IL-37 can also be
released into the extracellular space (Bulau et al., 2014), where it
could be a target for processing by yet-undefined extracellular
enzymes to yield functional forms with variable biological ac-
tivity and anti-inflammatory properties.

Regulation of IL-1 cytokines by the noncanonical inflammasome
The noncanonical inflammasome is a lipid–caspase complex that
enables the activation of caspase-4 and caspase-5 in humans and
caspase-11 in mice. This pathway provides host defense against
cytosolic Gram-negative bacteria, as it allows cytosolic detection
of bacterial LPS to be coupled to cell death and inflammatory
responses (Kayagaki et al., 2011, 2013; Shi et al., 2014). The
noncanonical inflammasome is reported to function without a
dedicated sensor protein (Shi et al., 2014). Caspase-4, caspase-5,
and caspase-11 directly interact with LPS (Shi et al., 2014), but
physiological bacterial detection by these caspases occurs with
the assistance of guanylate-binding proteins (Liu et al., 2018),
whose functions in LPS sensing await full clarification. LPS

Figure 1. Human IL-1 family cytokines regu-
lated by inflammatory caspases. For each cy-
tokine, amino acid positions and specific caspase
cleavage sites are indicated. IL-1β and IL-18 each
contain a polybasic motif within the mature
cytokines.
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interaction with two or more caspase-11 monomers triggers
the dimerization of the caspase protease domains to induce
basal protease activity (Ross et al., 2018). This leads to auto-
processing at the caspase-11 interdomain linker (residue
D285), generating a p32/p10 species with full protease activity
(Lee et al., 2018; Ross et al., 2018). Caspase-4/5/11 then cleave
GSDMD to trigger GSDMD pores and initiate pyroptotic cell
lysis (He et al., 2015; Kayagaki et al., 2015; Shi et al., 2015;
Aglietti et al., 2016; Ding et al., 2016; Liu et al., 2016), or

pyroptosis-associated expulsion of neutrophil extracellular
traps (Chen et al., 2018). These caspases are not reported to
directly cleave IL-1β or IL-37 but can indirectly mediate cy-
tokine maturation (Fig. 2 B). GSDMD membrane pores induce
ionic flux and resultant NLRP3 inflammasome assembly and
caspase-1 activation (Rühl and Broz, 2015). Thus, signaling by
the noncanonical inflammasome indirectly leads to caspase-
1–dependent IL-1β and IL-18 secretion (Kayagaki et al., 2011,
2015; Rathinam et al., 2012).

Figure 2. IL-1 family cytokine processing by canonical, noncanonical, and caspase-8 inflammasomes. (A) Infection, cell damage, and cell stress signals
trigger the formation of canonical inflammasomes, which recruit monomeric caspase-1 through CARD–CARD interactions. Caspase-1 dimerizes and self-cleaves
to generate the fully active p33/p10 species that cleaves and activates IL-1β, IL-18, and IL-37. Caspase-1 also processes GSDMD, leading to formation of GSDMD
pores. (B) The noncanonical inflammasome senses cytosolic bacterial LPS, activates caspase-4 and caspase-5 in humans and caspase-11 in mice, and induces
the formation of GSDMD pores. Caspase-5 and caspase-11 directly cleave IL-1α, while caspase-4 and caspase-11 directly cleave IL-18. Signaling through the
GSDMD/NLRP3 axis induces caspase-1 activation, leading to further cytokine processing. (C) Under certain conditions, active caspase-8 can directly process
IL-1β and IL-18, either upon the inflammasome or independently of the inflammasome pathway.
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The caspase-4 inflammasome appears able to directly cleave
IL-18 in response to enteric pathogens, such as Salmonella en-
terica and Shigella flexneri (Kobayashi et al., 2013; Knodler et al.,
2014). Similarly, caspase-11, but not caspase-1, was required
for Salmonella-induced IL-18 maturation from cecal explants
(Knodler et al., 2014). Hence, caspase-4 and caspase-11 non-
canonical inflammasomes may be able to directly control IL-18
maturation and release, thereby mediating host defense in the
intestinal mucosa.

IL-1α is expressed as a 31-kD precursor with some biological
activity, but this is dramatically increased by cleavage to the 19-kD
mature form (Afonina et al., 2015; Wiggins et al., 2019). IL-1α is
usually processed by calpain during necrosis (Burzynski et al.,
2015; Wiggins et al., 2019), but can also be cleaved by caspase-5
and caspase-11 to promote IL-1α–specific cytokine activity (Wiggins
et al., 2019). In a fully recombinant system, pro–IL-1α was cleaved
to its mature form by caspase-5 and -11, but not caspase-1 or
caspase-4 (Wiggins et al., 2019). Caspase-5 and caspase-11 cleaved
IL-1α at D103, a highly conserved site in multiple mammalian
species, while calpain cleaves at a distinct site (Wiggins et al., 2019).
This study also demonstrated that IL-1α–dependent senescence-
associated secretory phenotype required caspase-5 and caspase-11
in vitro and in vivo (Wiggins et al., 2019). Thus, IL-1α is a direct
substrate of specific inflammatory caspases during noncanonical
inflammasome activation and senescence.

IL-1β and IL-18 maturation by caspase-8
Caspase-8 is traditionally classified as an apoptotic initiator
caspase of the extrinsic cell death pathway but is more recently
implicated as a participant in inflammasome pathways and an
alternative protease for IL-1β and IL-18 maturation (Fig. 2 C).
Various forms of cell stress (e.g., inhibition of protein transla-
tion, chemotherapeutics, or endoplasmic reticulum stress)
enable macrophages and dendritic cells to produce mature IL-1β
and IL-18 in response to TLR3 or TLR4 stimulation through a
pathway that requires caspase-8, but not caspase-1. Here, TLR3/4
engages TRIF (TIR-domain–containing adapter-inducing IFN-β),
and TRIF recruits the stress-induced RIP1/FADD/caspase-8
(receptor-interacting protein; FAS-associated death domain)
complex, leading to caspase-8 activation (Blander, 2014) and IL-
1β/18 maturation (Maelfait et al., 2008; Bossaller et al., 2012;
Antonopoulos et al., 2013; Shenderov et al., 2014; Moriwaki
et al., 2015). Fungal pathogens detected by dectin-1 can also
trigger caspase-8–dependent IL-1βmaturation (Ketelut-Carneiro
et al., 2018). Here, dectin-1 signaling induces signaling by the
CARD9–BCL-10–MALT1 complex to activate caspase-8 (Blander,
2014). Caspase-8 directly cleaves IL-1β and IL-18 to their mature
forms (Maelfait et al., 2008; Bossaller et al., 2012; Gringhuis
et al., 2012; Antonopoulos et al., 2013; Shenderov et al., 2014)
and targets the same IL-1β cleavage site (D116) as caspase-
1 (Maelfait et al., 2008). Caspase-8 is primarily responsible for
IL-1βmaturation during infection with fungal pathogens such as
Candida albicans and Aspergillus fumigatus and bacterial patho-
gens such as Mycobacterium bovis and Mycobacterium leprae
(Gringhuis et al., 2012).

Caspase-8 can also modulate IL-1β processing via the in-
flammasome pathway. Caspase-8 positively regulates NLRP3

inflammasome activation (Allam et al., 2014; Gurung et al.,
2014) and pro–IL-1β synthesis (Gurung et al., 2014). Caspase-8
is also recruited to canonical ASC inflammasomes (Man et al.,
2013; Vajjhala et al., 2015), suggesting that caspase-8 may
contribute to IL-1β maturation upon the inflammasome, par-
ticularly in the absence of caspase-1 (Antonopoulos et al.,
2015).

Secretory pathways for inflammasome-dependent IL-1 family
cytokines
IL-1β secretion requires maturation and trafficking to the plasma
membrane
IL-1β, IL-18, and IL-37 are synthesized in the cytosol and released
via an unconventional secretory pathway that bypasses the
conventional ER/Golgi trafficking route. IL-1β/18 were originally
believed to be passively released upon inflammasome-driven
cell rupture (Brough and Rothwell, 2007; Liu et al., 2014;
Shirasaki et al., 2014; Cullen et al., 2015). However, accumulat-
ing evidence suggests that IL-1 secretion precedes cell rupture in
pyroptotic cells (Perregaux and Gabel, 1994; Verhoef et al., 2004;
Fink and Cookson, 2006; Brough and Rothwell, 2007;
Monteleone et al., 2015; Evavold et al., 2018) and indeed can also
occur in nonpyroptotic cells (Kang et al., 2013; Chen et al., 2014;
Conos et al., 2016; Gaidt et al., 2016; Wolf et al., 2016; Zanoni
et al., 2016; Diamond et al., 2017; Monteleone et al., 2018).

Caspase-1 activation has long been associated with the se-
cretion of mature IL-1β, but until recently, the specific activities
of caspase-1 that supported IL-1β secretionwere unclear. Herein,
one critical function of caspase-1 is cytokine maturation itself, as
only mature IL-1β is actively secreted by macrophages while the
pro-form is passively released during cell lysis (Monteleone
et al., 2018). In resting cells, pro–IL-1β has an overall negative
charge, which would be repelled from the negatively charged
plasma membrane (Monteleone et al., 2018). The isoelectric
point of IL-1β shifts upon maturation, with mature IL-1β ex-
hibiting an overall positive charge, largely because it contains a
polybasic motif that is highly conserved between human and
mouse IL-1β and -18 (Monteleone et al., 2018). Mature IL-1β, but
not pro–IL-1β, colocalized with negatively charged phosphati-
dylinositol 4,5-bisphosphate (PIP2) in the plasma membrane,
and both mature IL-1β and PIP2 were particularly enriched in
surface projections and ruffles (Monteleone et al., 2018). Indeed,
mutation of the polybasic motif prevented the relocation of
mature IL-1β to the PIP2-enriched membrane domains and also
its secretion (Monteleone et al., 2018). IL-1β maturation thus
directs this cytokine to traffic to the plasma membrane to fa-
cilitate its secretion from the cell. A second function of caspase-1,
the generation of GSDMD pores, is also important for IL-1β se-
cretion. GSDMD pores insert in the plasma membrane through
interaction with phospholipids such as PIP2 (Ding et al., 2016;
Liu et al., 2016) and were recently shown to serve as a portal for
IL-1β exit from the cell (Evavold et al., 2018). Thus, IL-1β matu-
ration and cotrafficking to PIP2-enriched membrane micro-
domains alongside GSDMD likely coordinates IL-1β exit through
GSDMD pores. As discussed below, this appears to be a major
mechanism for IL-1β secretion from both living cells and cells
undergoing pyroptosis.
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IL-1β secretion from hyperactivated cells
Pro–IL-1β is not expressed in resting myeloid cells, and its in-
duction requires cell “activation,” typically by a TLR ligand or
specific proinflammatory cytokines (e.g., IL-1). In addition to
pro–IL-1β expression, myeloid cell activation induces antimi-
crobial responses and the production of proinflammatory me-
diators to drive inflammatory responses. Mature IL-1β is not
present within this suite of secreted mediators unless the cell
additionally receives an inflammasome-activating stimulus that
induces pro–IL-1β processing to its mature form. As discussed
above, inflammasome signaling and cell secretion of mature
IL-1β are often accompanied by pyroptosis. In specific circum-
stances, however, cells release IL-1βwhile maintaining viability.
As these viable cells have received both a classical phagocyte
activation signal and an inflammasome activation signal (a cell
state termed “hyperactivation”), they secrete IL-1β in addition to
other inflammatory mediators (Evavold et al., 2018).

Hyperactivation can be observed in several cell types and
with specific triggers. IL-1β secretion proceeded without con-
current pyroptotic cell death in neutrophils exposed to Salmo-
nella or intracellular flagellin (Chen et al., 2014; Monteleone
et al., 2018), monocytes stimulated with extracellular LPS
(Gaidt et al., 2016), and dendritic cells exposed to oxidized
phospholipids (Zanoni et al., 2016). Live macrophages also re-
leased inflammasome-mediated IL-1β and IL-18 upon exposure
to bacterial N-acetyl glucosamine (Wolf et al., 2016). Cell hy-
peractivation appears to occur when inflammasome signaling
elicits only a small number of GSDMD pores, where the pore
burden is subthreshold for inducing pyroptosis but sufficient for
facilitating IL-1 secretion (Chen et al., 2014; Evavold et al., 2018;
Monteleone et al., 2018). In hyperactive cells, the total amount of
caspase-1 activity at one time may be low but is prolonged
(Boucher et al., 2018) and likely to cause sustained GSDMD pore
formation and IL-1β transit through these pores before mem-
branes are repaired (Fig. 3; Rühl et al., 2018). Thus, hyper-
activation may be dictated by the nature of inflammasomes and
the resultant kinetics of caspase-1 turnover (Boucher et al.,
2018).

Mature IL-1β is also secreted by a slow, GSDMD-independent
pathway, regardless of immediate cell fate (continued viability
or pyroptosis; Fig. 3). While early secretion of IL-1β from
NLRC4-activated neutrophils required GSDMD, GSDMD was
dispensable for later release, and in vivo secretion of IL-1β re-
quired caspase-1, but not GSDMD, 6 h after Salmonella infection
(Monteleone et al., 2018). The sole requirement for caspase-1
herein appears to be cytokine processing, as IL-1β matura-
tion was necessary and sufficient for IL-1β secretion in
inflammasome-unstimulated, resting macrophages (Monteleone
et al., 2018). A recent report identified another, perhaps related,
GSDMD-independent secretory pathway involving the endo-
some docking and fusion protein, early endosomal autoantigen
1 (EEA1). Caspase-1 cleaved EEA1 at D127/132, and this induced
EEA1 and IL-1β release in a manner that required EEA1, but not
GSDMD (Baroja-Mazo et al., 2019). While the mechanisms of
GSDMD-independent IL-1β release remain to be fully defined,
they are likely to contribute to IL-1β secretion from cells that do
not express GSDMD or in situations of cell hyperactivation.

IL-1β is secreted through GSDMD pores in pyroptotic cells before
cell rupture
In pyroptotic cells, IL-1β release and cell lysis are often closely
temporally associated (Brough and Rothwell, 2007; Liu et al.,
2014; Shirasaki et al., 2014). However, the osmoprotectant gly-
cine slows membrane rupture and resultant passive protein
release in macrophages, without affecting the formation or
function of GSDMD pores or the kinetics of mature IL-1β secre-
tion (Verhoef et al., 2004, 2005; Fink and Cookson, 2006;
Pelegrin et al., 2008; Evavold et al., 2018; Monteleone et al.,
2018). Further, the membrane-stabilizing agent punicalagin
suppressed inflammasome-induced cell death and release of
IL-1β and IL-18 from mouse macrophages, suggesting that it
inhibits GSDMD pore insertion into the plasma membrane, and
IL-1β/18 passage through these pores (Mart́ın-Sánchez et al.,
2016; Tapia et al., 2019). These data collectively suggest that IL-
1β is secreted via GSDMD pores before cell rupture during the
process of pyroptosis (Fig. 3).

IL-1β secretion is negatively regulated by membrane repair
A recent study found that calcium influx through GSDMD
pores serves as a signal for cells to initiate membrane repair
by recruiting the endosomal sorting complexes required for
transport (ESCRT) machinery to damaged membrane areas
(Rühl et al., 2018). Here, the ESCRT machinery repairs dam-
aged membrane by removing GSDMD pores in the form of
ectosomes, which tempers cell death and mature IL-1β release
in inflammasome-stimulated macrophages (Rühl et al., 2018),
and may facilitate cell hyperactivation in some settings. The
delayed nature of this response appears to allow some cyto-
kine release through GSDMD pores before membrane repair
(Fig. 3) while restraining cell rupture (Evavold et al., 2018;
Heilig et al., 2018).

Cell fate decisions affect IL-1β secretion pathways and kinetics
Combined, these studies suggest that the cell fate decisions of
inflammasome-activated cells dictate IL-1β, and likely IL-18,
release kinetics and the extent of the ensuing inflammatory
response. As a danger detection and immune alert system, in-
flammasomes recognize potential threats to organisms and re-
spond by inducing immune system activation. Hyperactivation
appears to occur when inflammasomes detect a moderate level
of danger, where the appropriate response for the cell is to in-
corporate IL-1 cytokines into the secreted repertoire while re-
maining viable to provide immunomodulatory and immune
defense functions. Indeed, in mouse dendritic cells, hyper-
activation led to stronger antigen-specific T cell responses
compared with traditional activation states (Zanoni et al., 2016).
Alternatively, when inflammasomes detect a serious threat to
the organism, it may be appropriate to induce the strongest
possible inflammatory response. In this case, the cell undergoes
pyroptosis in addition to IL-1β/18 release in order to engage the
strong immunomodulatory properties of alarmins. In the case of
neutrophils, this also serves to harness the antimicrobial prop-
erties of pyroptosis-associated neutrophil extracellular traps.
While our understanding of the signaling mechanisms control-
ling these cell fate decisions remains rudimentary, they are
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likely underpinned by the extent and duration of caspase ac-
tivity within inflammasomes (Boucher et al., 2018).

IL-1α is secreted via an alternate pathway to IL-1β
IL-1α is generally considered to be an immune alarmin that is
passively released during cell lysis (Monteleone et al., 2015). IL-
1α is released by pyroptotic cells and cells undergoing specific
inflammasome-independent forms of cell death, such as lyso-
somal cell death induced by crystals and particles (Gross et al.,
2012). In keeping with a distinct route of exit to IL-1β, punica-
lagin did not inhibit IL-1α release, suggesting that IL-1α does not
pass through GSDMD pores (Mart́ın-Sánchez et al., 2016).
Pro–IL-1α is bound to an intracellular receptor, IL-1R2, to pre-
vent its release during forms of necrosis that do not activate the
inflammasome pathway (Zheng et al., 2013; Burzynski et al.,
2015). Inflammasome activity during cell death liberates IL-
1α from dying cells, as caspase-1 and caspase-5 cleave IL-1R2 to
enable subsequent IL-1α processing, cellular release, and sig-
naling (Zheng et al., 2013). Intriguingly, IL-1α appears able to
be secreted from living cells in some circumstances (Tapia
et al., 2019), such as the senescence-associated secretory phe-
notype (Gardner et al., 2015; Wiggins et al., 2019). The mecha-
nism underpinning IL-1α secretion from living cells awaits
clarification.

Concluding remarks
With the recent remarkable progress in the inflammasome field,
we are beginning to understand the distinct functions of in-
flammasomes in IL-1 family cytokine processing versus secre-
tion. Both processes are important, ultimately, for the biological
activities of IL-1α, IL-1β, IL-18, and IL-37. Distinctions in the
cytokine repertoire for different inflammasomes are emerging,

particularly with respect to cytokine processing by the non-
canonical inflammasome. Emerging physiological and anti-
inflammatory functions for IL-18 and IL-37 also highlight the
multifaceted nature of inflammasome action in homeostasis,
immune activation and inhibition. IL-1α, IL-1β, and IL-18 drive
pathology in a range of human diseases. Biological antagonists of
IL-1 are effective treatments for many of these conditions, such
as gouty arthritis (So et al., 2010) and autoinflammatory disease
(Dinarello, 2018), presenting these cytokines as validated drug
targets. New agents that block the generation or release of ma-
ture IL-1 family cytokines (e.g., inflammasome or GSDMD
inhibitors) are currently under development as potential first-
in-class anti-inflammatory therapies.

Acknowledgments
This work was supported by the National Health and Medical
Research Council of Australia (Project Grants 1163924 and
1122240 and Fellowship 1141131 to K. Schroder). A.H. Chan is
supported by the Australian Government Research Training
Program Stipend Scholarship.

K. Schroder is a co-inventor on patent applications for NLRP3
inhibitors, which have been licensed to Inflazome, Ltd., a com-
pany headquartered in Dublin, Ireland. Inflazome is developing
drugs that target the NLRP3 inflammasome to address unmet
clinical needs in inflammatory disease. K. Schroder served on
the Scientific Advisory Board of Inflazome in 2016-2017. The
remaining authors have no competing financial interests.

Submitted: 15 June 2019
Revised: 2 August 2019
Accepted: 11 September 2019

Figure 3. Model for IL-1β active secretion from the plasma membrane. IL-1β cleavage by caspase-1 alters the isoelectric point of IL-1β, leading to
IL-1β trafficking to PIP2-enriched plasma membrane domains in a manner requiring the polybasic motif of the mature cytokine. IL-1β is released to the ex-
tracellular space by at least two mechanisms: (1) through a yet-uncharacterized, GSDMD-independent mechanism; and (2) through GSDMD pores that were
generated by canonical and noncanonical inflammasome signaling. The ESCRT machinery is recruited to sites of GSDMD pore formation to repair the
membrane. If the GSDMD pore burden in the plasma membrane is high enough to overwhelm membrane repair mechanisms, the cell will die by pyroptosis.
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