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Abstract: Precise, economical and sustainable cutting operations are highly desirable in the advanced
manufacturing environment. For this aim, the present study investigated the influence of cutting
parameters (i.e., the cutting speed (c), feed rate (f ), depth of cut (d) and positive rake angle (p)) and
sustainable cutting conditions (dry and minimum quantity lubricant (MQL)) on cutting forces (i.e.,
feed force (Ff), tangential forces (Ft), radial force (Fr) and resultant cutting forces (Fc) and shape
deviations (i.e., circularity and cylindricity) of a 6026-T9 aluminum alloy. The type of lubricant
and insert used are virgin olive oil and uncoated tungsten carbide tool. Turning experiments were
performed on a TAKISAWA TC-1 CNC lathe machine and cutting forces were measured with the help
of a Kistler 9257B dynamometer. Shape deviations were evaluated by means of a Tesa Micro-Hite 3D
DCC 474 coordinate measuring machine (CMM). Experimental runs were planned based on Taguchi
mixture orthogonal array design L16. Analysis of variance (ANOVA) was performed to study the
statistical significance of cutting parameters. Taguchi based signal to noise (S/N) ratios are applied
for optimization of single response, while for optimization of multiple responses Taguchi based
signal to noise (S/N) ratios coupled with multi-objective optimization on the basis of ratio analysis
(MOORA) and criteria importance through inter-criteria correlation (CRITIC) are employed. ANOVA
results revealed that feed rate, followed by a depth of cut, are the most influencing and contributing
factors for all components of cutting forces (Ff, Ft, Fr, and Fc) and shape deviations (circularity and
cylindricity). The optimized cutting parameters obtained for multi responses are c = 600 m/min,
f = 0.1 mm/rev, d = 1 mm and p = 25◦, while for cutting conditions, MQL is optimal.

Keywords: aluminum alloy; minimum quantity lubricant (MQL); cutting forces; shape deviations;
taguchi orthogonal array design; analysis of variance (ANOVA); multi-objective optimization based
on ratio analysis (MOORA); criteria importance through inter-criteria correlation (CRITIC)

1. Introduction

Turning of aluminum alloys have gained paramount significance in automobile and aerospace
advanced manufacturing. This is due to its high strength to weight ratio [1–3]. Turning is an important

Materials 2020, 13, 4327; doi:10.3390/ma13194327 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-9294-2964
https://orcid.org/0000-0001-5254-7698
https://orcid.org/0000-0003-2455-1336
https://orcid.org/0000-0001-8280-5707
https://orcid.org/0000-0001-6454-4814
http://www.mdpi.com/1996-1944/13/19/4327?type=check_update&version=1
http://dx.doi.org/10.3390/ma13194327
http://www.mdpi.com/journal/materials


Materials 2020, 13, 4327 2 of 21

machining process for the cutting of round objects to the desired shape and size. It has the advantages
of producing a good quality product, having a lower lead time, customer satisfaction and being
economical [1]. However, while machining such alloys, sustainability of the cutting operation to meet
the surface finish, dimensional precision, lower cutting forces, with economic power consumption
is highly desirous [1,2]. From this perspective, the appropriate selection of cutting parameters,
especially feed rate, cutting speed, and depth of cut are essential to achieve these objectives [1,2].
Further, machining can be performed in dry conditions [3,4], near dry conditions (minimum quantity
lubricant, MQL) [3,4], flooded coolant [3,4], cryogenic coolant [3,4], or with nanofluids [5,6]. However,
the growing concept of green/sustainable manufacturing has shifted the paradigm of manufacturers to
environmentally friendly cutting fluids [3,4]. Dry and MQL environment are considered sustainable
in machining processes [5]. The advantages of MQL are to reduce cutting forces/cutting power and
temperature at the tooltip, improve the tool life, enhance dimensional accuracy, and improve the
surface quality of machined parts [3–5]. The most common eco-friendly cutting fluids are vegetable
oil [3,4,6,7], nano cutting fluids, and ester [3,4,6,7] due to the less poisonous effects and biodegradability
as compared to petroleum-based mineral oil [5–7].

2. Literature Review

In the presented research study, a comprehensive literature review of the turning operation
of aluminum alloys has been carried out under dry, MQL, and flooded conditions. For example,
Patel et al. [8] have analyzed and optimized the surface quality characteristics (i.e., circularity and
cylindricity errors) and material removal rate in the dry turning of a 7075 aluminum alloy. The analysis
of variance (ANOVA) showed that cutting speed is the most influencing factor in all responses.
They reported that an increase in cut depth and feed rate instigate a negative impact on the surface
quality, circularity, and cylindricity error, while creating a positive effect on the material removal rate.
Surface quality improves with an increase in the nose radius improves while having a non-linear
relationship with circularity and cylindricity error. They also optimized cutting parameters using
JAYA coupled with principal component analysis (PCA). Ajay and Vinoth [9] optimized the turning
cutting parameters of 6061 aluminum alloy using high-speed steel (HSS) insert under dry condition.
The ANOVA results revealed that cutting speed is the most significant factor for surface roughness,
while for temperature and resultant cutting forces, cutting speed, feed rate, and depth of cut are
the most significant contributing factors. The study also showed that cutting forces increase with
an increase in feed rate and depth of cut. A similar study was completed by Javidikia et al. [10].
They studied the impact of tool geometry and cutting conditions in turning the aluminum alloy
6061-T6 under a dry condition with uncoated carbide insert. Their results indicated that machining
forces decrease with an increase in cutting speed; however, they increases with an increase in cutting
edge radius. The temperature at the tooltip interface increases with an increase in cutting speed and
decreases with an increase in rake angle from negative to positive values. Likewise, a decrease in the
cutting forces was observed by increasing the rake angle from negative to positive values. An increase
in feed rate increases feed forces; however, it reduces cutting forces. Kannan et al. [11] studied the
machinability of the aluminum matrix Al 7075/BN/Al2O3 under MQL and dry conditions using a
grade K313 (WC/Co fine-grain grade) cutting tool. They investigated that machining under a MQL
environment reduces the cutting force, tool wear, and improves the quality of the machined surface
compared to the dry environment. Additionally, low cutting forces are observed at high cutting speed
and low feed rate. An investigation on tool wear in the turning of an Al/SiCp (based on aluminum
alloy 2024) composite under cooling and lubrication conditions was conducted by Duan et al. [12].
The insert used was a polycrystalline diamond (PCD) tool. Their study showed that the type of flank
wear, abrasive wear, and tool breakage could be controlled up to a greater extent under MQL (a mixture
of oil and gas) and liquid nitrogen (LN2). Kouam et al. [13] studied the effect of MQL conditions on
the machining of a 7075-T6 aluminum alloy. The cutting tool insert used was a carbide (DNGP-432
KC5410, Kennametal, Latrobe, PA, USA) with Titanium diboride (TiB2) coating, while the coolant was
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Mecagreen 550 lubricant coolant mixed with 15% water at 3 and 1.75 mL/min flow rate. The effect
of MQL in the machining of a 6082 aluminum alloy was studied by Yigit [14]. The diamond-coated
carbide was used as insert, while the lubricant was commercial oil Rocol A208A plus, applied at
50 mL/h and 100 mL/h. His study concluded that surface roughness, dimensional accuracy, and cutting
forces improved due to the reduction in wear at the tooltip under MQL conditions. Islam [15] analyzed
surface roughness and dimensional accuracy (diameter error and circularity) in the turning of an
aluminum 6061, mild steel 1030, and alloy steel 4340. The insert used was a square-shaped insert
with enriched cobalt coating (chemical vapor deposition (CVD) titanium nitride (TiN) – titanium
carbonitride (TiCN) – aluminium oxide (Al2O3) –TiN) manufactured by Stellram, La Vergne, TN,
USA. The coolant was 2010 Coolube, a vegetable-based metal cutting lubricant, and sprayed in the
form of mist at 1.667 × 10−5 L/s flow rate. The ANOVA results revealed that the work material and
coolant methods (MQL) have a significant effect on the dimensional accuracy and the least effect on
surface roughness.

Jafarian et al. [16] optimized the multiple responses including resultant cutting forces, insert
wear, and surface roughness, in aluminum alloy turning using an integrated approach of artificial
neural network, genetic algorithm (GA) and particle swarm optimization (PSO). The optimized
results indicated that the proposed methodology is effective in predicting optimal cutting parameters.
Agustina et al. [17] analyzed the cutting forces in the turning of unified numbering system (UNS)
A97075 aluminum alloys under dry conditions with two types of inserts i.e., DCMT11T304-F2 and
DCMT11T308-F2 manufactured by SECO, Aljunied, Singapore. The most significant parameters that
affect the cutting forces are feed rate, followed by depth of cut and tool type. Sreejith [18] studied
the performance of the machining of a 6061 aluminum alloy with dry, MQL, and flooded lubricant
conditions. The diamond-coated carbide was used as insert, while the lubricant was commercial oil BP
Microtrend 231 L. The flow rate of MQL was 50 and 100 mL/h. The results showed that machining
under MQL conditions provides comparable results to flooded lubricant conditions. The thermal
softening of chips during the machining of aluminum alloys affects the surface quality, cutting forces,
and tooltip. However, with the application of MQL, it can be reduced to a greater extent. Reis and
Abrao [19] examined the machinability of the 6351-T6 aluminum alloy under dry turning conditions.
The inserts used were cemented carbide, diamond coated carbide, and polycrystalline diamond (PCD).
The results revealed that the PCD tool performed better compared to other tools. Further, cutting forces
increase with an increase in feed rate and depth of cut, however, they decrease with an increase in
cutting speed. For the PCD tool, the dominant force observed was the radial force, while the tangential
and axial forces were lowest.

The Taguchi based signal to noise (S/N) ratios method is an experimental design technique that
is suitable for the optimization of a single response variable [20]. In the presented study, we have
focused multi-responses, and consequently, in order to deal with such a problem, the multi-objective
optimization based on ratio analysis (MOORA) method is selected. This method was proposed by
Brauers [21] and can successfully deal with the complex decision-making process in the manufacturing
environment [22]. It allows us to simultaneously optimize the responses, whether their objective
function is conflicting (including both maximization and minimization terms) or the same (either
maximization or minimization) [23]. According to Yusuf and Sebla [23], MOORA is robust and
straightforward compared to other multi-criteria decision-making methods (MCDM) such as technique
for order of preference by similarity to ideal solution (TOPSIS), Viekriterijumsko Kompromisno
Rangiranje (VIKOR), grey relational analysis and weighted principal components as these methods are
complex and difficult to apply in reality. Finding the weights of criteria in MCDM is important [24].
Various methods for weight determination are proposed and are classified into objective and subjective
methods. In objective weight methods, the weights of criteria (responses) are measured based on
the available data without intervention of an expert’s opinion [24]. The well-known techniques are
entropy [25], standard deviation [26], criteria importance through inter-criteria correlation (CRITIC) [27],
and the maximizing deviation method [28]. In contrary, the subjective methods involve the expert’s
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opinion [24]. The most common methods are the pairwise comparison method, namely the analytical
hierarchy process (AHP) [29], the swing weighting method [30], the ranking method [31], and the simple
multi-attribute rating technique (SMART) [32]. Weight determination using criteria importance through
inter-criteria correlation (CRITIC) is effective, because it accounts for both conflict and contrast in weight
determination [27]. However the other methods such as entropy, standard deviation, mean weight and
maximizing deviation method don’t take into account such information in weight determination [24].
The subjective weight methods, such as AHP, however include expert opinions but do not incorporate
the uncertainty and ambiguity of the human mind [24]. Singarave et al., [33] optimized the turning
operation of EN25 steel using MOORA coupled with entropy. Pathapalli et al., [34] optimized the
machining parameters of an Al-6063 composite using weighted aggregated sum product assessment
(WASPAS) and MOORA. They concluded that both methods yielded similar results. Majumder and
Saha [35] concluded that MOORA coupled with PCA performed better compared to TOPSIS coupled
with PCA in optimizing the turning of ASTM A588 mild steel. Akkaya et al. [36] coupled MOORA with
AHP to solve the problem for the industrial engineers in selecting which sector to work in, in the future.

The literature review presented herein shows that a limited number of research publications
are available on the machining of aluminum alloys and their composite matrix under dry and
MQL environments. Hence, it can be assumed that the presented research demonstrates the first
comprehensive attempt to analyze and optimize the cutting forces and shape deviations of the aluminum
alloy 6026-T9 under both dry and MQL environments using vegetable oil (namely olive oil). A study
performed by Abas et al., [37] on a similar type of material, focuses only on the optimization of surface
roughness profile, material removal rate, and tool life under MQL and dry conditions. They concluded
that under the MQL environment, the machining of such alloys performs better compared to the dry
environment. However, the effect of cutting parameters on the component of cutting forces and shape
deviations were not considered in their study. Therefore, in the present research, the Taguchi signal
to noise ratio and analysis of variance (ANOVA) are applied to optimize the individual responses in
order to achieve this aim. Further, the effect of cutting parameters on performance factors (responses)
are studied by using the main effect plots. For multi-response optimization, an integrated approach is
implemented by utilizing the Taguchi signal to noise ratio integrated with MOORA and CRITIC.

3. Materials and Methods

3.1. Experimental Environment

Turning experiments were performed on a TAKISAWA TC-1 CNC lathe machine (spindle speed
40–4500 rpm, spindle drive motor 5.5 kW, Takisawa, Okayama, Japan) using 6026-T9 aluminum alloy
samples (60 mm length and 40 mm in diameter). The uncoated tungsten carbide tool is used as insert
having a nose radius of 0.2 mm and a clearance angle of 7◦. For each experiment, machining was
completed up to a length of 2 cm using a new cutting tool. The machining is performed under dry and
minimum quantity lubricant (MQL) conditions. Figure 1a shows the schematic of the coolant supply
set up. The type of lubricant used is a vegetable oil (i.e., virgin olive oil) with a viscosity of 84 cp at
20 ◦C, specific gravity of 0.911 at 20 ◦C, and a boiling point of 700 ◦C. The lubricant was supplied
at a flow rate of 150 mL/h and 5 bar pressure. The schematic of the experimental setup is shown in
Figure 1b.

The cutting parameters considered are cutting speed, feed rate, depth of cut, and positive rake.
The Taguchi orthogonal array mixture design is adopted in this study for experimental runs. Four levels
are set for each cutting process parameter (as continuous factors), and two levels are set for cutting
conditions (as a categorical factor). These are presented in Table 1. Based on these levels, a total of
16 experimental runs are planned, as tabulated in Table 2. The levels are set based on the literature
review and recommendation by the tool manufacturer. The responses to be optimized are components
of cutting forces and shape deviations of machined cylindrical bars. The cutting forces i.e., feed
force (Ff), tangential forces (Ft), radial force (Fr) and resultant cutting forces (Fc) are experimentally
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calculated by using a Kistler 9257B dynamometer (Kistler, Winterthur, Switzerland) with the Kistler
multichannel charge amplifier type 5070A (Kistler, Winterthur, Switzerland). Shape deviations are
measured in terms of circularity or roundness (mm) based on ISO 6318 standard [38] and cylindricity
(mm) deviation based on ISO 12180 standard [39] by using Tesa Micro-Hite 3D DCC 474 a coordinate
measuring machine (Tesa SA, Renens, Switzerland) (CMM). The schematic of CMM is shown in
Figure 2. The desired measured values of cylindricity (Cy) and circularity (Cr) for an experimental
run are tabulated in Table 2. Circularity and cylindricity are essential performance parameters where
cylindrical parts are subjected to high internal and external loads, and a small error causes excessive
deformation and results in failure of components.
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Table 1. Cutting process parameters and experimental levels.

Process Parameters Symbols
Levels

1 2 3 4

Cutting speed (m/min) c 200 400 600 800
Feed rate (mm/rev) f 0.1 0.2 0.3 0.4
Depth of cut (mm) d 1 1.5 2 2.5

Positive rake angle (◦) p 10 15 20 25
Cutting conditions e Dry MQL

3.2. An Optimization Methodology for Single and Multi-Responses

Figure 3 shows the steps followed for proposed multi-responses optimization using the Taguchi
based signal to noise (S/N) ratios, coupled with MOORA and CRITIC. The Taguchi based signal to
noise (S/N) ratios determine the deviation in the quality characteristics of responses from desired
values. The ratio of mean values (signal) and standard deviation (noise) gives an objective function
to responses. If the desired response’s objective function is to minimize, then the smaller-the-better
quality characteristics are measured using Equation (1). However, for maximization, the larger-the
better quality is measured using Equation (2).

S/N ratio = η = −10× log10

1
n

n∑
i=1

y2
i

 (1)
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S/N ratio = η = −10× log10

1
n

n∑
i=1

1
y2

i

 (2)

where yi is the observed experimental value of response for experiment i, and n is the number
of experiments.

Table 2. Experimental runs based on Taguchi orthogonal array design L16 and measured responses.

Experimental
Run

c
(m/min)

f
(mm/rev)

d
(mm) p (◦) e Ff

(N)
Ft

(N)
Fr

(N)
Fc

(N)
Cr

(mm)
Cy

(mm)

1 1 1 1 1 1 96.23 135.60 55.60 175.33 0.0141 0.0175
2 1 2 2 2 1 184.90 258.70 111.30 336.90 0.0165 0.0202
3 1 3 3 3 2 232.00 337.60 135.34 431.41 0.0198 0.0235
4 1 4 4 4 2 278.20 401.80 148.40 510.75 0.0215 0.0258
5 2 1 2 3 2 75.25 113.50 45.20 143.49 0.0108 0.0131
6 2 2 1 4 2 83.17 117.30 43.15 150.13 0.0110 0.0127
7 2 3 4 1 1 290.90 411.20 161.00 528.80 0.0206 0.0251
8 2 4 3 2 1 295.70 425.90 164.40 543.93 0.0215 0.0259
9 3 1 3 4 1 92.05 125.50 51.20 163.84 0.0105 0.0121

10 3 2 4 3 1 225.20 316.70 125.07 408.24 0.0142 0.0174
11 3 3 1 2 2 117.60 170.30 62.00 216.05 0.0125 0.0148
12 3 4 2 1 2 212.70 310.40 116.00 393.76 0.0158 0.0193
13 4 1 4 2 2 102.20 143.10 52.20 183.43 0.0135 0.0158
14 4 2 3 1 2 182.50 260.10 95.20 331.70 0.0163 0.0193
15 4 3 2 4 1 176.12 245.80 98.40 317.99 0.0171 0.0206
16 4 4 1 3 1 138.60 185.90 78.40 244.78 0.0155 0.0184
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Figure 3. An optimization methodology for single and multi-responses. MOORA: multi-objective
optimization on the basis of ratio analysis; CRITIC: criteria importance through inter-criteria correlation;
S/N: Taguchi based signal to noise ratios.

The steps followed for MOORA in the present study are adapted from the study of Yusuf and
Sebla [23] as follows:

Step 1: The decision matrix of order m × n is obtained based on the S/N ratios of measured
responses. Rows show experimental runs, while the columns show the number of responses as
expressed in Equation (3).

D(S/N) =


η11 η12 . . . η1n
η21 η22 . . . η2n

...
...

. . .
...

ηm1 ηm2 . . . ηmn

 (3)

Step 2: Normalized S/N ratio values using Equation (4).

η′i j =
ηi j√
m∑

i=1
η2

i j

j = 1, 2, . . . , n (4)

where η′i j is the dimensionless number. As the S/N ratio values can be negative or positive, so the
interval of normalized values lies in the range [−1, 1].

Step 3: Calculate the weighted normalized decision matrix of S/N ratios values using Equation (5).

xi j = η′i j ×w j j = 1, 2, . . . , n (5)

where w j is the weight of jth response and
∑n

j=1 w j = 1.
Step 4: For multi-response optimization, weighted normalized assessment values were calculated.

If the problem involves conflicting objective functions i.e., maximization and minimization, weighted
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normalized assessment values can be calculated using Equation (6). If the responses have similar
objective functions i.e., either maximization or minimization, Equation (6) can be reduced to Equation (7).

zi =

g∑
j=1

xi j −

n−g∑
j=g+1

xi j j = 1, 2, . . . , n (6)

zi =
n∑

j=1

xi j (7)

where, zi is the weighted normalized assessment values, g is the number of responses to be maximized,
(n−g) is the number of responses to be minimized.

Step 5: The experimental runs are ranked based on the highest zi value.
Step 6: Finally, optimal levels are obtained by computing the average values of zi for each factor

at each level. The higher average value zi corresponds to the optimal level for an individual factor.
The procedure used to determine the weights of responses using CRITIC is as follows:
Step 1: The measured response was normalized, depending upon the objective function.

For minimization (cost criteria) of objective function use Equation (8), while for maximization
(benefit criteria) use Equation (9).

δi j =
yi j −min(y j)

max(y j) −min(y j)
, j = 1, 2, . . . , n, i = 1, 2, . . . , m (8)

δi j =
max(y j) − yi j

max(y j) −min(y j)
(9)

Step 2: Determine the correlation between the responses using Equation (10).

ρ jk =

m∑
i=1

(δi j − δ j)(δik − δk)√
m∑

i=1
(δi j − δ j)

2 m∑
i=1

(δik − δk)
2

, j = 1, 2, . . . , n, i = 1, 2, . . . , m (10)

Step 3: Calculate the degree of conflict between responses using Equation (11).

λ j =
m∑

k=1

(1− ρ jk) (11)

Step 4: Compute the standard deviation showing degree of contrast between responses using
Equation (12).

σ j =

√√√√ m∑
i=1

(δi j − δ j)
2

m
, j = 1, 2, . . . , n, i = 1, 2, . . . , m (12)

Step 5: Calculate the amount of information emitted by combining both degree of conflict and
contrast using Equation (13). This shows the relative importance of responses (weights) and higher
values of ψ j represent higher importance.

ψ j = λ jσ j (13)
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Step 6: Finally, the normalized weights of responses are obtained by applying Equation (14).

w j =
ψ j

m∑
k=1

ψk

(14)

4. Results and Discussions

4.1. Probability Plots and Analysis of Variance (ANOVA)

The distribution of experimental data was analyzed based on the probability plot. The plots
are plotted at a 95% confidence interval and are shown in Figure 4. This shows that data points for
all measured responses fall near the middle fitted line, and it is assumed that data follow normal
distributions. The Anderson Darling (AD) test statistics value and p-value decide the null hypothesis’s
acceptance and rejection concerning the normal distribution of data. The AD test statics value for each
response data being low and the p-value being higher than 0.05, justifies that the collected data are
normally distributed and can be used further for experimental analysis and optimization.
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Analysis of variance (ANOVA) was performed at a 95% confidence interval, to analyze the effect
of the cutting process parameters on responses. Table 3 shows the ANOVA results for the components
of cutting forces. It shows that the feed rate has a significant effect on three components of cutting
force namely Ff, Ft, Fr and Fc as their p-values are less than 0.05; however, the depth of cut is found to
be significant for only Ff and Fr. The cutting speed, positive rake, and cutting conditions are found
to be insignificant. The average percentage contribution of feed rate for Ff, Ft, Fr and Fc is higher
i.e., approximately 50%, followed by the depth of cut which is approximately 34%. The average
percentage contribution for cutting speed, positive rake angle, and cutting conditions are relatively low
i.e., approximately 7%, 3.5%, and 3%. These results are in line with the data available in the literature.
For example, Kannan et al. [11]; Reis and Abrao [19]; Sood et al. [40]; concluded that feed rate has
a higher contribution towards cutting forces in the turning of aluminum alloys and its composite
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matrix. Agustina et al. [17] observed that for the aluminum alloy A97075, the most significant cutting
parameter is feed rate, followed by the depth of cut and spindle speed. Similarly, studies related to
the turning of other materials such as AISI 4340 steel [41], AISI 4140 steel [42], red brass [43], Inconel
718 [44], also showed that feed rate and depth of cut have a significant effect on cutting forces while
cutting speed is found to be insignificant.

Table 3. Analysis of variance for components of cutting forces.

Source DF Adj SS Adj MS F-Value p-Value % Contribution

Ff

c 3 5791 1930.5 3.82 0.214 6.63
f 3 44,142 14,714.1 29.12 0.033 * 50.52
d 3 30,377 10,125.8 20.04 0.048 * 34.77
p 3 3128 1042.6 2.06 0.343 3.58
e 1 2918 2918.2 5.77 0.138 3.34

Error 2 1011 505.3
Total 15 87,368

Ft

c 3 13,819 4606 3.39 0.236 7.57
f 3 91,649 30,550 22.47 0.043 * 50.20
d 3 63,542 21,181 15.58 0.061 34.81
p 3 6877 2292 1.69 0.393 3.77
e 1 3944 3944 2.9 0.231 2.16

Error 2 2719 1360
Total 15 182,550

Fr

c 3 2443.5 814.5 7.47 0.12 9.02
f 3 13,217.9 4406 40.4 0.024 * 48.82
d 3 8886 2962 27.16 0.036 * 32.82
p 3 944.4 314.8 2.89 0.268 3.49
e 1 1366.8 1366.8 12.53 0.071 5.05

Error 2 218.1 109.1
Total 15 27,076.7

Fc

c 3 21,987 7329 3.76 0.217 7.41
f 3 148,989 49,663 25.5 0.038 * 50.24
d 3 102,720 34,240 17.58 0.054 34.64
p 3 10,887 3629 1.86 0.368 3.67
e 1 8060 8060 4.14 0.179 2.72

Error 2 3896 1948
Total 15 296,537

Degree of freedom (DF), Adjusted sum of square (Adj SS), Adjusted mean square (Adj MS), * significant.

Table 4 shows the ANOVA results for shape deviations of bars in terms of circularity and cylindricity
deviation. The results show that feed rate is the most significant factor for both circularity and
cylindricity deviation, while the spindle speed, depth of cut, positive rake angle, and cutting conditions
are found to be insignificant. For the circularity deviation, feed rate has a higher percentage contribution
of 49.02%, followed by the depth of cut with 21.57% and spindle speed 22.06%, while positive rake
angle and cutting conditions are the least contributing factors with percentage contributions of 3.92%
and 2.45%, respectively. Similarly, for cylindricity deviation, the percentage contributions are; feed
rate (47.42%), followed by spindle speed (22.26%), depth of cut (20.32%) positive rake angle (4.84%)
and cutting conditions with least contribution of 3.23%. These findings are supported by literature.
For example, Patel et al. [8] studied that in the turning of the aluminum alloy Al 7075, feed rate
had a significant effect on circularity and cylindricity error, followed by the depth of cut, while the
cutting speed is insignificant. Rafai and Islam [45] concluded that feed rate, followed by cutting speed,
and depth cut were influencing factors for diameter error and circularity in the dry turning of AISI
4340. Cui and Han [46] analyzed that the cutting parameters affecting shape error are depth of cut and
feed rate, while the spindle speed has an insignificant effect in the turning of C45 steel.
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Table 4. Analysis of variance for circularity and cylindricity deviations.

Source DF Adj SS Adj MS F-Value p-Value % Contribution

Cr

c 3 0.000045 0.000015 15.56 0.061 22.06
f 3 0.0001 0.000033 34.57 0.028 * 49.02
d 3 0.000044 0.000015 15.37 0.062 21.57
p 3 0.000008 0.000003 2.68 0.284 3.92
e 1 0.000005 0.000005 5.02 0.154 2.45

Error 2 0.000002 0.000001
Total 15 0.000204

Cy

c 3 0.000069 0.000023 10.8 0.086 22.26
f 3 0.000147 0.000049 22.94 0.042 * 47.42
d 3 0.000063 0.000021 9.88 0.093 20.32
p 3 0.000015 0.000005 2.41 0.307 4.84
e 1 0.00001 0.00001 4.86 0.158 3.23

Error 2 0.000004 0.000002
Total 15 0.00031

Degree of freedom (DF), Adjusted sum of square (Adj SS), Adjusted mean square (Adj MS), * significant.

4.2. Optimization Based on S/N Ratios for Individual Responses

The individual responses are optimized based on the Taguchi-based signal-to-noise ratio (S/N) ratio
analysis. The primary objective function for cutting forces (Ff, Ft, Fr, and Fc) and shape deviations (Cr

and Cy) are similar i.e., minimization. So the smaller-the-better quality characteristic function is applied
to all responses, using Equation (1). Independently from the quality characteristics, higher values of
S/N ratios represent the best performance of responses corresponding to the desired experimental run.

Table 5 shows the S/N ratios calculated for individual responses. The results show that the higher
S/N ratios were obtained for the components of cutting forces (i.e., Ff, Ft, and Fc) at experimental run
five (having c and d at level two, f at level one, p, at level three and cutting condition at level two i.e.,
MQL). However, for Fr, higher S/N ratios were observed in experimental run six (having c and f at
level two, d at level one, p, at level four, and e, at level two i.e., MQL). For Cr and Cy, the higher S/N
ratios computed are found in experiment nine (c and d at level three, f and e, at level one (dry), and p,
at level four. The mean values of S/N ratios are computed at each level for each factor, and higher
mean values of S/N ratios correspond to the optimal level. Figure 5a–d illustrates the main effect plot
of mean values of S/N ratios for components of cutting forces (Ff, Ft, Fr and Fc), respectively). It shows
that the final optimal levels based on mean S/N ratios of all components of cutting forces are c and
p, at level four (800 m/min and 25◦), f and d at level one (0.1 mm/rev and 1 mm) and e, at level two
(MQL). Figure 6a,b depicts the mean S/N ratios of Cr and Cy, respectively. The optimal levels obtained
are c, at level 3 (600 m/min), f and d at level one (0.1 mm/rev and 1 mm), p, at level four (25◦) and e,
at level two (MQL).

Table 5. Signal to noise ratio values of measured responses.

Experimental Run Ff Ft Fr Fc Cr Cy

1 −39.666 −42.645 −34.901 −44.877 37.016 35.139
2 −45.339 −48.256 −40.930 −50.550 35.650 33.893
3 −47.310 −50.568 −42.629 −52.698 34.067 32.579
4 −48.887 −52.080 −43.429 −54.164 33.351 31.768
5 −37.530 * −41.100 * −33.103 −43.136 * 39.332 37.655
6 −38.399 −41.386 −32.700 * −43.529 39.172 37.924
7 −49.275 −52.281 −44.137 −54.466 33.723 32.007
8 −49.417 −52.586 −44.318 −54.711 33.351 31.734
9 −39.280 −41.973 −34.185 −44.288 39.576 * 38.344 *
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Table 5. Cont.

Experimental Run Ff Ft Fr Fc Cr Cy

10 −47.051 −50.013 −41.943 −52.218 36.954 35.189
11 −41.408 −44.624 −35.848 −46.691 38.062 36.595
12 −46.555 −49.838 −41.289 −51.905 36.027 34.289
13 −40.189 −43.113 −34.353 −45.269 37.393 36.027
14 −45.225 −48.303 −39.573 −50.415 35.756 34.289
15 −44.916 −47.812 −39.860 −50.048 35.340 33.723
16 −42.835 −45.386 −37.886 −47.776 36.193 34.704

* higher S/N ratios.
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4.3. Main Effect Plots of Means of Cutting Forces

The effect of the cutting process parameters on individual responses is studied through the main
effect plots of means. Figure 7 shows the main effect plot for means of a component of cutting forces
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i.e., Ff, Ft, Fr, and Fc. Figure 7a indicates that the feed forces (Ff) decrease with an increase in cutting
speed and positive rake angle from low level to high level (i.e., 200 m/min to 800 m/min, and 10◦

to 25◦), however, it increases with an increase in the feed rate and depth of cut from a low level to
a high level (i.e., 0.1 mm/rev to 0.4 mm/rev and 1 mm to 2.5 mm). It is also observed that with the
application of MQL, the Ff decreases. Similar results are obtained for tangential force (Ft), radial force
(Fr), and resultant force (Fc), as illustrated in Figure 7b–d. These results are in good agreement with
the literature. Kannan et al. [11] observed that under both dry and MQL conditions, cutting forces
increase with an increase in feed rate. This is attributed to the increased contact area between the
cutting tool and workpiece, which causes an increase in temperature at the interface and results in the
formation of built-up edges. They also observed that with an increase in cutting speed the formation of
built-up edges reduces, therefore reducing the cutting forces. High cutting speed results in high heat
generation in the workpiece, which makes the workpiece more plastic and makes machining easier.
According to Sood et al. [40], an increase in feed rate increase the thickness of chips and causes increases
in the cutting force; the same findings are also supported by Ajay and Vinoth [9]. Sood et al. [40]
also observed that with an increase in cutting speed, the extent of interaction between tool and chip
decreases, and also the formation of built-up edges reduces, therefore, reducing the cutting forces.
An increase in depth of cut increases the shear area, so higher tangential forces followed by feed force
and radial force are required to cut the material [19]. Saleem et al. [47] investigated that an increase
in the positive rake angle decreases the cutting forces. This is attributed to an increase in the tool
and chip contact area resulting in the easy formation of chips. They also found that the chip–tool
interface temperature increases with an increase in positive rake angle, resulting in an increase in
strain in the workpiece and reduces the cutting forces. According to Dhar et al. [48], a positive rake
angle causes tool edge sharpening. The tool sharpness reduces cutting forces and improves the surface
quality of the machined specimen, but it reduces the tool life significantly. Additionally, an increase in
cutting speed or feed rate damages the tool sharpness and causes an increase in the shape deviations
of machined parts.
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4.4. Main Effect Plots of Means of Shape Deviations

Figure 8 shows the main effect plots of means of circularity and cylindricity. It shows that the mean
values of both circularity and cylindricity decrease with an increase in the cutting speed from level
one (400 m/min) to level three (600 m/min), but increase with further increases in cutting speed from
level three (600 m/min) to level four (800 m/min). The circularity and cylindricity deviation increase
with an increase in feed rate and depth of cut from a low to high level (i.e., 0.1 mm/rev to 0.4 mm/rev
and 1–2.5 mm). However, with an increase in the positive rake angle, the circularity and cylindricity
deviation decreases. Further, the plots also show that both circularity and cylindricity deviations
decrease with the application of MQL. These results are in line with the literature. The possible reason
for the increase in circularity and cylindricity deviation with an increase in cutting speed is spindle
error and elastic deformation of the workpiece due to built-up edges, tool wear, and variation in cutting
forces during turning of the aluminum alloy [8] and steel [45,46]. The other possible reason could
be that the aluminum alloy has a low geometrical moment of inertia due to its structure, so during
machining, at high cutting speed, this results in buckling and produces deflection forces which cause
shape deviations. According to Sreejith [18] the increase may also occur due to the thermal softening
of an aluminum alloy at high cutting speed. At lower feed rates, the cutting forces decrease because
of small coefficient friction, and this results in minimum deviation during turning operation [49].
A higher positive rake angle reduces cutting forces, as evident from cutting forces analysis, so this may
also be one reason for the shape deviation reductions in round bars.Materials 2020, 13, x FOR PEER REVIEW 15 of 21 
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4.5. Multi-Response Optimization

For multi-response optimization, the algorithm applied has been discussed in the optimization
methodology section. First, the decision matrix of order 16 × 6 (experimental runs × number of
responses) was obtained by calculating the signal to noise (S/N) ratios of individual responses,
as tabulated in Table 5 using Equation (1). S/N ratios were normalized using Equation (4) to make
the responses dimensionless. The normalized values are expressed in Table 6 and are in the range
of [−1, 1]. Weighted normalized values are calculated using Equation (5) and are shown in Table 7.
To obtain the best experimental run for combined multi-response, weighted normalized assessment
values are calculated using Equation (7). The weighted normalized assessment values, along with the
rankings, are shown in Table 8. It shows that the best combination of cutting process parameters and
cutting conditions to minimize the responses simultaneously, is that in experimental run five (having a
high weighted normalized assessment value of 0.089). It is ranked first, having a cutting speed and
depth of cut at level two (600 m/min and 2 mm), feed rate at level one (0.1 mm/rev), positive rake
angle at level three (20◦) and cutting condition at level two (MQL). To obtain the final optimized levels,
the average values of weighted normalized assessment values are calculated at each level for each
factor, and larger average values correspond to the optimal level, as presented in Table 9. The optimized
levels obtained are cutting speed at level three (600 m/min), feed rate and depth of cut at level one
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(0.1 mm/rev and 1mm), positive rake angle at level four (25◦), and cutting condition at level two (MQL).
Table 9 also illustrates, that based on the delta values, the feed rate is the more significant influencing
factor followed by the depth of cut, cutting speed, positive rake angle, and cutting conditions.

Table 6. Normalization of signal to noise ratios of responses.

Experimental Run Ff Ft Fr Fc Cr Cy

1 −0.225 −0.226 −0.224 −0.227 0.254 0.252
2 −0.257 −0.256 −0.262 −0.256 0.245 0.243
3 −0.268 −0.268 −0.273 −0.267 0.234 0.234
4 −0.277 −0.276 −0.278 −0.274 0.229 0.228
5 −0.213 −0.218 −0.212 −0.219 0.270 0.270
6 −0.218 −0.219 −0.210 −0.221 0.269 0.272
7 −0.279 −0.277 −0.283 −0.276 0.232 0.230
8 −0.280 −0.279 −0.284 −0.277 0.229 0.228
9 −0.223 −0.222 −0.219 −0.224 0.272 0.275

10 −0.267 −0.265 −0.269 −0.265 0.254 0.253
11 −0.235 −0.237 −0.230 −0.237 0.262 0.263
12 −0.264 −0.264 −0.265 −0.263 0.248 0.246
13 −0.228 −0.229 −0.220 −0.229 0.257 0.259
14 −0.256 −0.256 −0.254 −0.255 0.246 0.246
15 −0.254 −0.253 −0.255 −0.254 0.243 0.242
16 −0.243 −0.241 −0.243 −0.242 0.249 0.249

Table 7. Weighted normalized values of responses.

Experimental Run Ff Ft Fr Fc Cr Cy

1 −0.020 −0.021 −0.022 −0.021 0.082 0.076
2 −0.023 −0.024 −0.026 −0.023 0.079 0.073
3 −0.024 −0.025 −0.027 −0.024 0.076 0.071
4 −0.025 −0.026 −0.028 −0.025 0.074 0.069
5 −0.019 −0.021 −0.021 −0.020 0.088 0.082
6 −0.020 −0.021 −0.021 −0.020 0.087 0.082
7 −0.025 −0.026 −0.028 −0.025 0.075 0.069
8 −0.025 −0.026 −0.028 −0.025 0.074 0.069
9 −0.020 −0.021 −0.022 −0.020 0.088 0.083

10 −0.024 −0.025 −0.027 −0.024 0.082 0.076
11 −0.021 −0.022 −0.023 −0.021 0.085 0.079
12 −0.024 −0.025 −0.026 −0.024 0.080 0.074
13 −0.020 −0.022 −0.022 −0.021 0.083 0.078
14 −0.023 −0.024 −0.025 −0.023 0.080 0.074
15 −0.023 −0.024 −0.025 −0.023 0.079 0.073
16 −0.022 −0.023 −0.024 −0.022 0.081 0.075

Table 8. Normalized assessment values and ranking.

Experimental Run Normalized Assessment Values Rank

1 0.074 6
2 0.056 11
3 0.046 13
4 0.040 15
5 0.089 1
6 0.088 2
7 0.040 14
8 0.038 16
9 0.088 3

10 0.059 8
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Table 8. Cont.

Experimental Run Normalized Assessment Values Rank

11 0.076 5
12 0.056 12
13 0.077 4
14 0.058 9
15 0.057 10
16 0.065 7

Table 9. Optimal levels based on average normalized assessment values and the importance
of parameters.

Cutting Parameters
Levels

Optimal Levels Delta Parameters Rank
1 2 3 4

Cutting speed 0.054 0.064 0.070 0.064 3 0.016 3
Feed rate 0.082 0.066 0.055 0.050 1 0.032 1

Depth of cut 0.076 0.064 0.058 0.054 1 0.022 2
Positive rake angle 0.057 0.062 0.065 0.068 4 0.011 4
Cutting conditions 0.060 0.066 2 0.006 5

The weights of responses in the present study are computed based on the CRTIC technique. First,
the measured responses, as tabulated in Table 2, were normalized using Equation (8). The normalized
values are shown in Table 10. Then, the correlation is obtained between each response based Equation (9)
and these are tabulated in Table 11. The degree of conflict and contrast between responses was measured
using Equations (10) and (11) and the results are depicted in Table 11. Relative importance of responses
(weights) were obtained using Equation (12) and final normalized weights of individual responses
were computed using Equation (13). The results show that Cr has a higher normalized weight of (0.324)
and therefore has high priority followed by Cy (0.302), Fr (0.10), Ft (0.094), Fc (0.090), and Ff (0.090).

Table 10. Normalized values of measured responses based on CRITIC.

Experimental Run Ff Ft Fr Fc Cr Cy

1 0.095 0.071 0.103 0.080 0.327 0.391
2 0.497 0.465 0.562 0.483 0.545 0.587
3 0.711 0.717 0.760 0.719 0.845 0.826
4 0.921 0.923 0.868 0.917 1.000 0.993
5 0.000 0.000 0.017 0.000 0.027 0.072
6 0.036 0.012 0.000 0.017 0.045 0.043
7 0.978 0.953 0.972 0.962 0.918 0.942
8 1.000 1.000 1.000 1.000 1.000 1.000
9 0.076 0.038 0.066 0.051 0.000 0.000
10 0.680 0.650 0.676 0.661 0.336 0.384
11 0.192 0.182 0.155 0.181 0.182 0.196
12 0.623 0.630 0.601 0.625 0.482 0.522
13 0.122 0.095 0.075 0.100 0.273 0.268
14 0.487 0.469 0.429 0.470 0.527 0.522
15 0.458 0.423 0.456 0.436 0.600 0.616
16 0.287 0.232 0.291 0.253 0.455 0.457
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Table 11. Correlation of responses and weights based on CRITIC.

Correlation

Ff Ft Fr Fc Cr Cy

Ff 1.000 0.999 0.995 1.000 0.917 0.921
Ft 0.999 1.000 0.994 1.000 0.916 0.920
Fr 0.995 0.994 1.000 0.995 0.918 0.925
Fc 1.000 1.000 0.995 1.000 0.917 0.921
Cr 0.917 0.916 0.918 0.917 1.000 0.997
Cy 0.921 0.920 0.925 0.921 0.997 1.000

Other parameters of CRITIC

Degree of conflict 0.090 0.092 0.098 0.089 0.333 0.316
Degree of contrast 0.335 0.342 0.339 0.340 0.325 0.319

Weights 0.030 0.032 0.033 0.030 0.108 0.101
Normalized weights 0.090 0.094 0.100 0.090 0.324 0.302

Priority 6 4 3 5 1 2

4.6. Comparative Study

Optimal levels, identified based on Taguchi S/N ratios coupled with MOORA and CRITIC are
compared with other methods such as; Taguchi S/N ratios coupled with TOPSIS [49], Taguchi based
grey relational analysis [50], composite desirability function [51], and S/N ratios coupled with grey
relational analysis [52]. The initial control parameters set were c, f, d, and p, at level one. These were
identified based on the worker experience and machine handbook. However, in practice, the optimal
conditions are highly desirable. The optimal conditions identified based on the Taguchi S/N ratios
coupled with MOORA and CRITIC are a c = 600 m/min, f = 0.1 mm/rev, d = 1 mm, p = 25◦ and
the cutting condition is MQL. However, the optimal levels identified based on the other methods
mentioned above are: a c = 400 m/min, f = 0.1 mm/rev, d = 1 mm, p = 25◦, and an MQL cutting condition.
Table 12 shows a comparison of responses obtained, based on initial control parameters and optimal
parameters. It shows that the responses (i.e., cutting forces and shape deviations) at optimal levels
identified based on the Taguchi S/N ratios coupled with MOORA and CRITIC performed better (i.e.,
lower components of cutting forces and shape deviations) compared to the initial control parameter
settings and optimal levels identified based on other methods, such as the Taguchi grey relational
analysis, composite desirability function, S/N ratios coupled with grey relational analysis, and Taguchi
S/N ratios coupled with TOPSIS.

Table 12. Confirmation tests.

c F d p e Ff Ft Fr Fc Cr Cy

Initial control parameters 400 0.1 1 10◦ MQL 90.23 130.55 22.75 160.32 0.0141 0.0171

Taguchi S/N ratios and TOPSIS

400 0.1 1 25◦ MQL 64.15 116.21 21.22 134.43 0.0111 0.0121
Taguchi based Grey relational analysis
S/N ratios and Grey relational analysis

Composite desirability function

Taguchi S/N ratios, MOORA and CRITIC 600 0.1 1 25◦ MQL 60.28 113.55 18.51 129.9 0.0102 0.0117

5. Conclusions

From the presented experimental and statistical study, following conclusions can be drawn
regarding the turning of the 6026-T9 aluminum alloy under dry and MQL environments:

1. Based on ANOVA it is found that the feed rate is the most significant influencing factor for
components of cutting forces (namely feed forces, tangential forces, radial forces, and resultant
forces) and shape deviations (i.e., circularity and cylindricity). However, the depth of cut has a
significant effect on the feed force and radial force, and an insignificant effect on tangential force,
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and shape deviations. Cutting speed, positive rake angle and cutting conditions are found to be
have an insignificant effect on components of cutting forces and shape deviations.

2. The individual optimized levels identified, based on the Taguchi signal to noise (S/N) ratios for
components of cutting forces are the same i.e., cutting speed and positive rake angle at a high
level (800 m/min and 25◦), feed rate and depth of cut at the low level (0.1 mm/rev and 1 mm) and
cutting condition is MQL.

3. The optimized levels for circularity and cylindricity deviation are also similar i.e., the cutting
speed at level three (600 m/min), feed rate and depth of cut at level one (0.1 mm/rev and 1 mm),
positive rake angle at level four (25◦) and the MQL cutting condition.

4. For multi-response optimization, the Taguchi based S/N ratio coupled with MOORA and CRITIC
performed better compared to other multi-response optimization techniques such as the Taguchi
grey relational analysis, composite desirability function, S/N ratios coupled with grey relational
analysis, and Taguchi S/N ratios coupled with TOPSIS. The optimal parameters obtained based on
the Taguchi S/N ratios coupled with MOORA and CRITIC are a cutting speed of 600 m/min, feed
rate of 0.1 mm/rev, depth of cut of 1 mm, positive rake angle of 25◦ and the MQL cutting condition.
The corresponding optimized responses obtained are tangential components of cutting forces:
113.55 N, feed force 60.28 N, radial force 18.51 N, a resultant component of three-component
forces 129.9 N, circularity 0.0102 mm and cylindricity 0.0117 mm.

5. The turning operation in the MQL environment using vegetable oil can be considered more
effective as compared to the dry environment in reducing the components of cutting forces and
shape deviations of the machined work piece.

6. The detailed machining data generated related to aluminum alloys in the present study can be used
as a benchmark permitting comparisons with other materials. It will help the industries to select
the proper settings of cutting parameters for the cutting operation of aluminum alloy 6026–T9.

7. Future studies can incorporate the comparison of olive oil with other lubricants to analyze its
performance. The effect of tool type, and tool nose radius on cutting forces and shape deviations
also need to be explored. Further, the effect of cutting parameters on response variables such as
tool chattering, fatigue strength, and energy consumption need to be investigated.

Author Contributions: Conceptualization, M.A. and R.K.; methodology, Q.S.K. and R.N.; software, M.A. and R.N.;
validation, I.H., B.S. and W.S.; formal analysis, M.A.; investigation, A.R.B. and I.H.; resources, B.S.; data curation,
Q.S.K. and A.R.B.; writing—original draft preparation, M.A. and R.K.; writing—review and editing, W.S. and
R.N.; visualization, B.S.; supervision, M.A.; project administration, B.S.; funding acquisition, B.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This study received funding from King Saud University, Saudi Arabia through researchers supporting
project number (RSP-2020/145). And the APCs were funded by King Saud University, Saudi Arabia through
researchers supporting project number (RSP-2020/145).

Acknowledgments: The authors extend their appreciation to King Saud University, Saudi Arabia for funding this
work through researchers supporting project number (RSP-2020/145).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Santos, M.C.; Machado, A.R.; Sales, W.F.; Barrozo, M.A.S.; Ezugwu, E.O. Machining of aluminum alloys:
A review. Int. J. Adv. Manuf. Technol. 2016, 86, 3067–3080. [CrossRef]

2. Soren, T.R.; Kumar, R.; Panigrahi, I.; Sahoo, A.K.; Panda, A.; Das, R.K. Machinability behavior of aluminium
alloys: A brief study. Mater. Today Proc. 2019, 18, 5069–5075. [CrossRef]

3. Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological
trends in machining as a key factor in sustainable production—A review. J. Clean. Prod. 2019, 218, 601–615.
[CrossRef]

4. Debnath, S.; Reddy, M.M.; Yi, Q.S. Environmental friendly cutting fluids and cooling techniques in machining:
A review. J. Clean. Prod. 2014, 83, 33–47. [CrossRef]

http://dx.doi.org/10.1007/s00170-016-8431-9
http://dx.doi.org/10.1016/j.matpr.2019.07.502
http://dx.doi.org/10.1016/j.jclepro.2019.02.017
http://dx.doi.org/10.1016/j.jclepro.2014.07.071


Materials 2020, 13, 4327 19 of 21

5. Jawahir, I.S.; Schoop, J.; Kaynak, Y.; Balaji, A.K.; Ghosh, R.; Lu, T. Progress towards modeling and optimization
of sustainable machining processes. J. Manuf. Sci. Eng. 2020, 142, 1–27. [CrossRef]

6. Katna, R.; Suhaib, M.; Agrawal, N. Nonedible vegetable oil-based cutting fluids for machining processes—A
review. Mater. Manuf. Process. 2020, 35, 1–32. [CrossRef]

7. Sen, B.; Mia, M.; Krolczyk, G.M.; Mandal, U.K.; Mondal, S.P. Eco-Friendly Cutting Fluids in Minimum
Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing. Int. J.
Precis. Eng. Manuf. Technol. 2019, 1–32. [CrossRef]

8. Patel, G.C.M.; Lokare, D.; Chate, G.R.; Parappagoudar, M.B.; Nikhil, R.; Gupta, K. Analysis and optimization
of surface quality while machining high strength aluminium alloy. Meas. J. Int. Meas. Confed. 2020,
152, 107337. [CrossRef]

9. Ajay, C.V.; Vinoth, V. Optimization of process parameters in turning of aluminum alloy using response
surface methodology. Mater. Today Proc. 2020, 1–7. [CrossRef]

10. Javidikia, M.; Sadeghifar, M.; Songmene, V.; Jahazi, M. On the impacts of tool geometry and cutting conditions
in straight turning of aluminum alloys 6061-T6: An experimentally validated numerical study. Int. J. Adv.
Manuf. Technol. 2020, 106, 4547–4565. [CrossRef]

11. Kannan, C.; Chaitanya, C.V.; Padala, D.; Reddy, L.; Ramanujam, R.; Balan, A.S.S. Machinability studies
on aluminium matrix nanocomposite under the influence of MQL. Mater. Today Proc. 2019, 22, 1507–1516.
[CrossRef]

12. Duan, C.; Sun, W.; Che, M.; Yin, W. Effects of cooling and lubrication conditions on tool wear in turning of
Al/SiCp composite. Int. J. Adv. Manuf. Technol. 2019, 103, 1467–1479. [CrossRef]

13. Kouam, J.; Songmene, V.; Balazinski, M.; Hendrick, P. Effects of minimum quantity lubricating (MQL)
conditions on machining of 7075-T6 aluminum alloy. Int. J. Adv. Manuf. Technol. 2015, 79, 1325–1334.
[CrossRef]

14. Yigit, R. An experimental investigation of effect of minimum quantity lubrication in machining 6082
aluminum alloy. Met. Mater. 2014, 52, 29–33. [CrossRef]

15. Islam, M.N. Effect of additional factors on dimensional accuracy and surface finish of turned parts.
Mach. Sci. Technol. 2013, 17, 145–162. [CrossRef]

16. Jafarian, F.; Taghipour, M.; Amirabadi, H. Application of artificial neural network and optimization algorithms
for optimizing surface roughness, tool life and cutting forces in turning operation. J. Mech. Sci. Technol. 2013,
27, 1469–1477. [CrossRef]

17. De Agustina, B.; Bernal, C.; Camacho, A.M.; Rubio, E.M. Experimental analysis of the cutting forces obtained
in dry turning processes of UNS A97075 aluminium alloys. Procedia Eng. 2013, 63, 694–699. [CrossRef]

18. Sreejith, P.S. Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater. Lett.
2008, 62, 276–278. [CrossRef]

19. Reis, D.D.; Abrão, A.M. The machining of aluminium alloy 6351. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
2005, 219, 27–33. [CrossRef]

20. Jan, Q.M.U.; Habib, T.; Noor, S.; Abas, M.; Azim, S.; Yaseen, Q.M. Multi response optimization of injection
moulding process parameters of polystyrene and polypropylene to minimize surface roughness and
shrinkage’s using integrated approach of S/N ratio and composite desirability function. Cogent Eng. 2020, 7.
[CrossRef]

21. Brauers, W.K.M. Multi-objective contractor’s ranking by applying the MOORA method. J. Bus. Econ. Manag.
2008, 9, 245–255. [CrossRef]

22. Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment.
Int. J. Adv. Manuf. Technol. 2011, 54, 1155–1166. [CrossRef]

23. Tansel, Y.; Sebla, Y. MOORA-based Taguchi optimisation for improving product or process quality. Int. J.
Prod. Res. 2013, 51, 3321–3341. [CrossRef]

24. Li, L.H.; Mo, R. Production task queue optimization based on multi-attribute evaluation for complex product
assembly workshop. PLoS ONE 2015, 10, e0134343. [CrossRef] [PubMed]

25. Khan, A.M.; Jamil, M.; Salonitis, K.; Sarfraz, S.; Zhao, W.; He, N.; Mia, M.; Zhao, G.L. Multi-objective
optimization of energy consumption and surface quality in nanofluid SQCl assisted face milling. Energies
2019, 12, 710. [CrossRef]

26. Chi, G.T.; Li, G.; Cheng, Y.Q. The Human All-Round Development Evaluation Model Based on AHP and
Standard Deviation and Empirical Study. Chin. J. Manag. 2010, 7, 301–310.

http://dx.doi.org/10.1115/1.4047926
http://dx.doi.org/10.1080/10426914.2019.1697446
http://dx.doi.org/10.1007/s40684-019-00158-6
http://dx.doi.org/10.1016/j.measurement.2019.107337
http://dx.doi.org/10.1016/j.matpr.2020.03.236
http://dx.doi.org/10.1007/s00170-020-04945-3
http://dx.doi.org/10.1016/j.matpr.2020.02.068
http://dx.doi.org/10.1007/s00170-019-03565-w
http://dx.doi.org/10.1007/s00170-015-6940-6
http://dx.doi.org/10.4149/km_2014_1_29
http://dx.doi.org/10.1080/10910344.2012.747936
http://dx.doi.org/10.1007/s12206-013-0327-0
http://dx.doi.org/10.1016/j.proeng.2013.08.248
http://dx.doi.org/10.1016/j.matlet.2007.05.019
http://dx.doi.org/10.1243/095440505X7966
http://dx.doi.org/10.1080/23311916.2020.1781424
http://dx.doi.org/10.3846/1611-1699.2008.9.245-255
http://dx.doi.org/10.1007/s00170-010-2972-0
http://dx.doi.org/10.1080/00207543.2013.774471
http://dx.doi.org/10.1371/journal.pone.0134343
http://www.ncbi.nlm.nih.gov/pubmed/26414758
http://dx.doi.org/10.3390/en12040710


Materials 2020, 13, 4327 20 of 21

27. Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems:
The critic method. Comput. Oper. Res. 1995, 22, 763–770. [CrossRef]

28. Wu, Z.; Chen, Y. The maximizing deviation method for group multiple attribute decision making under
linguistic environment. Fuzzy Sets Syst. 2007, 158, 1608–1617. [CrossRef]

29. Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications Of The Analytic Hierarchy Process; Springer:
New York, NY, USA, 2012; Volume 175, p. 345. ISBN 146143596X.

30. Parnell, G.S.; Trainor, T.E. 2.3.1 Using the Swing Weight Matrix to Weight Multiple Objectives.
INCOSE Int. Symp. 2009, 19, 283–298. [CrossRef]

31. Roszkowska, E. Rank ordering criteria weighting methods—A comparative overview. Optimum. Econ. Stud.
2013, 14–33. [CrossRef]

32. Siregar, D.; Arisandi, D.; Usman, A.; Irwan, D.; Rahim, R. Research of Simple Multi-Attribute Rating
Technique for Decision Support. J. Phys. Conf. Ser. 2017, 930, 012015. [CrossRef]

33. Singaravel, B.; Selvaraj, T.; Vinodh, S. Multi-objective optimization of turning parameters using the combined
moora and entropy method. Trans. Can. Soc. Mech. Eng. 2016, 40, 101–111. [CrossRef]

34. Pathapalli, V.R.; Basam, V.R.; Gudimetta, S.K.; Koppula, M.R. Optimization of machining parameters using
WASPAS and MOORA. World J. Eng. 2019, 17, 237–246. [CrossRef]

35. Majumder, H.; Saha, A. Application of MCDM based hybrid optimization tool during turning of ASTM
A588. Decis. Sci. Lett. 2018, 7, 143–156. [CrossRef]
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