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ABSTRACT
Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist marketed for the treatment
of type 2 diabetes. Besides lowering blood glucose, liraglutide reduces bodyweight, and has
recently also been approved for the obesity indication. Acutely, GLP-1 markedly reduces gas-
tric emptying, and this effect was previously believed to at least partly explain the effect on
bodyweight loss. However, recent studies in both humans and animals have shown that
GLP-1R agonists, such as liraglutide, that lead to pharmacological concentrations for 24 h/
day only have a minor effect on gastric emptying; such an effect is unlikely to have lasting
effects on appetite reduction. Liraglutide has been shown to have direct effects in the arcu-
ate nucleus of the rodent brain, activating pro-opiomelanocortin neurons and increasing
levels of the cocaine- and amphetamine-stimulated transcript neuropeptide messenger
ribonucleic acid, which correlate nicely to clinical studies where liraglutide was shown to
increase feelings of satiety. However, despite the lack of a GLP-1R on agouti-related peptide/
neuropeptide Y neurons, liraglutide also was able to prevent a hunger associated increase in
agouti-related peptide and neuropeptide Y neuropeptide messenger ribonucleic acid, again
with a strong correlation to clinical studies that document reduced hunger feelings in
patients while taking liraglutide. Studies using fluorescent labeled liraglutide, as well as other
GLP-1R agonists, and analysis using single-plane illumination microscopy show that such
medium-sized peptide-based compounds can directly access not only circumventricular
organs of the brain, but also directly access discrete regions in the hypothalamus. The direct
effects of long-acting GLP-1R agonists in the hypothalamus are likely to be an important
new pathway in understanding GLP-1R agonist mediated weight loss.

INTRODUCTION
Glucagon-like peptide-1 (GLP-1) was first identified in 1983,
cloned by Graham Bell as part of the pre-proglucagon sequence,
with the incretin effect being published in 19871–3. As the other
incretin, glucose-dependent insulinotropic polypeptide (GIP),
has little effect on insulin secretion in patients with type 2 dia-

betes, drugs giving pharmacological levels of GLP-1 receptor
(GLP-1R) agonists have become successful therapies in the treat-
ment of type 2 diabetes, providing glucose control as well as
weight loss4. GLP-1 was first shown to lower food intake in
rodent animal models in 1996, followed by a study in humans in
19985–7. The study in humans showed a reduction in energy
intake, and also reported that the mechanism involved a reduc-
tion in appetite along with an increase in satiety and a reduction
in feelings of hunger, as shown by use of a visual analog scale
questionnaire7. The most recently approved GLP-1R agonists for
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management of type 2 diabetes are dulaglutide and albiglutide,
which have been developed for once-weekly administration.
However, as more compounds are approved and results from an
increasing number of large, randomized, controlled, double-
blinded trials have been published, treatment-associated weight
loss in patients with type 2 diabetes differs between compounds.
Liraglutide is a once-daily compound acylated with a fatty acid
to facilitate non-covalent binding to albumin in vivo as the pro-
traction mechanism8. Although there were some differences in
glycemic control, a consistent finding was that liraglutide resulted
in greater weight loss than dulaglutide and albiglutide, which are
much larger molecules modified with covalent addition of either
a crystallizable fragment or an albumin molecule8–10. Further-
more, of the five GLP-1R agonists now approved in treatment of
type 2 diabetes in various regions of the world, liraglutide is the
only one that has also been investigated and approved for weight

management, as adjunct to diet and exercise11. The present
mini-review focuses on a novel pathway in the brain that might
mediate the weight-lowering effect of GLP-1R agonists, and
reviews these data in relation to the rather large existing literature
for GLP-1R action in the brain as well as in the periphery12.

LIRAGLUTIDE DIRECTLY ACCESSES THE RODENT
BRAIN
Using the novel technique of single-plane illumination micro-
scopy (SPIM), whereby the entire perfused brain is scanned
after peripheral administration of fluorescently labeled liraglu-
tide (liraglutide750) in live mice, two-dimensional digital images
of the entire brain were obtained and assembled into a three-
dimensional image for optimal analysis of spatial distribution.
The images were analyzed carefully, and the anatomical loca-
tion of liraglutide750 described. Figure 1 shows a dorsoventral
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Figure 1 | Distribution of fluorescently labeled liraglutide in the mouse brain. Representative whole brain images viewed in the (a) dorsoventral or
(b) sagittal plane from C57BL/6J mice given liraglutide750 (unspecific staining has been removed from the left side of the brain). The brain tissue
was scanned at 620 nm and 710 nm, representing both autofluorescence from the tissue (gray) and specific signal (green). The (c, f, i) red regions
are shown at (d, g, j) higher magnification, respectively. (d, e, g, h, j, k) High-magnification views of a single section from (d, g, j) C57BL/6J or (e, h,
k) Glp1r-/- mice given liraglutide750. Liraglutide750 was detectable in (c, d) paraventricular nucleus of the hypothalamus (PVN), (f, g) the median
eminence (ME), the arcuate nucleus (ARC), and (i, j) area postrema (AP). (e, h, k) In mice lacking a functional glucagon-like peptide-1 receptor (GLP-
1R), no liraglutide750 signal could be detected in any of these regions. Scale bars, 200 μm (a, b, c, f, i); 50 μm (d, e); 100 μm (g, h, j, k). ©American
Society for Clinical Investigation and reproduced from Secher et al.12 with permission.
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(Figure 1a), or sagittal (Figure 1b), three-dimensional plane
view of liraglutide750 distribution in the mouse brain. As can be
seen, liraglutide750 was distributed to discrete regions of the
brain. Regions with clear uptake were determined to be the
paraventricular nucleus of the hypothalamus (PVN; Figure 1c,
d); the arcuate nucleus (ARC) and the median eminence (ME)
of the hypothalamus (Figure 1f,g); and the area postrema (AP)
in the hindbrain, whereas there was no uptake in the nucleus
tractus solitarus in the hindbrain (Figure 1i,j). The signal in all
sites of uptake were found to depend entirely on expression of
the GLP-1R, as no uptake was detectable at these sites in GLP-
1R-/- mice (Figure 1e,h,k). Uptake was also found in the orga-
num vasculosum of the lamina terminalis, the subfornical
organ, the supraoptic nucleus and the supraoptic decussation,
as well as the choriod plexus. Except for the choriod plexus,
the signal in these regions also depends on the GLP-1R. The
uptake patterns for liraglutide in the pancreas and the hypotha-
lamus were compared with the patterns of the specific GLP-1R
antagonist exendin(9-39; Figure 2). A different flourophore was
used for these experiments, enabling co-staining for insulin or
cocaine- and amphetamine-stimulated transcript (CART),
respectively. In the pancreas, liraglutide594 was found to co-
localize entirely with pancreatic b-cells, as evidenced by an
overlap with insulin staining. Also, the liraglutide594 signal was
present within the cells as evidence of internalization with the
GLP-1R (Figure 2i,j). In contrast, exendin(9-39)594 was retained
at the plasma membrane of the b-cells (Figure 2k,l). In the
brain, liraglutide594 also appeared to be present within the neu-
rons (Figure 2m,n), whereas exendin(9-39)594 appeared to be
retained at the membrane. However, in the brain, internaliza-
tion is more difficult to assess because of the high density of
neuronal fibers. To further examine the precise localization of
liraglutide594 in the ARC, co-staining with the CART neuropep-
tide that labels CART/pro-opiomelanocortin (POMC) neurons
was carried out (Figure 3). Liraglutide594 was detected specifi-
cally in the ARC in the cytoplasm of neurons positive for
CART (Figure 3). Nearly all CART-positive cells were positive
for liraglutide594. However, a few cells were only positive for
liraglutide594, showing that another cell type might be targeted
by liraglutide in the hypothalamus.

DISCUSSION
It has been suggested that physiologically the inhibitory effect
of GLP-1 on gastric emptying might be more important than
the incretin effect13. Delayed gastric emptying leading to pro-
longed gastric distention might induce short-term satiety, and
could therefore be the relevant mechanism for the postprandial
changes in appetite induced by physiological doses of GLP-1.
However, such mechanisms are unlikely to cause the lasting
effects on fasting and postprandial appetite seen with treatment
with long-acting GLP-1R agonists in patients with and without
type 2 diabetes14–16. With continued exposure beyond the dura-
tion of a normal postprandial period, the ability of GLP-1 to
delay gastric emptying is much diminished17. Similarly, liraglu-

tide and other long-acting GLP-1R agonists have little effect on
gastric emptying, making it unlikely that this is the main
weight loss mechanism18,19. The brain is the integrating site for
appetite regulation, and numerous studies have documented
the expression and importance of GLP-1Rs in the brain, and
its importance in the physiological regulation of appetite20.
GLP-1 is also produced in the hindbrain, and has been pro-
posed as a physiological appetite reduction signal21. Peripher-
ally-acting GLP-1R agonists might communicate with the brain
through the nodose ganglion where GLP-1Rs are expressed,
either in the form of GLP-1 released postprandially from the
L cells in the gastrointestinal tract or in the form of an exoge-
nously dosed GLP-1R agonist. Sisley et al.22 described two
novel animal models where mice were genetically engineered to
be knockdown models for brain or nodose ganglion GLP-1R
expression, respectively. They found that the majority of liraglu-
tide-induced weight loss required brain GLP-1R expression,
whereas similar weight loss was obtained in normal and nodose
ganglion GLP-1R expression knockdown mice.
Hindbrain GLP-1Rs expressed in the AP are accessible to

peripherally-dosed liraglutide as shown in Figure 1j. While the
exact role of AP GLP-1Rs have not been determined, numerous
studies support the role of hindbrain GLP-1 and GLP-1Rs in
appetite regulation where they communicate through projec-
tions to other sites of the brain, and take part in a complex sys-
tem integrating homeostatic and likely also hedonic parts of
appetite regulation23–25. Secher et al.12 showed that the AP was
not required for the weight loss effect of liraglutide. However, as
documented in numerous studies, the hindbrain might still be
an important site for integration of physiological effects of GLP-
1; it is just not required for mediating the effects of pharmaco-
logical doses of a GLP-1R agonist on bodyweight loss. Human
studies are not available and would be difficult to design.
As also aforementioned, some studies have examined the

importance of the vagus nerve in the appetite effect of GLP-1.
Acute dosing studies have shown that the vagus nerve is
involved in mediating a reduction in food intake in both rodent
models and in humans14,26. However, studies in animals with
chronic exposure have shown that the vagus nerve is not
required12,16. No human studies have used a chronic dosing
regime and addressed the importance of the vagus nerve.
The study by Secher et al.12 is the first to show that a

peripherally-dosed GLP-1R agonist (liraglutide) can directly
access and affect the hypothalamus in the rodent brain. Data in
that study showed that liraglutide might have important effects
on the CART/POMC neurons that it is shown to access
directly. Using the native ligand, GLP-1, GLP-1Rs in CART/
POMC neurons are shown to be activated. Using electrophysio-
logical methods, GLP-1 was shown to cause dose-dependent
membrane depolarization and an increased firing rate of spon-
taneous action potentials. Furthermore, the effect was shown to
be post-synaptic, in agreement with a potential direct effect of
peripherally-dosed liraglutide. Importantly, liraglutide was
shown to increase the messenger ribonucleic acid levels of
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CART in the ARC, and to keep levels of neuropeptide Y
(NPY) and agouti-related peptide (AgRP) at the level of normal
control animals, whereas reduced-feed ‘control animals’ weight-

matched to those on liraglutide had increased levels of both
NPY and AgRP. The effect on AgRP/NPY is suggested to be
indirect inhibition of the AgRP/NPY neurons through a local
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Figure 2 | Distribution of liraglutide594 or exendin(9-39)594 in the pancreas and brain. (a–l) Representative images of mouse islets stained with
Hoechst nuclear stain (blue), insulin (green) and liraglutide594/exendin(9-39)594 (red). (a, c, e, d) Insulin- and liraglutide594/exendin(9-39)594-positive
cells. (b, d, f, h) The same images as in (a, c, e, d) with only Hoechst and liraglutide594/exendin(9-39)594 signal. (a–d) In C57BL/6J mice, both
liraglutide594 and exendin(9-39)594 were detected in cells expressing insulin; (e–h) however, in mice lacking a functional glucagon-like peptide-1
receptor, no liraglutide594 or exendin(9-39)594 signal could be detected in insulin expressing b-cells. (i, j, n) High-magnification images showed that
liraglutide594 was internalized and the fluorescent signal was located in the cytoplasm, (k, l, p) while exendin(9-39)594 remained at the plasma
membrane. In the brain, (m, n) liraglutide594 had access to arcuate nucleus (ARC), in which it bound the glucagon-like peptide-1 receptor and
internalized, (o, p) whereas exendin(9-39)594 labeled the same population of cells, but without internalization. Scale bars, 100 μm (m, o), 50 μm (a–
h), 10 μm (i–l, n, p). ©American Society for Clinical Investigation and reproduced from Secher et al.12 with permission.
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inhibitory gamma-aminobutyric acid neuron, as AgRP/NPY
neurons do not have GLP-1Rs. The hypothalamus is a key
region in the brain for integration of appetite signals. The main
primary neurons in the ARC are the CART/POMC neurons
and the AgRP/NPY neurons. Appetite-inhibiting neurons con-
tain POMC peptides, such as a-melanocyte-stimulating hor-
mone and CART. a-Melanocyte-stimulating hormone acts on
melanocortin anoxigenic MC3 and MC4 receptors. Appetite-sti-
mulating neurons in the ARC contain NPY, which acts on the
orexigenic Y1 and Y5 receptors; and AgRP, which is an antago-
nist on MC3/4 receptors. NPY and AgRP are the most impor-
tant regulatory peptides made in the same neurons in the ARC
that both act to increase food intake; similarly important are
neurons in ARC that co-express POMC and CART signals,
which reduce food intake27–31. The direct access of liraglutide
to this part of the brain, along with the uptake in CART/
POMC neurons and the effects of increasing levels of CART,
and maintenance of the low levels of NPY and AgRP, highlight
a likely important new pathway of how peripherally-dosed
GLP-1R agonists can regulate appetite. Previously, mainly insu-
lin and leptin have been shown to be transported into the
brain, and to have direct effects in the hypothalamus; recent
evidence proposes that specialized tanycytes are mediating the
uptake through the ME28,32,33. Schaeffer et al.34 recently showed
circulating acylated ghrelin to be transported to the ARC and
to have directs effects there, much like what is now proposed
for GLP-1R agonists, such as liraglutide.
It is likely that the vast distribution of GLP-1Rs in the brain,

along with integration of peripheral signals to the hindbrain,
makes up a complicated interplay between the hypothalamus
and hindbrain structures, including the nucleus tractus solitarus
where GLP-1 is produced and which receives vagal afferent
inputs. Inputs from higher-order areas of the brain involved in

reward and cognition are integrated as well, with resultant
effects on meal size and frequency, gut handling of ingested
food, and energy expenditure. However, the way native GLP-1
affects postprandial appetite under physiological conditions is
different from the way pharmacological exogenous doses of
long-acting GLP-1R agonists affect appetite. As such, it is
important to discriminate between those studies where GLP-1
or GLP-1R agonists are dosed directly into localized places in
the brain, and those where pharmacological doses are injected
peripherally. With so many different GLP-1R sites of expression
in the brain, it will be very complicated to evaluate the exact
importance of each individual site in the total resulting appetite
regulation. Use of genetically-engineered mice might be able to
show some further details, but then the precise relationship to
humans will need to be investigated.
The hedonic pathways of appetite regulation are likely impor-

tant for GLP-1R agonists. In fact, the only striking difference in
GLP-1R expression between rodents and primates in the brain
is that there seems to be much more GLP-1R expression in the
primate brain in areas involved in hedonic aspects of food
intake, such as the amygdala and the bed nucleus of the stria
terminalis35. Although it is unclear how all these signals inte-
grate, GLP-1 has been shown to reduce both basal and induced
reward, and to change food preference in rodent animal mod-
els36–38. Raun et al.36 showed that when rats dosed with liraglu-
tide for 3 months were given a choice between different kinds
of candy and chocolate vs normal chow, they selectively chose
to eat less chocolate and candy, and more chow. GLP-1R ago-
nists have been shown to lead to taste aversion in rodents, and
to nausea in humans; however, in rodents these effects are very
short-lived (typically only 1–2 days), so the effect shown by
Raun et al.36 is unlikely to be a taste aversion effect. Hansen
et al.37 compared liraglutide with sibutramine in a model where

(a) (b) (c)

Figure 3 | Neuronal accumulation and activity after glucagon-like peptide-1 receptor stimulation. (a–c) Hypothalamic sections from rats injected
with liraglutide594 (red) and stained with Hoechst nuclear stain (blue) and cocaine- and amphetamine-stimulated transcript (green). (b, c) High-
magnification confocal images showed accumulation of fluoro liraglutide in the cytoplasm of cocaine- and amphetamine-stimulated transcript-
positive cells (arrows). (b) Cocaine- and amphetamine-stimulated transcript and liraglutide594-positive cells. (c) The same image as in (b) with only
liraglutide594 signal. Scale bars, 25 μm (b, c); 100 μm (a). ©American Society for Clinical Investigation and reproduced from Secher et al.12 with
permission.
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rats were offered a choice between a chocolate and hazelnut
spread (Nutella�; Ferrero SpA, Pino Torinese, Italy)/peanut but-
ter and chow paste/regular chow; both compounds led to a
reduction in Nutella/peanut butter paste, but only liraglutide led
to an increase in chow intake, as in Raun et al. Nausea is a rela-
tively common side-effect with GLP-1R agonist treatment in
humans with and without type 2 diabetes, but also transient
and dose-dependent – although it does last longer than in
rodents, it is not believed to be the mediator of chronic weight
loss39. No human studies have yet investigated whether long-
term GLP-1R agonist treatment in humans leads to changes in
food preferences and/or eating behavior, but studies using func-
tional magnetic resonance imaging scanning have shown an
involvement of parts of the brain known for involvement in
hedonic aspects of food intake40,41.
Most of the aforementioned areas in the brain, to which

liraglutide has direct access, and further areas described in
Secher et al.12, are so-called circumventricular organs; that is,
areas of the brain that have no classical blood–brain barrier.
The AP, ME, the subfornical organ and the organum vasculo-
sum of the lamina terminalis are circumventricular organs.
Although it is logical that a peptide, such as GLP-1, and other
drug-like GLP-1R agonists can bind to GLP-1Rs in circumven-
tricular organs, it was perhaps less expected that pharmacologi-
cal doses of a GLP-1R agonist, such as liraglutide, could reach
areas in the brain that are protected by the blood–brain barrier.
The PVN and the ARC are well-described areas for GLP-1R
action in the brain, but direct access from the periphery has
not been described before. GLP-1 and liraglutide have been
described to cross the blood–brain barrier, but in light of the
very specific binding in select regions as shown here, perhaps
those older kinds of studies need to be re-thought as a method-
ology where the entire brain parenchyma is extracted seems less
well suited for a very specific pattern of uptake42,43. How then
does liraglutide get into the hypothalamus? Two hypotheses are
worth mentioning. One is that certain parts of the hypothala-
mus, like the ventromedial ARC and the PVN, might be sup-
plied directly by fenestrated capillaries: this could be consistent
with the pattern of uptake seen with liraglutide44,45. The other
hypothesis is based on leptin and ghrelin studies, where special-
ized ependymal/glia cells called tanycytes, expressed in the ME,
form part of an access gate for specific signals whose receptors
are also expressed in the ME32,46. After having passed the ME,
the compounds end up in the cerebrospinal fluid (CSF) where
another specialized glia cell type, ependymocytes, has cilia that
facilitate fluid movement in the bottom of the third ventricle;
thereafter, compounds such as liraglutide could access the ARC
from the CSF. Interestingly, a human study has investigated the
presence of liraglutide in the CSF and found measurable
amounts of approximately 30 pmol/L47. Although the plasma
concentration of liraglutide is much higher than that, because
>99% of liraglutide is bound to albumin as part of the protrac-
tion mechanism, a CSF average concentration of 30 pmol/L
might be relevant for a pharmacological effect.

In conclusion, new evidence from animal models has high-
lighted that pharmacological levels of peripherally-dosed GLP-
1R agonists can access the hypothalamus directly and have
local effects on key primary neurons in ARC, leading to an
increase in satiety signals and a decrease in hunger signals.
These data highlight a potential new important pathway that
likely integrates with several other brain pathways where GLP-
1Rs are expressed. Human mechanistic data showed that
liraglutide increased feelings of satiety and decreased hunger,
leading to an overall reduction of appetite and energy intake.
More studies are required to further understand the differences
in weight loss efficacy between structurally different GLP-1R
agonists.
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