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the multinucleated syncytiotrophoblast
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Abstract

Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a

subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives

of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast,

ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-

induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy

with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified

that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated

apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine

if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along

with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken

as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain

the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium

from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why

caspase-mediated apoptosis does not occur within the syncytium of placental villi.
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Introduction

The human placenta is a transient organ that mediates
maternal–fetal exchange, the synthesis and secretion of
pregnancy hormones, and the immunologic defense
of the fetus (Kay et al. 2011). Placental dysfunction
contributes to sub-optimal outcomes related to pre-
eclampsia and intrauterine growth restriction (IUGR)
and to long-term adverse health consequences for both
the mother and offspring (Rampersad & Nelson 2007,
Scifres & Nelson 2009, Longtine & Nelson 2011).

The chorioallantoic placenta develops from the
trophectoderm of the blastocyst after implantation
(Benirschke et al. 2006) and branching angiogenesis
yields a series of villous trees that are surfaced by
terminally differentiated syncytiotrophoblast. The syncy-
tiotrophoblast is formed by fusion of underlying cyto-
trophoblasts. Cytotrophoblasts undergo a morphological
transition in mid-pregnancy from a continuous, cuboidal
epithelium to a discontinuous layer with extensive
stellate processes (Jones et al. 2008), but retain the ability
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to proliferate and fuse with the overlying syncytium
throughout pregnancy. Bathed in maternal blood, the
syncytiotrophoblast is a unique epithelium and a true
syncytium, with multiple nuclei in a common cytoplasm.
Injury to the trophoblast layer occurs in localized areas
of villi throughout pregnancy (Nelson 1996). Damaged
regions of villi are denuded of syncytiotrophoblast,
and fibrin-containing fibrinoid is deposited on the
trophoblast basement membrane at these sites of injury
(Benirschke et al. 2006) followed by repair by cytotro-
phoblasts which proliferate and fuse, re-establishing
the syncytial epithelium over the fibrin matrix.

A key issue in placental biology is how villous
trophoblasts respond to stressors, such as oxidative
stress, hypoxia/re-oxygenation, dysregulated inflam-
mation, or mechanical damage, among others (Burton
et al. 2009). Notably, markers of oxidative and nitrative
stress are higher in placentas of pregnancies compli-
cated by preeclampsia, IUGR, or both (Benirschke
et al. 2006, Desoye & Hauguel-de Mouzon 2007,
DOI: 10.1530/REP-11-0340
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Rampersad & Nelson 2007, Burton et al. 2009, Redman
& Sargent 2009, Scifres & Nelson 2009, Burton &
Jauniaux 2011). A second key issue is the mechanisms
by which injury, repair, apoptosis, and overall epithelial
turnover are regulated in the multinucleated syncytio-
trophoblast that lacks lateral cell borders.

The response of human villous trophoblasts to stress
and the mechanisms involved cannot be studied directly
in vivo, but in vitro studies using cultured primary human
trophoblasts (PHTs) have generally been consistent,
concluding that cytotrophoblasts more readily undergo
apoptosis than syncytiotrophoblasts (Levy et al. 2000,
Crocker et al. 2001, 2003, Yusuf et al. 2002, Chen et al.
2010). However, data on the level of apoptosis under
constitutive or stress conditions in the cytotrophoblasts
and syncytiotrophoblasts in freshly fixed villi, and from
villous explants in short-term culture, have yielded
conflicting results. Some studies have not identified the
trophoblast phenotype to undergo apoptosis (Allaire
et al. 2000, Kadyrov et al. 2001, Tomas et al. 2011).
Other studies that have attempted to identify the
trophoblast phenotype have concluded that there are
higher levels of apoptosis in cytotrophoblasts, compared
with syncytiotrophoblasts (Burton et al. 2003, Huppertz
et al. 2003), while others conclude that apoptosis is
highest in localized regions within the syncytiotropho-
blast (Nelson 1996, Smith et al. 1997, Austgulen et al.
2002, Hung et al. 2002, Ishihara et al. 2002, Heazell
et al. 2008a,b, 2011).

In the course of our studies of apoptosis using confocal
immunofluorescence microscopy, we found that many
cases of caspase-mediated substrate cleavage that
initially appeared to be within the syncytiotrophoblast
were actually from apoptosis of cytotrophoblasts
that were highly interdigitated into the syncytium. This
ambiguity, and the above noted discordance in the
literature, stimulated the three objectives of our study:
i) to develop an approach by light microscopy that
definitively distinguished the cytotrophoblasts from
the syncytiotrophoblast on villi, ii) to unambiguously
determine the relative susceptibility of cytotrophoblasts
and syncytiotrophoblast in explants of term villi to
constitutive and stress-induced apoptosis mediated by
caspases, and iii) to develop a model for the progression of
apoptosis in term villous trophoblasts. We hypothesized
that the apoptosis in term villi results predominantly from
apoptosis of villous cytotrophoblasts, not from localized
regions of apoptosis in the syncytiotrophoblast.
Results

Validation of antibodies

E-cadherin, an epithelial-cell specific, plasma-membrane
protein, is expressed in placental villi only by the
trophoblast cells (Lecuit et al. 2004, Tabata et al. 2007,
Aplin et al. 2009). Anti-native E-cadherin antibody
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recognized a single band of w130 kDa present in
primary trophoblasts but not HeLa cells, as expected
(Supplementary Figure 1A, see section on supplementary
data given at the end of this article). Antibodies against
native cytokeratins 7 and 18 recognized single bands
of the molecular weight of the intact proteins in extracts
from untreated HeLa cells and primary trophoblasts
(Supplementary Figure 1A). Cytokeratin 18 is cleaved
at multiple sites by caspases during apoptosis (Ku et al.
1997, Leers et al. 1999, Tao et al. 2008) and after
exposure to staurosporine the monoclonal anti-native
cytokeratin 18 antibody recognized the w50 kDa full-
length protein as well as a w30 kDa cleavage product
(Supplementary Figure 1A and B). The M30 MAB
recognizes an epitope on cytokeratin 18, reported to
be generated by caspase cleavage at Asp396 (Leers et al.
1999, Schutte et al. 2004, Tao et al. 2008), which is an
early event in caspase-mediated apoptosis that generates
a cleaved fragment of cytokeratin 18 (clCyt18) of
w43 kDa. Subsequent caspase cleavage of this 43 kDa
fragment at Asp238 resulted in a shorter (w20 kDa)
fragment recognized by the M30 antibody. Both of
these fragments were detected by the M30 antibody in
HeLa cells and trophoblasts exposed to staurosporine
(Supplementary Figure 1A and B). Antibodies specific
for the caspase-cleaved, active form of caspase 8
(clCASP8) and for caspase-cleaved poly-ADP-ribose
polymerase (clPARP) recognized cleavage products
of the expected sizes after staurosporine exposure
(Supplementary Figure 1A). The antibodies to human
chorionic gonadotropin (hCG), and to the Ki67 antigen
that is expressed only in proliferating cells, have been
validated previously (Corless et al. 1987, Scholzen &
Gerdes 2000). Together, these results indicate that the
antibodies we used identified the specific proteins
and protein fragments of interest.
Confocal microscopy and immunofluorescence for
E-cadherin distinguishes cytotrophoblasts from
syncytiotrophoblast

Placental villi collected from term normotensive preg-
nancies were fixed rapidly after delivery and co-stained
for DNA and for E-cadherin. Confocal imaging using
%0.5 mm spaced optical Z-sections showed that
E-cadherin outlined the apical and basal plasma
membranes of the syncytiotrophoblast and the entire
plasma membranes of adjacent mononucleated cells
(Fig. 1). Terminal villi, with a maximal diameter of
%80 mm, contained both syncytiotrophoblast and
mononucleated cells outlined with E-cadherin (Fig. 1A;
Supplementary Movie 1A, see section on supplementary
data given at the end of this article) while inter-
mediate villi, with a maximal diameter of O80 mm
without tunica media, had both regions of syncytio-
trophoblast with detectable mononucleated cells out-
lined with E-cadherin and many regions with uniform
www.reproduction-online.org
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Figure 1 E-cadherin staining identifies villous syncytiotrophoblast and mononucleated cells. Villous tissue was co-stained for E-cadherin (green)
and DNA (blue). (A) Terminal villous with mononucleated cells outlined by E-cadherin. (B and C) Intermediate villous with uniformly thick
syncytiotrophoblast and few mononucleated cells outlined by E-cadherin. White arrowheads: mononucleated cells defined by E-cadherin staining.
White arrows: syncytiotrophoblast nuclei. Red arrows: E-cadherin staining at syncytiotrophoblast basal plasma membrane. Green arrowheads:
nuclei of stromal cells. Red arrowheads: E-cadherin staining at syncytiotrophoblast apical plasma membrane. In this and all subsequent figures,
images are oriented with the syncytiotrophoblast and intervillous space at the left of the image.
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thickness of syncytiotrophoblast with few or no mono-
nucleated cells outlined with E-cadherin (Fig. 1B and
C; Supplementary Movie 1B and C). As expected, cells
and connective tissue in the villous stroma did not stain
with E-cadherin.

We used two approaches to verify that the mono-
nucleated cells outlined by E-cadherin in the term,
normotensive pregnancies were cytotrophoblasts. First,
we co-stained villi for E-cadherin, for hCG, which is
expressed at high levels by syncytiotrophoblast and is
either not expressed or expressed at low levels by
cytotrophoblasts (Hoshina et al. 1982, Kliman et al.
1986, Daoud et al. 2005) and for DNA. HCG was well
expressed in the syncytiotrophoblast but not in the
mononucleated cells outlined by E-cadherin (Fig. 2A).
Secondly, we co-stained villi for E-cadherin, DNA,
and for cytokeratin 7 or 18, which are intermediate
filament proteins expressed only by epithelial cells.
Both cytokeratins were abundantly present in filaments
in the cytoplasm of the syncytiotrophoblast and of
the mononucleated cells outlined by E-cadherin, but
not by villous stromal cells (Fig. 2B and C). We were
able to visualize the cytokeratin filaments (Fig. 2A and B;
Supplementary Figure 2A, see section on supplementary
data given at the end of this article) and spatially
discriminate between the E-cadherin in the plasma
membrane (Fig. 2C, inset) and the cytokeratin filaments
in the cytoplasm (Fig. 2B and C; Supplementary
Figure 2A and B). Together, these results show that
confocal microscopy with co-staining for DNA and
E-cadherin permits the clear identification of syncy-
tiotrophoblast and cytotrophoblasts, with excellent
resolution of subcellular structure.

Previous electron microscopic and immunohisto-
chemical studies reported that w90% of trophoblast
nuclei in villi were within the syncytium, with w10% in
www.reproduction-online.org
the cytotrophoblasts (Simpson et al. 1992, Mayhew &
Simpson 1994, Mayhew et al. 1994). Because confocal
microscopy allows a larger sample size than electron
microscopy, and because E-cadherin and DNA
co-staining allowed greater resolution of the two
trophoblast phenotypes than routine immunohistochem-
ical analyses, we asked if our approach reproduced
the proportion of nuclei in syncytiotrophoblasts and
cytotrophoblasts of term villi reported by the limited
sampling of electron microscopy. We scored O1000
trophoblast nuclei from term, normotensive placentas
(nZ6), and found 91G3% of trophoblast nuclei in
syncytiotrophoblast and 9G1% in cytotrophoblasts.
These proportions were not significantly different from
those reported by electron microscopic studies. We
also used E-cadherin and DNA staining to score O200
cytotrophoblasts per placenta (nZ6 placentas), and
found 30G7% of cytotrophoblasts were interdigitated
into the syncytiotrophoblast and 70G8% of cytotro-
phoblasts were subjacent, and not interdigitated.
Can interdigitated cytotrophoblasts provide a
paracellular route of transport through the syncytia?

Paracellular transfer of molecules from the maternal to
fetal circulations by a route dependent on the diffusion
coefficient of molecules in water has been shown to
occur in regions of villi denuded of their syncytio-
trophoblast layer (Edwards et al. 1993, Brownbill et al.
1995, 2000). We tested the hypothesis that a morpho-
logical pathway for paracellular transfer was present
in undamaged regions of the syncytiotrophoblast
where the cytotrophoblasts were highly interdigitated.
We co-stained villi for E-cadherin, DNA, and for
native cytokeratin 7 (nZ20 cytotrophoblasts) or native
cytokeratin 18 (nZ20 cytotrophoblasts), and obtained
Reproduction (2012) 143 107–121
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Figure 2 Mononucleated cells outlined by
E-cadherin are cytotrophoblasts. Villous tissue
was co-stained for DNA, E-cadherin, and (A) hCG,
(B) native cytokeratin 7, or (C) native cytokeratin
18. Yellow arrow: hCG in syncytiotrophoblast
cytoplasm. White arrowheads: cytotrophoblast
nuclei. White arrows: syncytiotrophoblast
nuclei. Green arrowheads: stromal cell nuclei.
Insets: red arrowhead indicates spatial separation
of cytoplasmic cytokeratins and plasma mem-
brane-associated E-cadherin.
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high-resolution confocal images (0.3 mm spaced
Z-stacks at a zoom of 3!), targeting deeply inter-
digitated cytotrophoblasts. For all 40 cytotrophoblasts,
cytokeratin staining showed that syncytiotropho-
blast cytoplasm always overlaid the cytotrophoblast
plasma membrane, identified by E-cadherin staining
(Supplementary Figure 2B; Supplementary Movie 2, see
section on supplementary data given at the end of this
article). Thus, cytotrophoblasts did not penetrate
the syncytiotrophoblast apical microvillous plasma
membrane and did not reach the intervillous space.
We concluded that cytotrophoblast interdigitations into
the apical cytoplasm of syncytiotrophoblast were not
a site of paracellular transfer through undamaged
syncytiotrophoblast, although the syncytiotrophoblast
cytoplasm overlying a given interdigitated cytotropho-
blast was often highly attenuated (at w0.5–1 mm).
Reproduction (2012) 143 107–121
Are interdigitated and non-interdigitated villous
cytotrophoblasts distinct sub-populations?

Previous electron microscopy studies have indicated that
villous cytotrophoblast nuclei are typically larger and
more euchromatic than the smaller syncytiotrophoblast
nuclei, which contain more condensed chromatin
(Burton et al. 2003, Crocker et al. 2004). Cytotrophoblast
nuclei likely exit the cell cycle and undergo chromatin
condensation before, or during, fusion (Genbacev et al.
2000, Crocker et al. 2007). Our observation that a subset
of cytotrophoblasts were interdigitated into the syncytio-
trophoblast led to the hypothesis that these cytotropho-
blasts have exited the cell cycle and were in the process
of differentiation and fusion, while the non-interdigitated
cytotrophoblasts were continuing to progress through
the cell cycle.
www.reproduction-online.org
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We tested this hypothesis in three ways using villi from
term, normotensive pregnancies. First, we compared
the average nuclear volume of interdigitated and non-
interdigitated cytotrophoblasts (nZ25 for each group)
with each other and with syncytiotrophoblast nuclei
(nZ45). The nuclear volume of interdigitated cytotro-
phoblasts was 1605G692 mm3, of non-interdigitated
cytotrophoblasts was 1372G404 mm3, and of syncytio-
trophoblast nuclei was 1097G401 mm3. The nuclear
volumes of each cytotrophoblast group were greater than
that of syncytiotrophoblast nuclei (P!0.05), but there
was no difference between the two cytotrophoblast
groups (PZ0.15).

Secondly, we co-stained villi for E-cadherin and DNA
and obtained 0.25 mm spaced confocal Z-stacks of
interdigitated (nZ75) and non-interdigitated (nZ75)
cytotrophoblasts. Of these, 147 displayed clear con-
tinuity of E-cadherin staining (Fig. 3A; Supplementary
Movie 3A, see section on supplementary data given at
the end of this article), indicating they were unlikely to
be in the process of fusion with the syncytiotrophoblast.
There was a discontinuity in E-cadherin staining,
consistent with ongoing fusion, in only two interdigitated
cytotrophoblasts and one non-interdigitated cytotropho-
blast (Fig. 3B; Supplementary Movie 3B).

Finally, to determine if there was a difference in
cell-cycle progression of the interdigitated and non-
interdigitated cytotrophoblasts, we co-stained villi for
DNA, E-cadherin, and for the Ki67 antigen, which is
present in cells in G1, S, G2, and mitosis, but not in cells
0.0 µm –3.0 µmA

0.0 µm –3.0 µmB
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in G0 (Scholzen & Gerdes 2000). We used random
screening to identify O25 Ki67-positive cytotrophoblasts
per placenta (nZ4 placentas). Ki67-positive cytotropho-
blasts were found in both the interdigitated and non-
interdigitated populations (Fig. 4A and B), with 33%
being interdigitated, which was not significantly different
from the 30% interdigitated trophoblasts in the popu-
lation (c2 test, PO0.3). These results do not support the
hypothesis that interdigitated and non-interdigitated
cytotrophoblasts reflect differences in differentiation or
cell-cycle status, by the examined criteria of nuclear
volume, hCG expression and Ki67 staining. However,
we recognize that there may be other markers of villous
trophoblast differentiation that might be different that we
have not examined.
Caspase activation occurs in cytotrophoblasts of
explants and term villi but does not occur in
syncytiotrophoblast

Results from other labs (Crocker et al. 2003, Hu et al.
2006) and ours (Yusuf et al. 2002, Hu et al. 2006, Chen
et al. 2010) indicate that cultured primary human
cytotrophoblasts are more susceptible than syncytiotro-
phoblasts to caspase-mediated apoptosis induced by
hypoxia, hypoxia mimetics, and staurosporine. There-
fore, we predicted that in placental villous explants
staurosporine would induce a greater level of apoptosis
in cytotrophoblasts than in the syncytiotrophoblast.
–7.5 µm

10 µm 

10 µm 

–6.0 µm

Figure 3 Continuous and discontinuous plasma
membrane staining of cytotrophoblasts. Villous
tissue was co-stained for DNA (blue) and
E-cadherin (green). (A) Two cytotrophoblast
nuclei surrounded by continuous E-cadherin
(arrowheads), (B) Discontinuous E-cadherin
(arrow) around an interdigitated cytotrophoblast.
Shown are selected confocal Z-stack images of the
depths indicated.
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Figure 4 Staining of villi for E-cadherin and Ki67.
Villous tissue was co-stained for DNA, E-cadherin,
and Ki67. Ki67-positive nuclei (arrowheads) were
found in interdigitated (A) and non-interdigitated
(B) cytotrophoblasts. Shown are maximal pixel
value projections of confocal Z-stacks.
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To test this prediction, we cultured placental villous
explants in 20% oxygen and exposed them to vehicle
control or 100 nM staurosporine for 12 h. Explants were
co-stained for E-cadherin, DNA, and for clCyt18,
clPARP, or clCASP8 (as markers of caspase-mediated
apoptosis) and the presence of these markers was scored
by Z-stack confocal microscopy. Staurosporine exposure
significantly (P!0.05) increased caspase activation in
cytotrophoblasts, as indicated by expression of clCyt18
by 24% of cytotrophoblasts, compared with 8% in
vehicle control (Table 1). Notably, the signal/noise
ratio was high in clCyt18-positive cytotrophoblasts,
with clCyt18 easily detectable even after a tenfold
reduction in laser power. Importantly, in both control
and staurosporine-exposed explants, w90% of cytotro-
phoblasts that expressed clCyt18 also expressed
clCASP8 and clPARP, with few expressing clCASP8 but
lacking clCyt18 (Table 1). Conversely, neither control nor
staurosporine-exposed explants expressed detectable
clCyt18, clCASP8, or clPARP in the syncytiotrophoblast
(Table 1), as defined by a region with multiple nuclei
outlined by E-cadherin on an apical and basal surface.
Thus, in villous explants, caspase-mediated apoptosis
occurred in cytotrophoblasts, but not in the syncytio-
trophoblast, even in the presence of staurosporine, a
potent inducer of apoptosis.

We next investigated caspase activation in villi from
term, normotensive pregnancies. Tissues were rapidly
retrieved and fixed after delivery and co-stained for
Table 1 Percent trophoblast apoptosis in explants and villi from human term

clCyt18C
(cyto)

clCyt18C
(syn)

c
c

Explants
Vehicle control 8G3* ND
Staurosporine 24G6* ND

Tissue
Term, normotensive 1G0.9* ND

Cyto, cytotrophoblast; Syn, syncytiotrophoblast; clCyt18, cleaved cytokera
polymerase. Vehicle control (nZ3), staurosporine (nZ4), term, normotensi
compared with vehicle control or normotensive, as appropriate.

Reproduction (2012) 143 107–121
E-cadherin, DNA, and markers of caspase activation,
and then examined by Z-stack confocal microscopy.
clCyt18 was detected in 1% of cytotrophoblasts in the
freshly fixed tissue (Table 1), which was significantly
lower than the w8% in control explants (Table 1),
indicating that caspase activation occurred in cytotro-
phoblasts during explant culture, even in the absence of
specific inducers of apoptosis. As in explants, in the
freshly fixed tissues the cytotrophoblasts that expressed
clCyt18 co-expressed clCASP8 and clPARP, with few
expressing clCASP8 but lacking clCyt18 (Table 1). In the
rapidly harvested and fixed specimens, we did not detect
any regions of syncytiotrophoblast that expressed
clCyt18, clCASP8, or clPARP (Table 1) in the absence
of fibrin-containing fibrinoid. Together, these results
indicate that in placentas from term, normotensive
pregnancies, caspase-mediated apoptosis is restricted
to the cytotrophoblasts, with no detectable signs of
apoptosis in the syncytiotrophoblast outside of regions of
fibrin-containing fibrinoid.

Light microscopy indicated a qualitatively similar
frequency of regions of villi with fibrin-containing
fibrinoid in the term, normotensive tissue as in the
vehicle-control and staurosporine-exposed explants.
This was expected as fibrin deposition depends on
components in the maternal blood in the intervillous
space and the majority of maternal blood was removed
by washes before explant culture. Previous studies
indicated that the cleavage products derived from
, normotensive pregnancies.

lCyt18C/
lCASP8C

clCyt18C/
clCASPp8K

clCyt18K/
clCASP8C

clCyt18C/
clPARPC

91G3 9G2 5G3 90G3
92G4 8G3 6G3 94G6

90G6 10G4 3G3 88G8

tin 18; clCASP8, cleaved caspase 8; clPARP, cleaved poly(ADP-ribose)
ve (nZ10). ND, not detectable. *P!0.05 by the Student’s t-test,
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caspase-mediated apoptosis occurred in fibrin-
containing fibrinoid deposits where there is commonly
denudation of syncytiotrophoblast (Nelson 1996,
Austgulen et al. 2002). Consistent with these observations,
90% of the fibrin-containing fibrinoid regions from both
rapidly fixed tissues and villous explants contained
clCyt18 and clCASP8 in a punctate pattern, intermingled
with intact and fragmented nuclei (Fig. 5A and B).
Characterization of apoptosis in cytotrophoblasts

We next determined if there were distinct patterns of
expression of markers of caspase activation in cytotro-
phoblasts. Rapidly fixed, freshly harvested villous tissues
and villi from explant cultures were co-stained for,
E-cadherin, clCyt18, and DNA and observed by Z-stack
confocal microscopy. Except for regions with perivillous
fibrin-containing fibrinoid, as noted above, all regions
expressing clCyt18 were outlined by E-cadherin, indi-
cating they were derived from cytotrophoblasts. The
clCyt18 was observed in a filamentous pattern (Fig. 6A;
Supplementary Movie 4A, see section on supplementary
data given at the end of this article), typical of early
stages of apoptosis in other cell systems (Caulin et al.
1997, Schutte et al. 2004, Ndozangue-Touriguine et al.
2008). This pattern of clCyt18 localization predominated
in both control and staurosporine-exposed explants, in
which apoptosis was induced during the culture, and
was less frequent in the freshly fixed tissue. Over 95% of
cells with filamentous clCyt18 contained intact nuclear
DNA and the clCyt18 was present in stellate processes
that typically extended for tens of microns along the
basement membrane (Fig. 6A and B; Supplementary
Movie 4A and B). When visualized en face, the size and
complexity of these processes was striking (Fig. 6B;
Supplementary Movie 4B). clCyt18-positive cytotropho-
blasts with a rounded morphology were also observed
(Fig. 6C; Supplementary Movie 5A, see section on
supplementary data given at the end of this article),
suggesting detachment from the basement membrane,
20 µm 

A B

20 µm 

Figure 5 Regions of fibrin-containing fibrinoid contain remnants of
trophoblast apoptosis. Villous tissue was co-stained for E-cadherin
(green), clCyt18 (red), and DNA (blue). Shown are (A and B) maximal
pixel value projection of confocal Z-stacks of two different regions.
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possibly due to anoikis (Kroemer et al. 2009). Interest-
ingly, this pattern of clCyt18 staining was more
prominent in freshly fixed tissue than in the explants.
Some rounded cells displayed filamentous clCyt18, but
most displayed punctate or diffuse clCyt18, typical of
later stage apoptosis (Caulin et al. 1997, Schutte et al.
2004, Ndozangue-Touriguine et al. 2008). Many of
these cells contained intact nuclear DNA (Fig. 6C), but
some contained fragmented nuclear DNA (Fig. 6D;
Supplementary Movie 5B). We also identified clCyt18 in
w7–10 mm diameter vesicles and in w2–5 mm diameter
vesicles that lacked detectable nuclear DNA and that
were outlined by E-cadherin (Fig. 6E and F; Supple-
mentary Movie 6A and B, see section on supplementary
data given at the end of this article). The smaller vesicles
were typically present in clusters of two to five that
appeared to be within the cytoplasm of the syncytium
and that always lacked detectable nuclear DNA (Fig. 6G
and H; Supplementary Movie 6C and D). These latter
two patterns of clCyt18 were more abundant in freshly
fixed tissue than in the explant tissue.

We next examined colocalization of markers of
caspase activation in cytotrophoblasts. Most cytotropho-
blasts with filamentous clCyt18 co-expressed clCASP8,
which was present in a filamentous pattern that was
largely superimposed on the clCyt18 (Fig. 7A; Supple-
mentary Movie 7A, see section on supplementary data
given at the end of this article). Cytotrophoblasts with
punctate or diffuse clCyt18 showed diffuse localization
of clCASP8 in cells with (Fig. 7B; Supplementary Movie
7B) or without (Fig. 7C; Supplementary Movie 7C)
nuclear DNA. clPARP showed a similar colocalization
with clCyt18, as did clCASP8: clPARP was often, but not
always, present in the nuclei of cytotrophoblasts with
filamentous clCyt18 (Fig. 7D; Supplementary Movie
7D), and was present in O90% of clCyt18-positive
regions that contained fragmented nuclear DNA (Fig. 7E;
Supplementary Movie 7E) or that lacked nuclear DNA
(Fig. 7F; Supplementary Movie 7F).
Discussion

The data show that high-resolution confocal microscopy,
with immunofluorescence detection of the plasma-
membrane protein, E-cadherin, is required to distinguish
cytotrophoblasts from syncytiotrophoblast in term villi.
Using this approach, we found that one-third of the
cytotrophoblasts in term villi were interdigitated into
the syncytium. In placental explants and in villi from
normotensive term pregnancies, we detected apoptotic
cytotrophoblasts by three markers of caspase-mediated
apoptosis, with apoptosis occurring in both interdigi-
tated and non-interdigitated cytotrophoblasts. Because
apoptotic cytotrophoblasts were often interdigitated into
the syncytium, and because apoptotic cytotrophoblasts
formed vesicles within the syncytiotrophoblast that often
lacked DNA, studies of villous trophoblast apoptosis
Reproduction (2012) 143 107–121
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Figure 6 Patterns of clCyt18 in apoptotic regions
of villi. Villous tissue was co-stained for E-cadherin
(green), clCyt18 (red), and DNA (blue).
(A) Confocal Z-stack image showing side view
of apoptotic cytotrophoblast with filamentous
clCyt18. (B) Selected images from a confocal
Z-stack of the depths indicated showing en face
view of an apoptotic cytotrophoblast expressing
filamentous clCyt18. (C–H) Maximal Z-stack pixel
value projections of further stages of cytotropho-
blast apoptosis, as discussed in the text. Regions
with surrounding E-cadherin that were clCyt18
positive were identified that contained (A and B)
filamentous clCyt18 and DNA that is (C) intact or
(D) fragmented (arrowheads), (E and F) diffuse
clCyt18 in large vesicles (arrowheads) that lacked
DNA, and (G and H) diffuse clCyt18 in 2–5 small
vesicles (arrowheads) that lacked DNA. Arrow-
heads in A and B indicate ends of stellate processes
of cytotrophoblasts that express clCyt18.
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without using a plasma membrane marker may yield the
misinterpretation of these apoptotic cytotrophoblasts as
representing focal regions of apoptosis in the syncytio-
trophoblast. Importantly, all regions that express markers
of caspase-mediated apoptosis were outlined by
E-cadherin, indicating they were derived from cytotro-
phoblasts, and we never detected evidence for apoptosis
in a localized region of the syncytium in the absence of
fibrin-containing fibrinoid. This observation indicates
that caspase-mediated apoptosis in the syncytium is
rare or absent, or that the products of the apoptosis of
syncytial components are very rapidly released into
the intervillous space and thus are not detectable by
immunostaining. Although most villous regions with
fibrin-containing fibrinoid expressed all three markers of
caspase activation, as discussed later, we suggest that
apoptosis of these regions occurs only after regions of
syncytiotrophoblast have been isolated from the main
syncytium of the villi. Our data have important
implications for villous trophoblast organization, para-
cellular routes of transfer, turnover of the two villous
trophoblast phenotypes, and the shedding of trophoblast
microparticles and fragments into the peripheral circu-
lation of pregnancies with or without complications.
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The data allow us to propose a model for the progression
of apoptosis in villous cytotrophoblasts.

A continuous layer of cuboidal cytotrophoblast
underlies the syncytiotrophoblast in first trimester
human placental villi and then undergoes a morpho-
logical transition to form a non-cuboidal, discontinuous
layer of cells with long stellate processes that cover
most, but not all, of the trophoblast basement
membrane shared with the syncytiotrophoblast (Mori
et al. 2007, Jones et al. 2008). We confirmed findings
from previous ultrastructural studies that showed
w90% of villous trophoblast nuclei are in the
syncytium with the remaining 10% in cytotrophoblasts.
Notably, we found w30% of cytotrophoblasts at term
are interdigitated into the syncytiotrophoblast layer.
Compared with non-interdigitated cytotrophoblasts, the
interdigitated cytotrophoblasts did not differ in nuclear
volume or in the stage of the cell cycle, suggesting the
two cytotrophoblast populations do not differ in their
state of differentiation. We speculate that the extent
of interdigitation into the syncytiotrophoblast by
cytotrophoblasts is a dynamic and reversible process,
rather than a static process reflecting the state of
differentiation.
www.reproduction-online.org
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Figure 7 Apoptotic cytotrophoblasts co-express
clCyt18 with clCASP8 and clPARP. Villous tissue
was co-stained for (A–C) clCyt18, clCASP8,
and DNA or (D–F) clCyt18, clPARP, and DNA.
(A) clCASP8 colocalized with filamentous clCyt18
(arrowheads). (B and C) clCASP8 was co-expressed
with clCyt18 in cells with (B) fragmented DNA or
(C) vesicles lacking DNA. clPARP was present in
(D) the nuclei of cells with filamentous clCyt18
and intact DNA, (E) cells with clCyt18 and
fragmented DNA, and (F) vesicles with clCyt18
that lacked DNA. Shown are maximal pixel value
projections of confocal Z-stacks.
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Paracellular transfer of molecules into the fetal
vasculature can occur at regions of denudation of the
villi, and paracellular routes through an intact syncytio-
trophoblast layer has been proposed (Edwards et al.
1993, Kertschanska & Kaufmann 1993, Kertschanska
et al. 1995), which would allow direct transfer of
molecules between the fetal and maternal circulations.
Our high-resolution confocal microscopy studies
show that there is always syncytiotrophoblast cytoplasm
over even the most extensively interdigitated cytotro-
phoblasts, indicating that despite close approximation
of some cytotrophoblasts with the intervillous space,
they do not create paracellular channels. Notably, the
www.reproduction-online.org
markedly attenuated syncytial cytoplasm over deeply
interdigitated cytotrophoblasts may enhance maternal–
fetal exchange between these cytotrophoblasts and the
maternal circulation.

Confocal microscopy and staining for E-cadherin
revealed that cytotrophoblasts from term villi readily
undergo caspase-mediated apoptosis. About 1% of
cytotrophoblasts in villi rapidly fixed after collection
from normotensive pregnancies at term were apoptotic,
as indicated by expression of three markers for caspase
activation: clCyt18, clCASP8, and clPARP. Explants
exposed to vehicle control had an eightfold higher
level of cytotrophoblast apoptosis than freshly fixed
Reproduction (2012) 143 107–121
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Stage 2:
Dissolution of cytokeratin filaments.
Diffuse clCyt18 and clCASP8 and
nuclear clPARP.
Beginning of DNA cleavage. 

Stage 4:
Completion of DNA degradation.
Formation of small vesicles with
clCyt18, clCASP8 and clPARP.  

Stage 1:
Caspase activation.
Filamentous clCyt18 and clCASP8.
Nuclear clPARP.

 

Stage 5:
Elimination of small vesicles by
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Detachment from basement
membrane.
Continued DNA cleavage. 

Figure 8 Model for progression of apoptosis in villous cytotrophoblasts.
Light blue ovals and dots: nuclear DNA. Dotted green line: apical
membrane of syncytiotrophoblast. Solid green line: plasma membrane
of cytotrophoblast. Black line: basement membrane. Red lines and
dots: clCyt18. Purple lines and dots: clCASP8. Dark blue dots: clPARP.
See text for details.

116 M S Longtine and others
tissue and, in staurosporine-exposed explants, about one
quarter of the cytotrophoblasts were apoptotic.

The patterns of clCyt18, clCASP8, and clPARP in
apoptotic cytotrophoblasts suggest a model for apoptosis
progression in these cells (Fig. 8) that is consistent with
that of other epithelial cell types (Caulin et al. 1997,
Schutte et al. 2004, Ndozangue-Touriguine et al. 2008).
In stage 1, caspase activation occurs, either in response
to endogenous stimuli such as reactive oxygen species
(ROS) from mitochondrial respiration or from exogenous
insults such as underperfusion-associated hypoxia and/
or reperfusion-associated re-oxygenation that occurs in
placentas of complicated pregnancies. In stage 1,
cytokeratin 18 is cleaved at Asp396, but remains in
filaments, with cleavage of nuclear DNA not yet begun.
At this stage, confocal microscopy shows the clCASP8
co-aligns with the clCyt18 filaments, suggesting a
physical interaction. In other epithelial cells, interactions
of clCyt18 with active caspases is mediated by death
effector domain containing DNA-binding protein
(Schutte et al. 2006) and may regulate caspase activity
(MacFarlane et al. 2000, Lee et al. 2002, Dinsdale et al.
2004, Schutte et al. 2006, Ndozangue-Touriguine et al.
2008). In stage 2, cytokeratin 18 is cleaved at a second
site in the L1-2 linker region (Caulin et al. 1997, Schutte
et al. 2004), resulting in filament disassembly and
appearance of clPARP in nuclei, indicating that DNA
cleavage has begun (He et al. 2009). In stage 3, cleavage
of integrins (Werner et al. 2007) results in rounded cells
and continued DNA cleavage yields fragmented DNA. In
stage 4, DNA is further degraded and the cytotropho-
blasts are fragmented into small vesicles surrounded by
E-cadherin. These vesicular remnants of apoptotic
cytotrophoblasts appear microscopically to be entirely
within the cytoplasm of the syncytiotrophoblast, and
may represent apoptotic bodies (Nunez et al. 2010). In
stage 5, the syncytiotrophoblast may engulf such
remnants by autophagy, as is also possible for the
removal of apoptotic cytotrophoblast fragments in first
trimester syncytiotrophoblast (Burton et al. 2003) and in
apoptotic regions of perivillous fibrin (Nelson 1996).
Alternatively, we propose that these vesicles are
eliminated by extrusion (Andrade & Rosenblatt 2011,
Wang et al. 2011) through the apical membrane of the
syncytium into the maternal circulation. Our model for
cytotrophoblast apoptosis in term villi is consistent with
a previous EM study on apoptosis of villous cytotropho-
blasts during the first trimester (Burton et al. 2003),
which found that apoptotic cytotrophoblasts lose contact
with the basement membrane, undergo degradation of
the nuclear DNA, and ultimately form membrane-bound
vesicles within the syncytiotrophoblast cytoplasm.

In striking contrast to cytotrophoblasts, caspase-
mediated apoptosis was not detected in the syncytio-
trophoblast in term villi in vivo or in villous explants even
after exposure to a harsh stimulus (staurosporine). We
never detected regions of syncytia, defined as E-cadherin
Reproduction (2012) 143 107–121 www.reproduction-online.org
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outlining apical and basal surface membranes containing
multiple nuclei that expressed clCyt18, clCASP8, or
clPARP. In agreement with these results, syncytiotropho-
blasts that form in primary cultures are more resistant to
both constitutive and stimulus-induced apoptosis,
compared with cytotrophoblasts (Crocker et al. 2001,
Yusuf et al. 2002, Hu et al. 2006, Chen et al. 2010). It is
likely that at least part of the relative resistance of
syncytiotrophoblast to apoptosis is due to downregula-
tion of the p53 pro-apoptotic pathway (Hu et al. 2006,
Chen et al. 2010) and of caspase activity (Yusuf et al.
2002). Together, these observations suggest that turnover
of syncytiotrophoblast does not occur by spontaneous
apoptosis and release of apoptotic fragments from an
intact syncytiotrophoblast, but occurs only secondary to
insult-induced injury and apoptosis of an isolated region
of syncytiotrophoblast, as described later.

Previous studies (Smith et al. 1997, Mayhew et al.
1999), including our own (Levy et al. 2000), contrast
with the results described here, as these studies
suggested localized apoptosis occurs in the syncytium.
Nuclear condensation has been used as an indicator of
localized apoptosis within the syncytium, but this can
result from histone phosphorylation or acetylation, and
thus cannot be used as a definitive indicator of apoptosis
(Burton & Jones 2009). Assessment of apoptosis by
TUNEL staining (to assess DNA cleavage) by immuno-
histochemistry or by staining for clCyt18 or other
markers of caspase activation have been used previously
(Ishihara et al. 2002, Levy et al. 2002, Huppertz et al.
2003, Straszewski-Chavez et al. 2005, Heazell et al.
2007, 2008b, 2011, Roje et al. 2011, Tomas et al. 2011).
However, our confocal microscopy results indicate
that high-resolution microscopy with co-staining for
a plasma membrane marker would be required to
unambiguously identify a region with TUNEL-positive
nuclei or markers for caspase activation to be within
a region of the syncytium, as opposed to within one
or more cytotrophoblasts. The vesicular remnants of
apoptotic cytotrophoblasts, with or without nuclear
DNA, or the stellate processes of apoptotic cytotro-
phoblasts, could easily be inappropriately scored as a
localized region of apoptosis in the syncytiotrophoblast
cytoplasm. In support of this idea, Burton et al. (2003)
used the gold standard of electron microscopy to study
apoptosis in first trimester placenta villi (Burton et al.
2003, Burton & Jones 2009) and also concluded that
there was a potential for mis-scoring apoptotic cyto-
trophoblasts as localized regions of apoptosis within
the syncytium.

The syncytiotrophoblast–cytotrophoblast phenotypes
may be analogous to apoptosis in muscle fibers. Both
systems contain multinucleated syncytia with adjacent
mononucleated precursor cells, called satellite cells in
muscle. Early studies suggested apoptosis occurred in
localized areas of the muscle fiber, but recent high-
resolution confocal microscopy studies indicate that
www.reproduction-online.org
apoptosis rarely, if ever, occurs in the syncytia of muscle
(Bruusgaard & Gundersen 2008, Gundersen & Bruus-
gaard 2008, Bruusgaard et al. 2010). Instead, apoptosis is
confined to the associated satellite and stromal cells.
Approximately tenfold higher level of apoptosis occurs
in cultured mononucleated myoblasts, whether exposed
to apoptosis-inducing or constitutive conditions,
compared with the multinucleated myotubes. Indeed,
the myotubes express increased levels of proteins that
inhibit caspase activity (Xiao et al. 2011). Our data,
combined with these, indicate that there is a conserved
resistance to apoptosis in syncytia, compared with the
mononucleated precursor cells.

Our data (Nelson et al. 1990), and that of others
(Austgulen et al. 2002), indicate that regions of villi with
fibrin-containing fibrinoid contain the cleavage products
of caspase-mediated apoptosis, including clCyt18,
clCASP8, and fragmented nuclear DNA. One possibility
is that a localized region of apoptosis in the syncytium
yields a denuded region of the villous, which would then
have fibrin deposited on the trophoblast basement
membrane exposed to the maternal blood in the
intervillous space. However, our data argue against this
model, as we find no detectable apoptosis in the
syncytium in any regions in the absence of fibrin. Work
from others show that mechanical forces can damage
endothelial and epithelial surfaces, such as cardiac and
skeletal muscle, the epithelia of the gut, and in the
endothelial vasculature, with resealing of the ruptures in
the plasma membrane occurring by active processes
(McNeil & Kirchhausen 2005). We suggest that mechan-
ical forces from blood flow over villi, which occurs with
elevated force in pregnancy pathologies (Burton et al.
2009), can disrupt the syncytial plasma membrane,
which then reseals, resulting in the physical isolation
of a syncytiotrophoblast fragment from the rest of the
syncytium on the villous surface. Apoptosis of this
isolated region of syncytium may then occur, as
indicated by the presence of markers of apoptosis in
these regions, and the apoptotic fragments may be
released into the intervillous space. Indeed, shedding of
fragments of syncytial cytoplasm, nuclei, and micro-
particles into the maternal blood is well recognized and
increased during complicated pregnancies (Hung et al.
2002, Redman & Sargent 2008, Scifres & Nelson 2009,
Sharp et al. 2010).
Materials and Methods

Tissue procurement and fixation

The Institutional Review Board of the Washington University
School of Medicine approved this study. Placentas were
obtained from term singleton gestations with normotensive
pregnancies. Within 20 min of delivery, from each placenta
four equidistant and random w4 mm diameter samples of
villous tissue were taken midway between the maternal and
Reproduction (2012) 143 107–121
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fetal surfaces of and midway between the periphery and center.
Specimens were fixed at 23 8C in 10% neutral buffered
formalin for 24 h and embedded in paraffin.
Cell and explant culture

HeLa cells were obtained from American Type Culture Center
(ATCC, Manassas, VA, USA). PHTs were isolated from normal
term placentas, as described previously (Chen et al. 2010).
Cells were cultured in a 5% CO2, air environment at 37 8C
in DMEM supplemented with 10% fetal bovine serum
(Invitrogen), 20 mm HEPES (Sigma) pH 7.4, 100 m/ml peni-
cillin, and 100 mg/ml streptomycin (Sigma) for 24 h followed
by 4 h exposure to DMSO (as vehicle control: Sigma) or
staurosporine (Sigma). Explants of villous tissue from term,
normotensive pregnancies were cultured in a 5% CO2, air
environment at 37 8C for 4 h in DMEM, as described earlier.
Culture medium was replaced with medium containing DMSO
or staurosporine and incubated for 12 h, followed by fixation
with formalin.
Antibodies and immunoblotting

Primary and secondary antibodies used are described in
Table 2. Protein isolation and immunoblotting was done as
described previously (Chen et al. 2010).
Immunofluorescence

Ten micrometer thick tissue sections were placed on coated
slides (Leica, Richmond, IL, USA) and paraffin removed using a
graded series of alcohols. Antigen retrieval was in 10 mM
sodium citrate, pH 6.0, for 15 min at 95 8C followed by 15 min
at 23 8C. Slides were washed in PBS, incubated with 0.1%
NP40 (octylphenoxypolyethoxyethanol; Sigma) in PBS for
5 min, and then for 1 h at 23 8C with 5% BSA (Sigma) in PBS.
Primary antibodies were diluted in 5% BSA in PBS and
incubated with tissues overnight at 4 8C. Slides were washed
with PBS, incubated for 2 h at 23 8C with secondary antibodies
and DRAQ5 (Biostatus Unlimited, Leicestershire, UK), washed
with PBS, and mounted using Fluoro-Gel (Electron Microscopy
Table 2 Antibodies used in this study.

Antigen Species Company

Actin, native G SCBT (Ac-
Cytokeratin 7, native M Invitrogen
Cytokeratin 18, native M Invitrogen
Cytokeratin 18, cleaved M Roche (12
Caspase 8, cleaved Rb CST (9496
E-cadherin, native Rb Abcam (ab
E-cadherin, native M Invitrogen
hCG Rb Gift from
Ki67 (MIB1) M Dako (M7
PARP1, cleaved Rb CST (9541
Anti-rabbit, Alexa 488 G Invitrogen
Anti-mouse, Alexa 555 G Invitrogen

G, goat; M, mouse; Rb, rabbit; NA, not applicable; ND, not done; CST, Ce
IF, immunofluorescence; IB, immunoblotting. Block, indicates if 5% BSA o
before immunoblotting. For immunofluorescence, 5% BSA was used for bl
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Sciences, Hatfield, PA, USA). Rabbit anti-E-cadherin was used
except when double staining used another rabbit-derived
antibody, when mouse anti-E-cadherin antibody was used.
Control experiments verified no signal in tissues incubated with
secondary antibodies in the absence of primary antibodies.
Confocal microscopy

Confocal imaging was done with a Nikon E800 Eclipse C1
microscope with a 60! objective, 488, 543, and 633 nm lasers

and emission filters of 515/30, 590/50, and a 650 nm long-pass
filter. Image optimization was done using an optical section
from the middle of the tissue sample and conditions adjusted to
obtain maximal signal intensity without saturation. Typical
image stacks were acquired with 15–20 Z-sections using a
spacing of 0.5 mm, an image size of 1024! 1024 px and a
zoom of 3!, capturing a region of 70.7!70.7 mm. Images
were adjusted in ImageJ (rsbweb.nih.gov/ij/) using only linear
adjustments and the 12-bit images were then converted to
CMYK format.
Cytotrophoblast interdigitations into
syncytiotrophoblast

Cytotrophoblasts were assigned as interdigitated if the nucleus

overlapped the nearest syncytiotrophoblast nucleus by R50%.
Cytotrophoblasts not fulfilling this criterion were assigned as
non-interdigitated.
Determination of nuclear volume

Tissue sections were co-stained for E-cadherin and DNA,
Z-stacks of cytotrophoblasts were obtained, and cells assigned
to the interdigitated or non-interdigitated group. We verified
the Z-stack encompassed the entire nucleus of interest,
generated a cumulative pixel value projection, and measured
the minimal and maximal nuclear diameters using ImageJ.
Nuclear volumes were obtained by assuming nuclei have the
shape of a prolate spheroid (volume of 4/3Pa2b) with (a) the
minimal and (b) the maximal diameter of the nucleus.
(cat#) Dilution (IF; IB) Block (IB)

1616) ND; 1:3000 NFDM
(18-00234) 1:300; 1:3000 NFDM
(18-0158Z) 1:100; 1:1000 NFDM
140322001) 1:100; 1:1000 NFDM
) 1:100; 1:1000 BSA
40772) 1:300; 1:3000 NFDM
(18-0223) 1:100; ND ND

Irv Boime 1:100; ND ND
240) 1:100; ND ND
) 1:100; 1:1000 NFDM
(A-21206) 1:200; NA NA
(A-11030) 1:200; NA NA

ll Signaling Technology; SCBT, Santa Cruz Biotechnology, Inc.;
r 5% non-fat dry milk (NFDM) in 1! PBS was used for blocking
ocking.
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http://rsbweb.nih.gov/ij/


Apoptosis of human villous trophoblasts 119
Scoring of caspase activation

The data shown in Table 1 were obtained as follows. Tissues
were co-stained for E-cadherin, DNA, and clCyt18. To avoid
bias, images were obtained and scored as follows. Focus was
obtained using transmitted light, and a confocal Z-stack was
acquired. E-cadherin staining was observed first followed by
scoring for clCyt18. The slide was moved one field of view
in the same piece of tissue and the procedure repeated until
O150 cytotrophoblasts had been imaged. This was repeated
for the other three pieces of tissue, resulting in O600
cytotrophoblasts (with w6000 syncytiotrophoblast nuclei)
being scored per placenta. Tissues co-stained for DNA,
clCyt18, and clCASP8 were used to determine the coincidence
of clCyt18 and clCASP8, scoring for clCyt18 followed by
scoring for clCASP8 or scoring for clCASP8 followed by scoring
for clCyt18. Tissues co-stained for DNA, clCyt18, and clPARP
were used to determine the coincidence of clCyt18 and
clPARP, scoring for clCyt18 followed by scoring for clPARP.
In these cases, 20 cells/placenta were scored that were
immunopositive for each of the first markers.
Statistical analysis

Ki67 expression was compared by the c2 test. All other data
were compared by the Student’s t-test with P!0.05 for
significance.
Supplementary data

This is linked to the online version of the paper at http://dx.doi.
org/10.1530/REP-11-0340.
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