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Abstract: The excessive intake of chlorpromazine (CPZ) adversely affects human health profoundly,
leading to a series of severe diseases such as hepatomegaly and dyskinesia. The rapid and precise
detection of CPZ in real samples is of great significance for its effective surveillance. Herein, a
versatile and sensitive electrochemical sensor was developed for the detection of antipsychotic drug
CPZ based on a Nafion (Nf)-supported nitrogen-doped carbon dots/cuprous oxide (N-CDs/Cu2O)
composite. The as-synthesized N-CDs/Cu2O composite was systematically characterized using
various physicochemical techniques. The developed composite-based sensor displayed excellent
performance towards CPZ determination in a dynamic linear range of 0.001–230 µM with the detection
limit of 25 nM. Remarkably, the developed sensor displayed good performance in terms of sensitivity
and selectivity. Furthermore, good anti-interference properties toward CPZ determination were
attained despite the presence of highly concentrated interfering compounds. Therefore, this composite
could be a notable potential modifier to enhance electrocatalytic activity onto the surface of the
electrode. Finally, N-CDs/Cu2O/Nf-based sensor was effectively applied for quantification of CPZ in
human urine and pharmaceutical formulation samples.

Keywords: electrochemical sensor; carbon dots; cuprous oxide; chlorpromazine; antipsychotic drug;
pharmaceutical formulations

1. Introduction

As a psychosis medication and the first-generation antipsychotic drug used for the management of
schizophrenia, chlorpromazine (CPZ) is used to control various mental disorders, hypoxia, psychomotor
agitation, manic depression, paranoia, anxiety, and tension [1]. However, it is frequently used as a
growth promotion agent for the livestock industry. The illegal overuse and wrongful administration of
CPZ results in its chronic accumulation in the environment and human food, which could lead to severe
health issues such as hematological disorders, central nervous system reactions, and hypotensive
effects [2–4]. Therefore, a highly sensitive and selective tool for the emerging, rapid, and accurate
sensing of CPZ is of great significance to the field of pharmacological research.
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Over the last few years, various techniques have successfully been reported for
determining the content of CPZ in pharmaceutical formulations such as chemiluminescence [5,6],
chromatography [3,7,8], electrochemiluminescence [9] and flow injection [10]. However, compared with
the electrochemical technique, which offers good sensitivity and selectivity, rapid response, portability
and low cost [11–14], the aforesaid methods have non-negligible demerits such as the requirement of
sophisticated instruments, complicated routine analysis, and specially trained technicians [15–17].

Cuprous oxide (Cu2O) is known as one of the desired and ideal materials in the electrochemical
sensing applications not only due to the natural abundance and low cost but also its higher catalytic
activity, good chemical stability, environmental compatibility and non-toxicity [18,19]. Owing to
the limited sensitivity and narrow-range liner detection of pristine semiconductor Cu2O sensors,
integrating carbonaceous materials has been regarded as one of the efficacious ways that can compensate
the defects and drastically enhance the electrical conductivity. Carbon dots (CDs) are a type of carbon
nanoparticles with sizes less than 10 nm and have recently attracted great attention because of their high
surface area ratio, excellent chemical and thermal stability and good electronic conductivity [20,21].
This carbonaceous material is progressively being employed to enable the electron-transfer at the
interface of electrode surface and analyte in the electrochemical processes, which results from the
plenty of hydrophobic planes and hydrophilic edges in the CDs that can escalate the interaction
of analyte and electrode [22]. Moreover, the modification of carbon core, functionality and doping
hetero atom could further influence the electrocatalytic activity of CDs [23]. In particular, doping
nitrogen in the CDs (N-CDs) is an effective way to significantly improve its electrical conductivity
and increase the binding active sites as well as ameliorate the electron-donor performance [24,25],
endowing N-CDs excellent performance in the area of biomedical applications such as bioimaging and
biosensing [26]. Jahanbakhshi and Habibi [27] developed an electrochemical sensor for H2O2 based on
gold nanoparticles/CDs nanohybrid. The investigation revealed that the nanohybrid possesses good
electrochemical performance towards the reduction of H2O2. Recently, many Cu2O-based materials
have been employed for electrochemical sensing and biosensing applications due to the properties
such as high catalytic activity and strong electroactive surface area [25,28,29]. Assimilating unique
properties of each material and their features would help in improving the performance of sensor
applications. Hence, it would be exciting to bring out novel properties by taking the benefits of both
Cu2O and N-CDs.

In this work, we developed in situ hybridized Cu2O with N-CDs (N-CDs/Cu2O) composite via a
simple two-step process through hydrothermal and wet chemical approaches. The developed composite
was used as sensing materials with the support of Nafion (Nf) for electrochemical determination of
CPZ, exhibiting a good electrocatalytic response towards the sensing of CPZ. More distinctively, the
developed N-CDs/Cu2O/Nf composite modified electrode shows good selectivity, high sensitivity,
and wide linear range with lowest detection limit towards CPZ determination. The proposed
sensor was also employed for testing of the applicability to real samples such as quantification of
CPZ in the pharmaceutical formulation as well as in urine sample without needing any additional
chemical pretreatment.

2. Materials and Methods

2.1. Materials and Reagents

Chlorpromazine hydrochloride, potassium chloride, ethylenediamine, catechol, ethanol,
potassium ferricyanide, Nafion, magnesium sulfate, dopamine hydrochloride, sodium hydroxide,
glucose, sodium chloride, uric acid, ascorbic acid and N,N-dimethylformamide, purchased from
Shanghai Aladdin Biochemical Technology Co., Ltd (Shanghai, China), potassium ferrocyanide, copper
(II) sulfate pentahydrate procured from Shanghai Macklin Biochemical Co., Ltd., (Shanghai, China),
citric acid obtained from Tianjin Damao Chemical reagents (Tianjin China). Sodium dihydrogen
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orthophosphate and sodium phosphate dibasic were used to prepare buffer solutions. Deionized (DI)
water was used throughout this work.

The electrochemical data were recorded using CHI 660E electrochemical workstation (CH
Instruments, Shanghai, China). A conventional three electrodes (a glassy carbon electrode (GCE)
or a modified GCE (working electrode), a platinum wire (axillary electrode) and an Ag|AgCl (3.0
M KCl) electrode (reference electrode)) electrochemical system was used. All the experiments were
performed at room temperature only. The pH measurement of buffer solutions was carried out using
pH meter (Shanghai Yueping Scientific Instrument Ltd., Shanghai, China). The diffraction patterns of
as-synthesized materials were collected using X-ray diffractometer (XRD (Bruker® AXS D8 adv, Bruker
(Beijing) Scientific Technology Co., Ltd., Beijing, China)) and the chemical compositions were attained
using Thermo-Fisher® Microlab 350 X-ray photoelectron spectroscopy (XPS) system (Hillsboro, OR,
USA). The surface morphological studies of as-synthesized materials were studied using Hitachi®

Field emission-scanning electron microscopy (FESEM, SU-70, Tokyo, Japan)) with energy-dispersive
X-ray spectroscopy (EDS). The Fourier transform infrared spectrometer (Nicolet 6700) was employed
to study FT-IR spectra. Transmission electron microscopic (TEM) analysis was carried out using field
emission electron microscope (JEOL JEM-2100F, Tokyo, Japan).

2.2. Synthesis of N-CDs

In a typical synthesis of N-CDs, 1.0508 g of citric acid and 335 µL of ethylenediamine were
dissolved in 10 mL of DI water and then transferred to 50 mL Teflon lined autoclave and heated at
200 ◦C for 5 h. After the autoclave was cooled to room temperature naturally, the obtained products
were centrifuged at 3500 rpm to separate unreacted and large size particles. The outcome was
freeze-dried for 72 h to get solid N-CDs.

2.3. Synthesis of N-CDs/Cu2O Composite

N-CDs/Cu2O composite was synthesized according to previous literature with minor
modifications [30]. Typically, 500 mg of copper (II) sulfate pentahydrate (CuSO4·5H2O) and 10 mL of
DI water containing 1 mg of N-CDs (solid) were dissolved in 40 mL of DI water under mechanical
stirring. 10 mL of 1 M NaOH was slowly added to the above solution and followed by injecting 10 mL
of 0.3 M glucose (acts as a reducing agent) after being heated to 60 ◦C. After aging at 60 ◦C for 3.5 h,
the product was centrifuged and then washed 3 times with ethanol and DI water, respectively. Later,
the product was dried at 65 ◦C and termed as N-CDs/Cu2O (Scheme 1). The similar procedure was
used to synthesize pure Cu2O cubes without introducing N-CDs during the synthesis.
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2.4. Preparation of N-CDs/Cu2O/Nf Composite Modified Electrode

First, 5 mg of as-synthesized N-CDs/Cu2O was dispersed in 5 mL of N-dimethylformamide by
ultra-sonication for 20 min (solution A). Then, 20 µL of 5% Nf solution and 180 µL of ethanol were
ultra-sonicated for 30 min (solution B). Next, an optimized mixture of solution A and B (1:32, v/v)
were ultra-sonicated for 5 min to obtain a suspension. Afterwards, 5 µL of the suspension was
dropped onto the surface of cleaned GCE and dried under the IR lamp. The resulted electrode was
known as N-CDs/Cu2O/Nf/GCE. Similarly, 5 mg of N-CDs and 5 mg of Cu2O were used for preparing
N-CDs/GCE and Cu2O/GCE, respectively.

2.5. Real Sample Preparation

The urine sample was collected from healthy personnel and centrifuged for 5 min at 5000 rpm
to obtain supernatant solution. The obtained supernatant solution was diluted 10 times with 0.1 M
phosphate buffer solution (PBS) (pH 7.0) and stored in refrigerator at 4 ◦C for study analytical
application of proposed sensor in biological matrix.

3. Results and Discussion

3.1. Physicochemical Characterization

The morphological and structural features of as-synthesized Cu2O and N-CDs/Cu2O composite
were studied using FESEM and TEM as shown in Figure 1. The pure Cu2O displayed a cube-like
structure with an evidently smooth surface (Figure 1A–C). With the introduction of N-CDs, N-CDs/Cu2O
composite exhibited a sphere-like morphology in Figure 1D–F due to the coverage of CDs outside
cubic Cu2O. The elemental mapping of N-CDs/Cu2O composite in Figure 1G was conducted to
determine the homogeneous distribution of C, N, Cu, and O elements. The Cu and O signals were
much higher than that of C and N elements, indicating the cuprous oxide is dominant in the composite
materials. The structure of N-CDs/Cu2O composite can be obviously observed in the TEM image of
Figure 1H, showing as black spots of N-CDs spread on the surface of the Cu2O. From HRTEM analysis
(Figure 1I), the lattice spacings of 0.25 nm, 0.24 nm and 0.21 nm were consistent with (111) plane of the
crystallographic Cu2O and (200) and (100) planes of CDs, respectively, which is in well agreement with
the XRD results [24,25]. The specific content of each element was further confirmed by EDS analysis in
a random region of N-CDs/Cu2O composite, which demonstrated the element composition of 9.11% C,
0.64% N, 10.23% O and 80.02% Cu in the as-synthesized N-CDs/Cu2O composite (Figure 1J).

The as-synthesized Cu2O and N-CDs/Cu2O composite were characterized by XRD test and the
similar diffraction peaks at 29.79◦, 36.54◦, 42.43◦, 61.40◦, 73.62◦ and 77.62◦ in Figure 2A assigned to
(110), (111), (200), (220), (311) and (222) lattice planes of cubic phase Cu2O (JCPDS 05–0667) [31]. The
existence of carbon source for N-CDs was revealed by a broad peak at around 2θ= 24.73◦ (Figure 2B).
However, no characteristic peak of carbon source from 23◦ to 27◦ was attained for N-CDs/Cu2O
composite due to the presence of minor quantities, well dispersions and low crystallinity of N-CDs in
N-CDs/Cu2O composite [30]. Moreover, no additional peaks were observed in the XRD pattern of
both pure Cu2O and N-CDs/Cu2O composite and confirming the high purity of synthesized materials.
The functionalities of N-CDs, Cu2O and N-CDs/Cu2O composite were further investigated by FT-IR
spectra. As seen in Figure 2C, the broad peaks at 3430 cm−1 and 3255 cm−1 represent O-H and N-H
stretching vibrations, respectively. Moreover, bands of 1661 cm−1 (amide I) and 1554 cm−1 (amide II)
are ascribed to the bending vibrations of the amide group [32]. The weak merged peaks at 2943 and
2879 cm−1 are related to the C–H bond stretching vibrations. All of them demonstrate the presence of
N-CDs in the composite. A sharp and intense peak at 627 cm-1 in FT-IR spectra of N-CDs/Cu2O and
Cu2O is primarily assigned to the characteristic stretching of Cu-O, which specifies the framework of
Cu2O. Furthermore, the peak positions of N-CDs/Cu2O in FT-IR are almost similar to Cu2O, owing to
small quantities of N-CDs in N-CDs/Cu2O composite.
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The chemical composition of N-CDs/Cu2O was studied by XPS analysis. The XPS survey
spectrum (Figure S1A) confirms the existence of elements such as Cu, N, C and O in N-CDs/Cu2O. The
deconvoluted spectrum of Cu 2p of N-CDs/Cu2O composite displayed two peaks at 935.26 eV and
955.15 eV (Figure S1B), corresponding to its 2p3/2 and 2p1/2 spin-orbital, which is ascribed to Cu+ of
Cu2O [33]. The difference of less than 20 eV in binding energies (Cu 2p3/2 and Cu 2p1/2) confirming
the existence of Cu2O in the prepared composite. The deconvoluted spectrum of C 1s of composite
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displayed the Gaussian peaks at 284.96, 285.7, 287.5 and 290 eV (Figure S1C) are corresponding
to C–C (sp3), C–N (sp3), C=O (sp2) and O–C=O (sp2) or C=N, respectively [34]. The presence of
C-N bonding reveals nitrogen-doping in the CDs. The fitted two Gaussian peaks of O 1s at 531.72
and 534.0 eV (Figure S1D) are ascribed to C=O and C–OH / C–O–C groups, respectively [35]. The
peaks of N 1s at 399.5, 402.79 and 405.8 eV shown in Figure S1E specify the existence of nitrogen
typically in the form of pyrrolic or pyridonic-N, graphitic-N and N-oxides [36]. Pyrrolic or pyridonic-N,
graphitic-N, and N-oxides can generate different electronic environments for carbon atoms and further
create electrochemically active sites. Therefore, based on deconvolution results of XPS analysis,
it can be evidently confirmed that N-doping was perfectly taken place in CDs. Interestingly, the
presence of pyridinic-N is additionally beneficial for enhancing the electrochemical sensing of organic
compounds [37]. Moreover, graphitic-N can considerably increase the conductivity of N-CDs/Cu2O
composite through additional electrons at nitrogen sites [38].

3.2. Electrochemical Characterization of N-CDs/Cu2O/Nf/GCE

The electrochemical response of bare and modified electrodes was studied using CV technique, in
0.1 M KCl containing 2.5 mM of [Fe(CN)6]3−/4− (equimolar) at a scan rate of 100mV s−1. Figure 3A
displays cyclic voltammetric response of GCE, N-CDs/GCE, Cu2O/GCE and N-CDs/Cu2O/Nf/GCE. As
can be seen, typical redox peaks were attained with peak to peak separation (∆Ep) of 164 mV at bare
GCE due to relatively poor reversibility of GCE in [Fe(CN)6]3−/4−. The N-CDs modified GCE showed a
better performance with ∆Ep of 134 mV with improved redox peak currents than GCE by the good
electrical conductivity of N-CDs. Furthermore, Cu2O/GCE exhibited the ∆Ep of 98 mV due to the good
catalytic activity of Cu2O. A significant increase in the peak currents with decreased ∆Ep (89 mV) was
observed for N-CDs/Cu2O/Nf/GCE. Moreover, the intensities of peak currents at N-CDs/Cu2O/Nf/GCE
were found to be 4.68 times higher than that of bare GCE. Obviously, remarkable enhancement in the
peak currents, least ∆Ep and perfect reversibility of redox system observed in cyclic voltammogram at
this composite modified electrode signifying the excellent electrocatalytic enhancement. Moreover, the
anodic peak current(ipa)/cathodic peak current(ipc) was almost unity and can be treated as a significant
factor to testify the stable electrochemical response for this redox system at the modified electrode.
This has probably resulted from the synergistic effect caused by the high electrical conductivity of
N-CDs and the good catalytic activity and high surface area of Cu2O.Nanomaterials 2020, 10, x 7 of 15 

 

 
Figure 3. (A) Cyclic voltammetric responses of different modified electrodes in 0.1 M KCl containing 
2.5 mM [Fe(CN)6]3−/4− at a scan rate of 100 mV s−1, (B) Calibration plot of square root of scan rate vs. 
anodic peak current of 1 mM K3[Fe(CN)6] in 0.1 M KCl at N-CDs/Cu2O/Nf/GCE. 

The effective surface area of N-CDs/GCE, Cu2O/GCE and N-CDs/Cu2O/Nf/GCE were 
calculated using different scan rates of cyclic voltammetric responses at 1 mM K3[Fe(CN)6] in 0.1 M 
KCl supporting electrolyte. The Randles–Sevcik equation is used as follows: [39] 𝑖௣ ൌ  ሺ2.69 ൈ 10ହሻ𝐴௘௙௙𝐷ଵଶ𝑛ଷଶ𝜐ଵଶ𝐶 

where ip is the anodic peak current (A), Aeff is an effective surface area (cm2), D is diffusion 
coefficient of potassium ferricyanide (7.60 × 10−6 cm2 s−1) [40], υ is the scan rate (V s−1), n is the number 
of electrons involved in the electrochemical reaction of potassium ferricyanide (n = 1) and C is the 
bulk concentration of the redox probe (mol. cm-3). By taking the slope of the plot of ipa vs ν1/2 (Figure 
3B) into account, the effective surface area of N-CDs/Cu2O/Nf/GCE was found to be 0.1582 cm2 

which was higher than that of the effective surface area of N-CDs/GCE (00756 cm2) and Cu2O/GCE 
(0.0945 cm2). This evidence demonstrates that the N-CDs/Cu2O/Nf/GCE possesses a good 
electrochemical effective surface area. 

3.3. Electrochemical Performance of N-CDs/Cu2O/Nf/GCE towards CPZ Oxidation 

To estimate the influence of the amount of N-CDs/Cu2O/Nf on the surface of GCE, the 
electrochemical performance of N-CDs/Cu2O/Nf/GCE in 0.1 M PBS (pH 7.0) containing 1mM CPZ 
was recorded. Figure 4A displays the electrocatalytic oxidation peak current of CPZ is nonlinear 
over the increasing amount of N-CDs/Cu2O/Nf. Obviously, the highest peak current of CPZ was 
achieved when 5 µL of N-CDs/Cu2O/Nf was applied onto the surface of GCE. Thus, the optimized 
concentration was chosen for ultrasensitive detection of CPZ. 

Figure 3. (A) Cyclic voltammetric responses of different modified electrodes in 0.1 M KCl containing
2.5 mM [Fe(CN)6]3−/4− at a scan rate of 100 mV s−1, (B) Calibration plot of square root of scan rate vs.
anodic peak current of 1 mM K3[Fe(CN)6] in 0.1 M KCl at N-CDs/Cu2O/Nf/GCE.



Nanomaterials 2020, 10, 1513 7 of 15

The effective surface area of N-CDs/GCE, Cu2O/GCE and N-CDs/Cu2O/Nf/GCE were calculated
using different scan rates of cyclic voltammetric responses at 1 mM K3[Fe(CN)6] in 0.1 M KCl supporting
electrolyte. The Randles–Sevcik equation is used as follows: [39]

ip =
(
2.69× 105

)
Ae f f D

1
2 n

3
2 υ

1
2 C

where ip is the anodic peak current (A), Aeff is an effective surface area (cm2), D is diffusion coefficient
of potassium ferricyanide (7.60 × 10−6 cm2 s−1) [40], υ is the scan rate (V s−1), n is the number of
electrons involved in the electrochemical reaction of potassium ferricyanide (n = 1) and C is the bulk
concentration of the redox probe (mol. cm-3). By taking the slope of the plot of ipa vs ν1/2 (Figure 3B)
into account, the effective surface area of N-CDs/Cu2O/Nf/GCE was found to be 0.1582 cm2 which was
higher than that of the effective surface area of N-CDs/GCE (00756 cm2) and Cu2O/GCE (0.0945 cm2).
This evidence demonstrates that the N-CDs/Cu2O/Nf/GCE possesses a good electrochemical effective
surface area.

3.3. Electrochemical Performance of N-CDs/Cu2O/Nf/GCE towards CPZ Oxidation

To estimate the influence of the amount of N-CDs/Cu2O/Nf on the surface of GCE, the
electrochemical performance of N-CDs/Cu2O/Nf/GCE in 0.1 M PBS (pH 7.0) containing 1mM CPZ
was recorded. Figure 4A displays the electrocatalytic oxidation peak current of CPZ is nonlinear over
the increasing amount of N-CDs/Cu2O/Nf. Obviously, the highest peak current of CPZ was achieved
when 5 µL of N-CDs/Cu2O/Nf was applied onto the surface of GCE. Thus, the optimized concentration
was chosen for ultrasensitive detection of CPZ.

The electrochemical response of CPZ at modified and unmodified electrodes was verified using
CV technique. Figure 4B shows cyclic voltammograms of 1 mM CPZ in 0.1 M PBS (pH 7.0) at
GCE, N-CDs/GCE, Cu2O/GCE and N-CDs/Cu2O/Nf/GCE. Apparently, no characteristic peak was
detected in 0.1 M PBS without CPZ in the given window of potential. The bare GCE exhibited an
irreversible voltammogram with poor peak current for CPZ, while the N-CDs/GCE displayed higher
electrochemical oxidation response due to the better conductive and stable nature of N-CDs [41].
A notable enlargement in the peak current of CPZ was observed at Cu2O/GCE when compared
with GCE and N-CDs/GCE owing to the good electrons transfer property at the electrode surface
that is endowed by the catalytic activity of Cu2O. Beyond that, N-CDs/Cu2O/Nf/GCE presented the
superior peak current among all the electrodes with a shifting towards the less positive potential for
electro-oxidation of CPZ, which is attributed to the high surface area of N-CDs/Cu2O on the surface of
modified electrode.

The influence of scan rate on the oxidation peak current of CPZ was examined and Figure 4C
displays the changes of anodic peak current with an increasing scan rate of 1 mM CPZ from 50 to
300 mV s−1. The linear relationship between oxidation peak current and the square root of scan rate
was evident in Figure 4D. Moreover, with the increasing of scan rate, an obvious shift of the anodic
peak potentials towards the positive was emerged, indicating the limitation of charge transfer kinetics.
The electrochemical observations revealed that the electro-oxidation of CPZ was a diffusion-controlled
irreversible process at the surface of N-CDs/Cu2O/Nf/GCE.
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The electrochemical reactions of organic compounds are usually carried out with the involvement
of protons which have a significant impact on speeding up the reactions. The pH of supporting
electrolyte generally influences the electrochemical reaction of CPZ by shifting its oxidation potentials
towards positive side due to the acid dissociation of CPZ. Hence, to optimize the pH of supporting
electrolyte for the electrochemical oxidation of CPZ at the composite electrode, a cyclic voltammetric
investigation was performed in 0.1 M PBS with the pH ranging from 4.5 to 9.0 (Figure 4E). The
negligible shift of CPZ peak potentials at various pH conditions indicates that the electro-oxidation
of CPZ is a simple electron-transfer process rather than a proton transfer process. However, the
anodic peak current of CPZ strongly depends on the pH of the supporting electrolyte. Figure 4F
displays the relationship between the pH of analytes and their corresponding anodic peak currents
for N-CDs/Cu2O/Nf composite electrode, in which the maximum peak current was attained at pH
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7.0. Hence, the PBS with a pH of 7.0 was selected as an optimized condition throughout the following
electrochemical study of CPZ at N-CDs/Cu2O/Nf composite-based sensor.

According to the results in Figure 4E, the redox peaks with reversible cyclic voltammogram can
be observed from pH 4.5 to 6.5, whereas only oxidation peaks are seen from pH 7.0 to 9.0. A reversible
redox system in acidic media is shown in Figure 5A. An oxidation peak was observed in the forward
scan at 0.730 V and the counterpart reduction peak was attained at 0.571 V, which is due to the influence
of the pH of supporting electrolyte on the peak potentials of redox peaks. The oxidation peak appeared
in the forward scan is attributed to the formation of CPZ cation radical (CPZ·+) through one-electron
oxidation of CPZ, whereas the reduction peak in reverse scan relates to the reduction of CPZ·+ by a
slow disproportionation reaction (Scheme 2A) [42]. The CPZ cation radical is more stable in acidic
media. However, Figure 5B displays an irreversible system in neutral and basic media. Obviously, only
oxidation peak at 0.687 V in the forward scan was observed, which signifies that with the increasing of
pH values, direct conversion of CPZ to CPZ2·+ would take place and make the process unstable. It gets
a conversion to the final product by taking oxygen from the water molecule by a chemical reaction
without any electrochemical-reduction (Scheme 2B).
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at N-CDs/Cu2O/Nf/GCE.

3.4. Analytical Performance

The analytical electrochemical performance of N-CDs/Cu2O/Nf/GCE was studied at various
concentrations of CPZ under the optimal experimental conditions using differential pulse voltammetry
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(DPV) technique. The recorded voltammograms were presented in Figure 6A. It simplifies that there
was no prominent peak of CPZ potential appeared in the absence of CPZ. The characteristic oxidation
peaks of CPZ (≈ 0.65 V) in 0.1 M PBS (pH 7.0) increased with the increasing concentration of CPZ
without affecting the oxidation potential in the range of 0.001 µM and 230 µM. The calibration plot of
the CPZ concentration and its corresponding peak current was depicted in Figure 6B. The detection
limit was found to be 25 nM (S/N = 3) and is comparable in a dynamic linear range (0.001 to 230 µM),
signifying the superior performance of the designed sensor. Additionally, the analytical merits of
the present sensor are compared with previously reported sensing protocols of CPZ (Table 1) and
enlightening the capability of the developed sensor towards the determination of CPZ. The outstanding
analytical response of N-CDs/Cu2O/Nf modified electrode can be ascribed to the enhanced surface area
of the composite onto the electrode which was produced by the incorporating of N-CDs into Cu2O.
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Table 1. Comparison of the analytical merits of N-CDs/Cu2O/Nf composite with previously reported
sensing materials for electrochemical determination of CPZ.

Sensing
Material Technique pH Linear Range (M) LOD

(nM) Ref.

PNIPAM DPV 7.0 0.05 µM–7999 µM 16 [43]
β-SnWNRs Amperometry 7.0 0.01 µM–457 µM 3 [44]
CdO/NPs/IL Chronoamperometry 7.0 0.1 µM–350 µM 70 [2]

Peas-like SrM DPV 7.0 0.1 µM–143 µM;
153 µM–1683 µM 28 [45]

BDD DPV 4.0 0.1 µM–40.0 µM 30 [46]
PTN DPV 7.0 0.1 µM–130 µM 300 [47]

N-CDs/Cu2O/Nf DPV 7.0 0.001 µM–230 µM 25 Present work

PNIPAM: poly-N-isopropylacrylamide microgel; β-SnWNRs: one-dimensional β-stannous tungstate nanorods;
CdO/NPs/IL/CP: CdO/nanoparticles (NPs) ionic liquid carbon paste; SrM: Strontium molybdate; BDD: Boron-doped
diamond: PTN: Polythiophene Nanowires.

3.5. Interference Study

It is well-known that the anti-interference is one of the most important parameters for
electrochemical sensing of CPZ. Some organic compounds and inorganic ions may exist in
pharmaceutical and biological samples in the quantification of CPZ. Figure 7 displays the comparison
of the peak current of 200 µM CPZ in the presence of 100 folds of common interfering compounds at
N-CDs/Cu2O/Nf/GCE. The negligible variations of the peak currents for various interfering substances
reveal that the developed composite-based sensor has high reliability and good selectivity for
ultrasensitive electrochemical sensing of CPZ.
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3.6. Stability, Repeatability, and Reproducibility

Repeatability refers to the ability of a sensor to produce almost the same signals in consecutive
electrochemical measurements. To verify the repeatability of the developed N-CDs/Cu2O/Nf
composite-based sensor, 30 distinct cyclic voltammetric cycles were recorded with and without
CPZ (20 µM) alternately. There was a little difference in anodic peak currents and the peak potentials of
CPZ for these repeated tests. The relative standard deviation (RSD) for the measurements was calculated
to be 1.53% demonstrating that the sensor has good repeatability. To investigate the reproducibility of
the proposed sensor, three N-CDs/Cu2O/Nf composite-based sensors were constructed under the same
working conditions and RSD of 1.83% was presented for these sensors with 20 µM CPZ, confirming
its good reproducibility. The long-term stability of N-CDs/Cu2O/Nf composite modified electrode
was further determined by storing the electrode for four weeks at 4 ◦C. Remarkably, the anodic peak
current of CPZ, after four weeks, maintained more than 97% of its initial signal, which signifies that
the proposed sensor could be used for determination of pharmaceutical samples with acceptable
operational stability.

3.7. Real Sample Analysis

To further appraise the reliability of the proposed sensor, examination of CPZ was carried
out in pharmaceutical formulations (Figure S2) and human urine sample (Figure S3). Before the
measurements, 0.1 mL of human urine sample was diluted with 9.0 mL of PBS (pH 7.0) to reduce the
matrix effect for obtaining accurate results. The stock solution of tablet sample was prepared with the
help of PBS (pH 7.0). Although spiking a known concentration of CPZ, the oxidation peak current of
CPZ increased linearly without any peak potential shift. The content of CPZ in both the samples was
determined at N-CDs/Cu2O/Nf composite modified electrode using the standard addition method.
Each addition was measured three times using DPV technique under the optimal working conditions.
The obtained results were tabulated in Table 2. The recovery profile reveals that the developed sensor
is greatly reliable for determining CPZ in real sample analysis and confirming a promising analytical
sensing platform for pharmaceutical drugs.
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Table 2. Recovery profile of CPZ at N-CDs/Cu2O/Nf/GCE in real samples (n = 3).

Sample S. No Added (µM) Found (µM) Recovery (%) Bias (%)

Tablet

1 0 Not detected - -

2 10 09.94 99.40 0.6

3 20 20.22 100.10 1.1

4 30 30.01 100.03 0.03

Human Urine

1 0 Not detected - -

2 10 09.71 97.10 2.90

3 20 20.50 102.50 2.50

4 30 29.31 97.70 2.30

4. Conclusion

In this work, we have developed a versatile strategy for developing a sensing platform for
CPZ based on nitrogen-doped carbon dots with cuprous oxide (N-CDs/Cu2O) composite. The
as-synthesized composite was characterized using physicochemical and electrochemical techniques.
With the support of Nafion (Nf), N-CDs/Cu2O composite was successfully employed as a sensing
material for the detection of CPZ. The composite-based sensor showed excellent performance towards
CPZ determination in a dynamic linear range of 0.001 – 230 µM with a detection limit of 25 nM. The
developed sensor displayed long-term stability, good anti-interfering property, repeatability, and
reproducibility. Additionally, the potential applicability of N-CDs/Cu2O/Nf/GCE was successfully
verified with satisfactory recoveries in pharmaceutical drug and human urine samples. The successful
performance of N-CDs/Cu2O/Nf composite sensor was attributed to the synergetic effect of N-CDs
and Cu2O, which made the effective electron-transfer ability at the surface of electrode. Therefore, the
developed sensor can be potentially used for clinical applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1513/s1,
Figure S1: XPS spectra of N-CDs/Cu2O composite, Figure S2: DPV responses for detection of CPZ in pharmaceutical
formulations, Figure S3: DPV responses for detection of CPZ in human urine sample.
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