1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
SoftwareX. Author manuscript; available in PMC 2022 April 12.

-, HHS Public Access
«

Published in final edited form as:
SoftwareX. 2020 ; 11: . doi:10.1016/j.s0ftx.2020.100462.

IScore: An MPI supported software for ranking protein—protein
docking models based on a random walk graph kernel and
support vector machines

Nicolas Renaud®”, Yong JungP, Vasant HonavarP.¢, Cunliang Geng?4, Alexandre M.J.J.
Bonvind, Li C. Xue%®
aNetherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands

bBioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park,
PA 16802, USA

¢College of Information Science & Technology, Pennsylvania State University, University Park, PA
16802, USA

dBijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands

eCenter for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands

Abstract

Computational docking is a promising tool to model three-dimensional (3D) structures of protein—
protein complexes, which provides fundamental insights of protein functions in the cellular life.
Singling out near-native models from the huge pool of generated docking models (referred to

as the scoring problem) remains as a major challenge in computational docking. We recently
published iScore, a novel graph kernel based scoring function. iScore ranks docking models based
on their interface graph similarities to the training interface graph set. iScore uses a support vector
machine approach with random-walk graph kernels to classify and rank protein—protein interfaces.
Here, we present the software for iScore. The software provides executable scripts that fully
automate the computational workflow. In addition, the creation and analysis of the interface graph
can be distributed across different processes using Message Passing interface (MPI) and can be
offloaded to GPUs thanks to dedicated CUDA kernels.

Keywords

Protein—protein docking; Scoring; Graph kernel functions; Support vector machines; MPI;
Position-specific scoring matrix (PSSM)

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
"Corresponding author. n.renaud@esciencecenter.nl (N. Renaud), Li.Xue@radboudumc.nl (L.C. Xue).

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

https://creativecommons.org/licenses/by-nc-nd/4.0/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al. Page 2

Code metadata

Current code version 0.2.0

https://github.com/ElsevierSoftwareX/

Permanent link to code/repository used for this code version SOFTX_2019_ 302

Legal Code License Apache-2.0

Code versioning system used git

Software code languages, tools, and services used python, MPI, CUDA.

Compilation requirements, operating environments & numpy, libSVM, pdb2sql, h5x, pytest, biopython,
dependencies mpidpy, numpy, scipy, h5py, matplotlib

If available Link to developer documentation/manual https://iscoredoc.readthedocs.io/

Support email for questions n.renaud@esciencecenter.nl

1. Motivation and significance

Interactions between proteins that lead to the formation of a three-dimensional (3D)
complex is a crucial mechanism that underlies major biological activities ranging from
immune defense system to enzyme catalysis. The 3D structure of such complexes provides
fundamental insights on the protein recognition mechanism and protein functions [1,2].

To complement the labor-intensive experimental characterization of protein complexes
computational docking approaches have been developed to predict their 3D structures
[3,4]. The prediction of these structures using docking usually consists of two steps: First,
the sampling step that consists of systematically (or randomly) rotating and translating
individual protein components to generate typically tens of thousands of candidate
interaction models; second, the scoring step that evaluates each of the models and selects the
ones that are most likely to occur in nature.

The scoring problem has been a highly challenging task for decades. Many methods have
been developed and can be largely grouped into five types: (1) Shape complementarity
based methods, favoring models that maximize the surface matching with minimal shape
penetration [5,6], (2) physical energy-based methods, which sum up all the pairwise
interaction energies between interface atom/residue pairs and are widely used in most
modern docking software [7-10], (3) statistical potential-based methods, which coverts the
interaction frequency of interface atom/residue contact pairs observed in the experimentally
solved protein complexes to potentials using the Boltzmann distribution [11,12], (4) machine
learning based methods, which typically treat the scoring problem as a binary classification
problem, predicting a docked model as near-native or not [13-15], and (5) co-evolution
based methods, which score models based on the co-occurrence frequencies of residue
pairs in sequence alignments [16]. Different scoring approaches are regularly benchmarked
against each other during a community-wide challenge, the Critical Assessment of
Prediction of Interactions (CAPRI) [17].

Recently, we introduced a novel graph kernel based machinelearning approach, called iScore
[18]. iScore represents the interface of a protein complex as an interface graph, with
the nodes being the interface residues and the edges connecting the residues in contact.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

https://github.com/ElsevierSoftwareX/SOFTX_2019_302
https://github.com/ElsevierSoftwareX/SOFTX_2019_302
https://iscoredoc.readthedocs.io/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al.

Page 3

By comparing the graph similarity between the query graph and the training graphs,

iScore predicts the likelihood how close the query graph is to a near-native model. We

have demonstrated in our previous publication [18] that iScore competes with, or even
outperforms various state-of-the-art approaches on two independent test sets: the new entries
of Docking Benchmark 5.0 set [19] and the CAPRI score set [20]. Using only a small
number of features, i.e. 1 evolutionary feature and 3 physics energy terms, iScore performs
well compared with IRaPPA [15], the latest machine learning based scoring function, which
exploits 91 features. This demonstrates the advantage of representing protein interfaces as
graphs as compared to fixed-length feature vectors which discard information about the
interaction topology.

We present here the software for iScore. As explained in the following, the software is easy
to use thanks to dedicated executable scripts that completely automate the computational
workflow. Furthermore, the software leverages distributed and heterogeneous computing
technologies to accelerate the generation of the required data and its analysis.

2. Software description

The underlying method is described in details in [18] and only a summary is provided here
to highlight the different components of the software. As described in [18], the interface of
each protein—protein model is represented as a bipartite graph. Each node is labeled with a
20 x 1 feature vector from the position-specific scoring matrix (PSSM) of the corresponding
residue. PSSMs [21] are widely used in bioinformatics and encode the log-likelihood ratio
of the observed frequency of each amino acid type at a specific sequence location against a
background frequency. They therefore represent the degrees of conservation for the protein’s
residues at their specific location in the sequence. The similarity between two graphs is
evaluated via a random walk graph kernel (RWGK) approach [22]. The graph-pair similarity
matrix is used as input of a support vector machine (SVM) to classify the interface graphs
as near-native or non-near native. The decision value of the SVM classification is then
combined with energetic terms to score each protein—protein interface (PPI). As for any
supervised learning approach, the SVM madel is first trained on a well defined dataset
before being used to classify new conformations.

The software presented here provides a fully automated end-to-end training and testing
platform for the ranking of PPIs following the iScore method. The software is organized as a
Python module containing dedicated classes in charge of specific steps in the computational
workflow. This workflow is fully automated through executable scripts that orchestrates the
entire computation from processing PDB files of the docked models to obtaining the final
score of each PPI.

2.1. Software architecture

The general architecture of iScore for training a model and scoring new conformations is
represented in Fig. 1. The software only requires PDB files of the docking models contained
in the dataset used for training or scoring. All other intermediary files are automatically
generated and processed by the software. We provide details in the following different steps
of the computational workflow and describe each module.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al.

Page 4

2.1.1. Generation of the PSSM files—PSSM files of docked conformations are
generated by the pssm_gen() class using PDB files for input. The calculation of the PSSM
relies on PSI-BLAST [23] using BLAST version 2.7.1+. The default parameters of the
BLAST (for example, substitution matrix, gap costs, etc.) were set in agreement with the
recommended values provided in the BLAST user guide [24]. Other parameters are provided
in [18]. The pssm_gen() class also formats the PSSM files for further processing. The class
outputs resulting PSSM files for each chain in the PDB files into a separate folder for further
processing.

2.1.2. Generation of interface bipartite graphs—The graph generation is handled
by the iscore_graph() function and relies heavily on our pdb2sql tool that allows
manipulating PDB files using SQL queries [25]. The contact residues are identified by

the interface module of pdb2sql using a default contact distance of 6.0 A. The PSSM

files generated in the previous step are then read and checked against the sequence of the
protein. The PSSMs are subsequently mapped onto the interface graph. The resulting graph
is then serialized using the pickle library in order to exploit the object hierarchy in the next
computational steps. The class also provides options to export multiple graphs in a single
HDFS5 file for further visual inspection (see Fig. 3).

2.1.3. Random walk graph kernels—The function iscore_kernel() is responsible for
the computation of pairwise random-walk graph kernels . For each pair of PPIs contained in
the dataset, the corresponding graph files are first “unpickled” and loaded in memory. The
different elements necessary to the computation of the RWGK are computed and assembled
in the final kernel value (see [18] for details on the calculation). All kernel values are then
stored in a dedicated pickle file.

2.1.4. Training the SVM model—The function iscore_svm() can then be used to train
an SVM model from the previously computed RWGK. To this end, users must also provide
the ground truth, i.e. the binary class 0/1 of each conformation contained in the training
dataset. In iScore, we choose the binary labels 1 and 0 to describe near-native and non
near-native conformations respectively. The function relies on the libSVM library [26] to
train the SVM model. To facilitate the further exploitation of the trained SVM model, the
SVM model are efficiently packed into a dedicated archive together with the graphs of all
the conformations of the training set. This self contained archive contains all the information
required to score new PPIs.

2.1.5. Scoring new PPIs—The workflow for ranking new PPlIs is very similar to

the one used to train the SVM model. Users only need to provide PDB files of new
conformations and compute the corresponding PSSMs and interface graphs. However, the
RWGK are now computed between the new conformations and the ones contained in the
training set. This can easily be done using the training archive that contains all the relevant
information. The resulting kernels are then used as input for the SVM model, and the SVM
decision value is used as one component of the final scoring function. The other component
of the scoring function is provided from energy terms that are directly computed from the

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al.

Page 5

PDB files of the new conformations. The weight of each term in the final scoring function
has been optimized using genetic algorithm as explained in [18].

2.2. Software functionalities

Beyond the individual modules described above, the software provides crucial functions that
facilitate and accelerate the process of ranking PPIs.

2.2.1. Automation of the computational workflows—The software provides
executable scripts that fully automate the workflows illustrated in Fig. 1. These scripts
seamlessly orchestrate all the computational steps at the exception of the calculation of the
PSSMs. This calculation can be rather demanding and therefore must be performed as a
pre-processing step using the functions provided by the software.

The training of an SVM model from the PDB leads to the creation of a training archive
and is fully controlled by the iScore.train.mpi executable script. This script reads the

PDB and PSSM files, generates the interface graphs, computes all the pairwise RWGKS,
trains the SVM model, and finally assembles the training archive. Similarly, the ranking of
new conformations using a trained model can simply be achieved via a single command:
iScore.predict.mpi. This script reads the PDB and PSSM files, generates all the interface
graphs, computes the RWGK between the new conformations and the conformations
included in the training set, and finally scores the new conformations.

To handle the potentially large computational cost associated with the calculation of the
interface graphs and their pairwise RWGKSs, these executable scripts support the distribution
of the computational load across different MPI processes using mpi4py [27]. For the
calculation of the graphs, the different conformations are distributed among the different
MPI processes, and for the RWGK calculations all the pairwise combinations are distributed
among the MPI processes. Simple performance benchmarks are reported in Fig. 2a showing
good performance of the MPI distribution. However, note that training the SVM model and
scoring new PPIs are done using a single process.

2.2.2. Calculation of the RWKG on GPUs—To accelerate the calculations of the
graph kernels, we have developed simple GPGPU kernels using pyCUDA [28]. The
utilization of these GPGPU routines can easily be turned ON or OFF through one optional
keyword argument of the iscore_kernel() function. Fig. 2b shows the runtime of the CPU
and GPU routines computing the RWGKSs. As seen on this figure, a sizable improvement of
performance can be obtained for large graphs. The software also provides solutions to tune
the GPU kernels through the kernel tuner library [29]. This allows to automatically find the
optimal configuration of the kernel in terms of blocs size, threads size, etc.

While the GPU routines might be interesting to process very large proteins or for other
applications, we have exclusively used the CPU routines in our evaluation of the iScore
software tool because our protein interface graphs contain fewer than a hundred nodes.

2.2.3. Visualization—As mentioned in Section 2.1.2, the interface graphs computed by
iScore can be stored in a HDF5 file for further analysis. The resulting HDF5 file contains an

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Renaud et al.

Page 6

entry for each graph where all the relevant data are stored. To facilitate the inspection and
exploration of these interface graphs, we have developed a simple graphical interface based
on the customizable HDF5 browser h5X [30]. This interface is accessible via the executable
iScore.h5x. This interface allows to quickly generate all the data for visualization of a given
graph connection using PyMol [31]. An example of representation is shown in Fig. 3. This
figure shows a single PPI. All the contact residues are highlighted by a stick representation
and bright color whereas the rest of the protein structure is represented by thin gray lines.
Edges linking the contact residues represent the contact between the two chains and the label
of each contact residue is displayed for clarity.

2.3. Code snippets

Beyond the executable scripts mentioned above, iScore can also be used as a Python module
and could therefore be integrated in other applications. We illustrate here the use of iScore
through a small code snippet.

from iScore.graphrank.graph import GenGraph

from iScore.graphrank.kernel import Kernel

generate the first graph

pdb = “1ATN.pdb~”

pssm = {?A”: "1ATN.A.pdb.pssm’,
B”:”1ATN.B.pdb.pssm *}

gen = GenGraph(pdb,pssm)

Gl = gen.get_graph(Q

generate the second graph

pdb = “1IRA.pdb”

pssm = {?A”:”1IRA_A_pdb.pssm”,
>B”:”1IRA.B.pdb.pssm”}

gen = GenGraph(pdb,pssm)

G2 = gen.get_graphQ)

compute the kernel

K = Kernel QO
K.compute_kron_mat(G1,G2)
K.compute_px (G1,G2)
K.compute_WO(G1,G2)

ker = K.compute_K(lamb=1.0, walk=4)

As we can see on this snippet, iScore provides the solution to generate graphs of given
structures using PSSM as a node attribute and to compute the random walk graph kernel
between the graphs. The graph generation is done via the GenGraph() class that only takes
PDB and PSSM files as input. The random walk graph kernel of the two graphs can then be
computed using the Kernel() class and its methods.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al. Page 7

3. lllustrative examples

We present here the results on test cases extracted from previous CAPRI competitions. In
order to score the conformations contained in the test cases, a representative training set
containing 234 distinct PPIs was first assembled. Half of these conformations correspond

to real experimental structures of complexes chosen from the Docking Benchmark 4

(DB4) [32]. The second half correspond to non-native docking models generated using the
HADDOCK docking software from entries of the DB4. Their i-RMSD values are larger than
10 A. The resulting dataset is publicly available [33].

The trained model was used to score and rank conformations from previous CAPRI targets,
namely targets T32, T41, T47 and T50. Fig. 4 shows the corresponding hit rate plot obtained
with iScore and the HADDOCK scoring function. Hit rate plots are commonly used to
compare different scoring functions. The hit rate at AV represents the fraction of near-native
models contained in the best /Vmodels predicted by a scoring function. As seen in Fig. 4
and Table 1, iScore performs better than HADDOCK on 2 of these cases (T32 and T41)

and shows similar performance on the remaining two. These results are in line with those
reported in [18] where iScore performed very well on a large range of test cases.

4. Impact

The software presented in this paper provides ease of use in end-to-end platform for scoring
and ranking of PPIs. Thanks to the provided executable scripts, users can easily generate
the graphs, compute their pairwise kernels and use them to train a SVM model. The self-
contained archive file generated during the training contains all the necessary information to
rank new docking conformations. This enables to simplify data handling and facilitates the
exchange of trained model between different users. The dedicated scripts briefly described
in Section 2.2.1 fully automatize the computational workflows supporting the training and
testing of a SVM a model. This workflow not only makes the use of the code easier,
therefore facilitating its adoption by the community, but also ensures greater reproducibility
of the analysis. The modular architecture of the software facilitates its maintenance and
further development.

The distribution of the computational load using MPI significantly reduces the time for
training and using SVM maodels: Training our SVM model used in Section 3 takes under 50
s using 16 cores while scoring the 600 conformations contained in the T32 CAPRI test case
takes less than 2 min.

The software presented in this paper has already been used in a recently published paper
that describes the underlying methodology and used it on a large range of test cases. In
agreement with Fig. 4, the results presented in [18] are competitive compared to widely used
scoring functions such as HADDOCK. The software also recently has been used during the
CAPRI competition.

While the software has been developed specifically for ranking PPIs, the method is generic
and may be generalized for a broad range of applications that involve ranking of graphs.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al. Page 8

Such a generalization would require users to specify the nodes and edges features as well as
the graph kernels.

5. Conclusions

We have presented a new software package, iScore, that provides an end-to-end solution
for ranking protein-protein interfaces. The method is based on a support vector machine
classifier using random-walk graph kernels. The software is built as a Python package that
can be used either interactively or through the use of dedicated executable scripts that fully
automatize the computational workflow. The calculations can be distributed across multiple
MPI processes and GPGPU kernels have been developed to accelerate the calculation

of graph kernels. The software provides a user friendly solution for ranking PPIs more
efficiently and accurately.

Acknowledgments

This work was supported by an Accelerating Scientific Discovery (ASDI) grant from the Netherlands eScience
Center (grant no. 027016G04). CG acknowledges financial support from the China Scholarship Council (grant no.
201406220132). LX acknowledges financial support from the Netherlands Organisation for Scientific Research
(Veni grant 722.014.005) and from an Accelerating Scientific Discovery (ASDI) grant from the Netherlands
eScience Center (grant no. 027016G04). VH acknowledges financial support from the National Science Foundation
USA (grant no. ACI 1640834) and the National Institutes of Health (NCATS UL1 TR002014-01), the Center for
Big Data Analytics and Discovery Informatics which is cosponsored by the Institute for Cyberscience, USA, the
Huck Institutes of the Life Sciences, and the Social Science Research Institute at the Pennsylvania State University,
USA, and the Edward Frymoyer Endowed Professorship at Pennsylvania State University, USA and the Sudha
Murty Distinguished Visiting Chair in Neurocomputing and Data Science sponsored by the Pratiksha Trust at the
Indian Institute of Science.

References

[1]. Aloy P, Russell RB. Structural systems biology: modelling protein interactions. Nat Rev Mol Cell
Biol 2006;7:188-97. [PubMed: 16496021]

[2]. Kiel C, Beltrao P, Serrano L. Analyzing protein interaction networks using
structural information. Annu Rev Biochem 2008;77(1):415-41, PMID: 18304007. 10.1146/
annurev.biochem.77.062706.133317. [PubMed: 18304007]

[3]. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search
algorithms and a guide to scoring functions. Proteins: Struct Funct Bioinform 2002;47(4):409-
43.10.1002/prot.10115.

[4]. Vangone A, Oliva R, Cavallo L, Bonvin AMJJ. Prediction of biomolecular complexes. In:
Rigden JD, editor. From protein structure to function with bioinformatics. Dordrecht: Springer
Netherlands; ISBN: 978-94-024-1069-3, 2017, p. 265-92. 10.1007/978-94-024-1069-3_8.

[5]- Macindoe G, Mavridis L, Venkatraman V, Devignes M-D, Ritchie DW. HexServer: an FFT-based
protein docking server powered by graphics processors. Nucleic Acids Res 2010;38(Suppl.
2):W445-9. [PubMed: 20444869]

[6]. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers
for rigid and symmetric docking. Nucleic Acids Res 2005;33(Suppl. 2):W363-7. [PubMed:
15980490]

[7]. Dominguez C, Boelens R, Bonvin AMJJ. HADDOCK: A protein protein docking approach
based on biochemical or biophysical information. J Am Chem Soc 2003;125(7):1731-7, PMID:
12580598. 10.1021/ja026939x. [PubMed: 12580598]

[8]. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive
docking prediction of protein—protein complexes and symmetric multimers. Bioinformatics
2014;30(12):1771-3. 10.1093/bioinformatics/btu097. [PubMed: 24532726]

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al.

Page 9

[9]. Lyskov S, Gray JJ. The rosettadock server for local protein—protein docking. Nucleic Acids Res

[10].
[11].
[12].
[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].
[21].
[22].
[23].
[24].
[25].
[26].
[27].

[28].

[29].
[30].

[31].

2008;36:W233-8. [PubMed: 18442991]

Cheng TM, Blundell TL, Fernandez-Recio J. Pydock: Electrostatics and desolvation for effective
scoring of rigid-body protein-protein docking. Proteins: Struct Funct Bioinform 2007;68:503-15.
Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure derived
potentials of mean force for structure selection and stability prediction. Prot Sci 2002;11:2714-6.
Huang S-Y, Zou X An iterative knowledge-based scoring function for protein—protein
recognition. Proteins: Struct Funct Bioinform 2008;72(2):557-79.

Bourquard T, Bernauer J, Azé J, Poupon A. A collaborative filtering approach for protein-protein
docking scoring functions. PLoS One 2011;6(4). e18541. [PubMed: 21526112]

Khashan R, Zheng W, Tropsha A. Scoring protein interaction decoys using exposed residues
(SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns
of interfacial residues. Proteins: Struct Funct Bioinform 2012;80(9):2207-17.

Moal IH, Barradas-Bautista D, Jiménez-Garcia B, Torchala M, van der \elde A, Vreven

T, Weng Z, Bates PA, Fernandez-Recio J. IRaPPA: information retrieval based integration

of biophysical models for protein assembly selection. Bioinformatics 2017;33(12):1806-13.
[PubMed: 28200016]

Andreani J, Faure G, Guerois R. InterEvScore: a novel coarse-grained interface scoring function
using a multi-body statistical potential coupled to evolution. Bioinformatics 2013;29(14):1742-9.
[PubMed: 23652426]

Lensink M, Velankar S, Wodak S. Modeling protein-protein and protein-peptide complexes:
CAPRI 6-th edition. Proteins: Struct Funct Bioinform 2017;85:359-77. 10.1002/prot.25215.
Geng C, Jung Y, Renaud N, Honavar V, Bonvin AMJJ, Xue LC. IScore: A novel graph
kernel-based function for scoring protein-protein docking models. Bioinformatics 2019. 10.1093/
bioinformatics/btz496.

Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-Garcia
B, Bates PA, Fernandez-Recio J, et al. Updates to the integrated protein—protein interaction
benchmarks: docking benchmark version 5 and affinity benchmark version 2. J Mol Biol
2015;427(19):3031-41. [PubMed: 26231283]

Lensink MF, Wodak SJ. Score_set: a CAPRI benchmark for scoring protein complexes. Proteins:
Struct Funct Bioinform 2014;82(11):3163-9.

Hertz GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant
alignments of multiple sequences. Bioinformatics (Oxford, England) 1999;15(7):563-77.
Vishwanathan SVN, Schraudolph NN, Kondor R, BK M. Graph kernels. J Mach Learn Res
2010;11:1201-42.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Res 1997;25(17):3389-402. 10.1093/nar/25.17.3389. [PubMed: 9254694]

NCBI. BLAST User Guide, https://www.nchi.nlm.nih.gov/blast/html/sub_matrix.html.

Renaud N Pdb2sqgl : fast and versatile PDB parser using SQL queries. 2018, 10.5281/
zeno0do.3232888, https://github.com/DeepRank/pdb2sgl.

Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans Intell Syst
Technol (TIST) 2011;2:27:1-27, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Lisandro Dn, Rodrigo P, Mario S, Jorge DE. MPI for python: Performance improvements and
MPI-2 extensions. J Parallel Distrib Comput 2008;68(5):655-62. 10.1016/j.jpdc.2007.09.005.
Kldckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: A
Scripting-based approach to GPU run-time code generation. Parallel Comput 2012;38(3):157-74.
10.1016/j.parc0.2011.09.001.

van Werkhoven B Kernel tuner. 2018, 10.5281/zenodo.1489995, URL https://github.com/
benvanwerkhoven/kernel_tuner.

Renaud N Hb5xplorer : A customizable hdf5 browser with embedded ipython console. 2018,
10.5281/zen0d0.3232896, URL https://github.com/DeepRank/h5xplorer.

Schrddinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

https://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html
https://github.com/DeepRank/pdb2sql
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/benvanwerkhoven/kernel_tuner
https://github.com/DeepRank/h5xplorer

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Renaud et al. Page 10

[32]. Hwang H, Vreven T, Janin J, Weng Z. Protein—protein docking benchmark version 4.0. Proteins:
Struct Funct Bioinform 2010;78(15):3111-4. 10.1002/prot.22830.

[33]. Geng C, Xue LC, Bonvin AMJJ. Docking models for Docking Benchmark 4, 5 and CAPRI
score_set. SBGrid Data Bank, V1; 2019, 10.15785/SBGRID/684.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Renaud et al.

Page 11

iScore.train iScore.predict
_I—b Energy
PDBs PDB: iscore_energyl
S
] -
WY Training set N
l Graphs [— et (tar.g2) l Graphs é iScore
iscore_graph) -t re iscore_graph()
P35Ms ! t PSSMs t
pssm_gen() pssm_gen()
Kernels |—= 5VM Kernels SVM
iscore_kernel() iscore_svmi) - | iscare kernell iscore svm
[1
! Training set
Fig. 1.

Computational workflow of iScore during the training of a SVM model and during the
utilization of pre-trained model to rank new PPIs.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Renaud et al.

800 - —o— Test
—o— Train
S 600
[
2
£
£ 400
c
3
@
200 A
T T T T T
12 4 8 16
Number of MPI processes
Fig. 2.

Page 12

50

40 -

30 A

20 A

10 A

—e— CPU
—o— GPGPU

T T T T
0 1000 2000 3000 4000
Number of graph nodes

(a) Scaling of iScore.train.mpi and iScore.predict.mpi with respect to the number of MPI
processes. The training and testing set contained 234 and 599 conformations respectively.
(b) Average run time on CPU (Intel Xeon E5-2650 v4 @ 2.20 GHz) and GPU (Nvidia
GeForce GTX 1080 Ti) for the calculation of RWGK for two graphs containing /7 nodes and

3nedges.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Renaud et al. Page 13

Fig. 3.
Visualization of the connection graph of PDB ID: 1IRA using iScore.h5x with the PyMol

molecular viewer. All interface residues are colored differently following a rainbow color
palette to facilitate their identification. The residues that are not part of the interface are
represented as thin gray lines. The connection between interface residues are shown as white
lines.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Renaud et al.

3
©
14
=
T
0.2 1 —— iScore
—— Haddock
0.0 A 1
0 200 400 600
3
©
(4
=
T
0.2 - —— iScore
—— Haddock
0.0 -
0 250 500 750 1000
Number of decoys
Fig. 4.

Hit Rate

Hit Rate

Page 14

—— iScore
—— Haddock

500 1000

—— iScore
—— Haddock

0

500 1000 1500

Number of decoys

Comparison of the hit rates obtained by iScore and HADDOCK for four CAPRI targets.

SoftwareX. Author manuscript; available in PMC 2022 April 12.

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Renaud et al. Page 15

Table 1

Performance of iScore and HADDOCK scoring functions on four CAPRI test cases. The number in bracket
represents the number of near-native conformations for each case. The number in each column represents the
number of near-native conformations in the top 10, top 50 and top 100 conformations predicted by the two
methods.

iScore HADDOCK

Top10 Top50 Top1l00 Topl1l0 Top50 Top 100

T32(15) 6 9 10 0 0 0
T41(371) 8 48 97 1 24 46
T47(611) 10 50 99 10 50 100
T50(133) 0 4 10 1 9 14

SoftwareX. Author manuscript; available in PMC 2022 April 12.

	Abstract
	Table T2
	Motivation and significance
	Software description
	Software architecture
	Generation of the PSSM files
	Generation of interface bipartite graphs
	Random walk graph kernels
	Training the SVM model
	Scoring new PPIs

	Software functionalities
	Automation of the computational workflows
	Calculation of the RWKG on GPUs
	Visualization

	Code snippets

	Illustrative examples
	Impact
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1

