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Abstract

Computational docking is a promising tool to model three-dimensional (3D) structures of protein–

protein complexes, which provides fundamental insights of protein functions in the cellular life. 

Singling out near-native models from the huge pool of generated docking models (referred to 

as the scoring problem) remains as a major challenge in computational docking. We recently 

published iScore, a novel graph kernel based scoring function. iScore ranks docking models based 

on their interface graph similarities to the training interface graph set. iScore uses a support vector 

machine approach with random-walk graph kernels to classify and rank protein–protein interfaces. 

Here, we present the software for iScore. The software provides executable scripts that fully 

automate the computational workflow. In addition, the creation and analysis of the interface graph 

can be distributed across different processes using Message Passing interface (MPI) and can be 

offloaded to GPUs thanks to dedicated CUDA kernels.
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Code metadata

Current code version 0.2.0

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/
SOFTX_2019_302

Legal Code License Apache-2.0

Code versioning system used git

Software code languages, tools, and services used python, MPI, CUDA.

Compilation requirements, operating environments & 
dependencies

numpy, libSVM, pdb2sql, h5x, pytest, biopython, 
mpi4py, numpy, scipy, h5py, matplotlib

If available Link to developer documentation/manual https://iscoredoc.readthedocs.io/

Support email for questions n.renaud@esciencecenter.nl

1. Motivation and significance

Interactions between proteins that lead to the formation of a three-dimensional (3D) 

complex is a crucial mechanism that underlies major biological activities ranging from 

immune defense system to enzyme catalysis. The 3D structure of such complexes provides 

fundamental insights on the protein recognition mechanism and protein functions [1,2]. 

To complement the labor-intensive experimental characterization of protein complexes 

computational docking approaches have been developed to predict their 3D structures 

[3,4]. The prediction of these structures using docking usually consists of two steps: First, 

the sampling step that consists of systematically (or randomly) rotating and translating 

individual protein components to generate typically tens of thousands of candidate 

interaction models; second, the scoring step that evaluates each of the models and selects the 

ones that are most likely to occur in nature.

The scoring problem has been a highly challenging task for decades. Many methods have 

been developed and can be largely grouped into five types: (1) Shape complementarity 

based methods, favoring models that maximize the surface matching with minimal shape 

penetration [5,6], (2) physical energy-based methods, which sum up all the pairwise 

interaction energies between interface atom/residue pairs and are widely used in most 

modern docking software [7-10], (3) statistical potential-based methods, which coverts the 

interaction frequency of interface atom/residue contact pairs observed in the experimentally 

solved protein complexes to potentials using the Boltzmann distribution [11,12], (4) machine 

learning based methods, which typically treat the scoring problem as a binary classification 

problem, predicting a docked model as near-native or not [13-15], and (5) co-evolution 

based methods, which score models based on the co-occurrence frequencies of residue 

pairs in sequence alignments [16]. Different scoring approaches are regularly benchmarked 

against each other during a community-wide challenge, the Critical Assessment of 

Prediction of Interactions (CAPRI) [17].

Recently, we introduced a novel graph kernel based machinelearning approach, called iScore 

[18]. iScore represents the interface of a protein complex as an interface graph, with 

the nodes being the interface residues and the edges connecting the residues in contact. 
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By comparing the graph similarity between the query graph and the training graphs, 

iScore predicts the likelihood how close the query graph is to a near-native model. We 

have demonstrated in our previous publication [18] that iScore competes with, or even 

outperforms various state-of-the-art approaches on two independent test sets: the new entries 

of Docking Benchmark 5.0 set [19] and the CAPRI score set [20]. Using only a small 

number of features, i.e. 1 evolutionary feature and 3 physics energy terms, iScore performs 

well compared with IRaPPA [15], the latest machine learning based scoring function, which 

exploits 91 features. This demonstrates the advantage of representing protein interfaces as 

graphs as compared to fixed-length feature vectors which discard information about the 

interaction topology.

We present here the software for iScore. As explained in the following, the software is easy 

to use thanks to dedicated executable scripts that completely automate the computational 

workflow. Furthermore, the software leverages distributed and heterogeneous computing 

technologies to accelerate the generation of the required data and its analysis.

2. Software description

The underlying method is described in details in [18] and only a summary is provided here 

to highlight the different components of the software. As described in [18], the interface of 

each protein–protein model is represented as a bipartite graph. Each node is labeled with a 

20 × 1 feature vector from the position-specific scoring matrix (PSSM) of the corresponding 

residue. PSSMs [21] are widely used in bioinformatics and encode the log-likelihood ratio 

of the observed frequency of each amino acid type at a specific sequence location against a 

background frequency. They therefore represent the degrees of conservation for the protein’s 

residues at their specific location in the sequence. The similarity between two graphs is 

evaluated via a random walk graph kernel (RWGK) approach [22]. The graph-pair similarity 

matrix is used as input of a support vector machine (SVM) to classify the interface graphs 

as near-native or non-near native. The decision value of the SVM classification is then 

combined with energetic terms to score each protein–protein interface (PPI). As for any 

supervised learning approach, the SVM model is first trained on a well defined dataset 

before being used to classify new conformations.

The software presented here provides a fully automated end-to-end training and testing 

platform for the ranking of PPIs following the iScore method. The software is organized as a 

Python module containing dedicated classes in charge of specific steps in the computational 

workflow. This workflow is fully automated through executable scripts that orchestrates the 

entire computation from processing PDB files of the docked models to obtaining the final 

score of each PPI.

2.1. Software architecture

The general architecture of iScore for training a model and scoring new conformations is 

represented in Fig. 1. The software only requires PDB files of the docking models contained 

in the dataset used for training or scoring. All other intermediary files are automatically 

generated and processed by the software. We provide details in the following different steps 

of the computational workflow and describe each module.
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2.1.1. Generation of the PSSM files—PSSM files of docked conformations are 

generated by the pssm_gen() class using PDB files for input. The calculation of the PSSM 

relies on PSI-BLAST [23] using BLAST version 2.7.1+. The default parameters of the 

BLAST (for example, substitution matrix, gap costs, etc.) were set in agreement with the 

recommended values provided in the BLAST user guide [24]. Other parameters are provided 

in [18]. The pssm_gen() class also formats the PSSM files for further processing. The class 

outputs resulting PSSM files for each chain in the PDB files into a separate folder for further 

processing.

2.1.2. Generation of interface bipartite graphs—The graph generation is handled 

by the iscore_graph() function and relies heavily on our pdb2sql tool that allows 

manipulating PDB files using SQL queries [25]. The contact residues are identified by 

the interface module of pdb2sql using a default contact distance of 6.0 Å. The PSSM 

files generated in the previous step are then read and checked against the sequence of the 

protein. The PSSMs are subsequently mapped onto the interface graph. The resulting graph 

is then serialized using the pickle library in order to exploit the object hierarchy in the next 

computational steps. The class also provides options to export multiple graphs in a single 

HDF5 file for further visual inspection (see Fig. 3).

2.1.3. Random walk graph kernels—The function iscore_kernel() is responsible for 

the computation of pairwise random-walk graph kernels . For each pair of PPIs contained in 

the dataset, the corresponding graph files are first “unpickled” and loaded in memory. The 

different elements necessary to the computation of the RWGK are computed and assembled 

in the final kernel value (see [18] for details on the calculation). All kernel values are then 

stored in a dedicated pickle file.

2.1.4. Training the SVM model—The function iscore_svm() can then be used to train 

an SVM model from the previously computed RWGK. To this end, users must also provide 

the ground truth, i.e. the binary class 0/1 of each conformation contained in the training 

dataset. In iScore, we choose the binary labels 1 and 0 to describe near-native and non 

near-native conformations respectively. The function relies on the libSVM library [26] to 

train the SVM model. To facilitate the further exploitation of the trained SVM model, the 

SVM model are efficiently packed into a dedicated archive together with the graphs of all 

the conformations of the training set. This self contained archive contains all the information 

required to score new PPIs.

2.1.5. Scoring new PPIs—The workflow for ranking new PPIs is very similar to 

the one used to train the SVM model. Users only need to provide PDB files of new 

conformations and compute the corresponding PSSMs and interface graphs. However, the 

RWGK are now computed between the new conformations and the ones contained in the 

training set. This can easily be done using the training archive that contains all the relevant 

information. The resulting kernels are then used as input for the SVM model, and the SVM 

decision value is used as one component of the final scoring function. The other component 

of the scoring function is provided from energy terms that are directly computed from the 
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PDB files of the new conformations. The weight of each term in the final scoring function 

has been optimized using genetic algorithm as explained in [18].

2.2. Software functionalities

Beyond the individual modules described above, the software provides crucial functions that 

facilitate and accelerate the process of ranking PPIs.

2.2.1. Automation of the computational workflows—The software provides 

executable scripts that fully automate the workflows illustrated in Fig. 1. These scripts 

seamlessly orchestrate all the computational steps at the exception of the calculation of the 

PSSMs. This calculation can be rather demanding and therefore must be performed as a 

pre-processing step using the functions provided by the software.

The training of an SVM model from the PDB leads to the creation of a training archive 

and is fully controlled by the iScore.train.mpi executable script. This script reads the 

PDB and PSSM files, generates the interface graphs, computes all the pairwise RWGKs, 

trains the SVM model, and finally assembles the training archive. Similarly, the ranking of 

new conformations using a trained model can simply be achieved via a single command: 

iScore.predict.mpi. This script reads the PDB and PSSM files, generates all the interface 

graphs, computes the RWGK between the new conformations and the conformations 

included in the training set, and finally scores the new conformations.

To handle the potentially large computational cost associated with the calculation of the 

interface graphs and their pairwise RWGKs, these executable scripts support the distribution 

of the computational load across different MPI processes using mpi4py [27]. For the 

calculation of the graphs, the different conformations are distributed among the different 

MPI processes, and for the RWGK calculations all the pairwise combinations are distributed 

among the MPI processes. Simple performance benchmarks are reported in Fig. 2a showing 

good performance of the MPI distribution. However, note that training the SVM model and 

scoring new PPIs are done using a single process.

2.2.2. Calculation of the RWKG on GPUs—To accelerate the calculations of the 

graph kernels, we have developed simple GPGPU kernels using pyCUDA [28]. The 

utilization of these GPGPU routines can easily be turned ON or OFF through one optional 

keyword argument of the iscore_kernel() function. Fig. 2b shows the runtime of the CPU 

and GPU routines computing the RWGKs. As seen on this figure, a sizable improvement of 

performance can be obtained for large graphs. The software also provides solutions to tune 

the GPU kernels through the kernel tuner library [29]. This allows to automatically find the 

optimal configuration of the kernel in terms of blocs size, threads size, etc.

While the GPU routines might be interesting to process very large proteins or for other 

applications, we have exclusively used the CPU routines in our evaluation of the iScore 

software tool because our protein interface graphs contain fewer than a hundred nodes.

2.2.3. Visualization—As mentioned in Section 2.1.2, the interface graphs computed by 

iScore can be stored in a HDF5 file for further analysis. The resulting HDF5 file contains an 
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entry for each graph where all the relevant data are stored. To facilitate the inspection and 

exploration of these interface graphs, we have developed a simple graphical interface based 

on the customizable HDF5 browser h5X [30]. This interface is accessible via the executable 

iScore.h5x. This interface allows to quickly generate all the data for visualization of a given 

graph connection using PyMol [31]. An example of representation is shown in Fig. 3. This 

figure shows a single PPI. All the contact residues are highlighted by a stick representation 

and bright color whereas the rest of the protein structure is represented by thin gray lines. 

Edges linking the contact residues represent the contact between the two chains and the label 

of each contact residue is displayed for clarity.

2.3. Code snippets

Beyond the executable scripts mentioned above, iScore can also be used as a Python module 

and could therefore be integrated in other applications. We illustrate here the use of iScore 

through a small code snippet.

 1 from iScore.graphrank.graph import GenGraph

 2 from iScore.graphrank.kernel import Kernel

 3

 4 # generate the first graph

 5 pdb = ’1ATN.pdb’

 6 pssm = {’A’: ’1ATN.A.pdb.pssm’,

 7         ’B’:’1ATN.B.pdb.pssm ’}

 8 gen = GenGraph(pdb,pssm)

 9 G1 = gen.get_graph()

10

11 # generate the second graph

12 pdb = ’1IRA.pdb’

13 pssm = {’A’:’1IRA.A.pdb.pssm’,

14         ’B’:’1IRA.B.pdb.pssm’}

15 gen = GenGraph(pdb,pssm)

16 G2 = gen.get_graph()

17

18 # compute the kernel

19 K = Kernel ()

20 K.compute_kron_mat(G1,G2)

21 K.compute_px (G1,G2)

22 K.compute_W0(G1,G2)

23 ker = K.compute_K(lamb=1.0, walk=4)

As we can see on this snippet, iScore provides the solution to generate graphs of given 

structures using PSSM as a node attribute and to compute the random walk graph kernel 

between the graphs. The graph generation is done via the GenGraph() class that only takes 

PDB and PSSM files as input. The random walk graph kernel of the two graphs can then be 

computed using the Kernel() class and its methods.
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3. Illustrative examples

We present here the results on test cases extracted from previous CAPRI competitions. In 

order to score the conformations contained in the test cases, a representative training set 

containing 234 distinct PPIs was first assembled. Half of these conformations correspond 

to real experimental structures of complexes chosen from the Docking Benchmark 4 

(DB4) [32]. The second half correspond to non-native docking models generated using the 

HADDOCK docking software from entries of the DB4. Their i-RMSD values are larger than 

10 Å. The resulting dataset is publicly available [33].

The trained model was used to score and rank conformations from previous CAPRI targets, 

namely targets T32, T41, T47 and T50. Fig. 4 shows the corresponding hit rate plot obtained 

with iScore and the HADDOCK scoring function. Hit rate plots are commonly used to 

compare different scoring functions. The hit rate at N represents the fraction of near-native 

models contained in the best N models predicted by a scoring function. As seen in Fig. 4 

and Table 1, iScore performs better than HADDOCK on 2 of these cases (T32 and T41) 

and shows similar performance on the remaining two. These results are in line with those 

reported in [18] where iScore performed very well on a large range of test cases.

4. Impact

The software presented in this paper provides ease of use in end-to-end platform for scoring 

and ranking of PPIs. Thanks to the provided executable scripts, users can easily generate 

the graphs, compute their pairwise kernels and use them to train a SVM model. The self-

contained archive file generated during the training contains all the necessary information to 

rank new docking conformations. This enables to simplify data handling and facilitates the 

exchange of trained model between different users. The dedicated scripts briefly described 

in Section 2.2.1 fully automatize the computational workflows supporting the training and 

testing of a SVM a model. This workflow not only makes the use of the code easier, 

therefore facilitating its adoption by the community, but also ensures greater reproducibility 

of the analysis. The modular architecture of the software facilitates its maintenance and 

further development.

The distribution of the computational load using MPI significantly reduces the time for 

training and using SVM models: Training our SVM model used in Section 3 takes under 50 

s using 16 cores while scoring the 600 conformations contained in the T32 CAPRI test case 

takes less than 2 min.

The software presented in this paper has already been used in a recently published paper 

that describes the underlying methodology and used it on a large range of test cases. In 

agreement with Fig. 4, the results presented in [18] are competitive compared to widely used 

scoring functions such as HADDOCK. The software also recently has been used during the 

CAPRI competition.

While the software has been developed specifically for ranking PPIs, the method is generic 

and may be generalized for a broad range of applications that involve ranking of graphs. 
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Such a generalization would require users to specify the nodes and edges features as well as 

the graph kernels.

5. Conclusions

We have presented a new software package, iScore, that provides an end-to-end solution 

for ranking protein-protein interfaces. The method is based on a support vector machine 

classifier using random-walk graph kernels. The software is built as a Python package that 

can be used either interactively or through the use of dedicated executable scripts that fully 

automatize the computational workflow. The calculations can be distributed across multiple 

MPI processes and GPGPU kernels have been developed to accelerate the calculation 

of graph kernels. The software provides a user friendly solution for ranking PPIs more 

efficiently and accurately.
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Fig. 1. 
Computational workflow of iScore during the training of a SVM model and during the 

utilization of pre-trained model to rank new PPIs.
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Fig. 2. 
(a) Scaling of iScore.train.mpi and iScore.predict.mpi with respect to the number of MPI 

processes. The training and testing set contained 234 and 599 conformations respectively. 

(b) Average run time on CPU (Intel Xeon E5-2650 v4 @ 2.20 GHz) and GPU (Nvidia 

GeForce GTX 1080 Ti) for the calculation of RWGK for two graphs containing n nodes and 

3n edges.
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Fig. 3. 
Visualization of the connection graph of PDB ID: 1IRA using iScore.h5x with the PyMol 

molecular viewer. All interface residues are colored differently following a rainbow color 

palette to facilitate their identification. The residues that are not part of the interface are 

represented as thin gray lines. The connection between interface residues are shown as white 

lines.
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Fig. 4. 
Comparison of the hit rates obtained by iScore and HADDOCK for four CAPRI targets.
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Table 1

Performance of iScore and HADDOCK scoring functions on four CAPRI test cases. The number in bracket 

represents the number of near-native conformations for each case. The number in each column represents the 

number of near-native conformations in the top 10, top 50 and top 100 conformations predicted by the two 

methods.

iScore HADDOCK

Top 10 Top 50 Top 100 Top 10 Top 50 Top 100

T32 (15) 6 9 10 0 0 0

T41 (371) 8 48 97 1 24 46

T47 (611) 10 50 99 10 50 100

T50 (133) 0 4 10 1 9 14
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