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Abstract

Diffusion tensor imaging (DTI) based fiber tractography (FT) is the most popular approach for investigating white matter
tracts in vivo, despite its inability to reconstruct fiber pathways in regions with ‘‘crossing fibers.’’ Recently, constrained
spherical deconvolution (CSD) has been developed to mitigate the adverse effects of ‘‘crossing fibers’’ on DTI based FT.
Notwithstanding the methodological benefit, the clinical relevance of CSD based FT for the assessment of white matter
abnormalities remains unclear. In this work, we evaluated the applicability of a hybrid framework, in which CSD based FT is
combined with conventional DTI metrics to assess white matter abnormalities in 25 patients with early Alzheimer’s disease.
Both CSD and DTI based FT were used to reconstruct two white matter tracts: one with regions of ‘‘crossing fibers,’’ i.e., the
superior longitudinal fasciculus (SLF) and one which contains only one fiber orientation, i.e. the midsagittal section of the
corpus callosum (CC). The DTI metrics, fractional anisotropy (FA) and mean diffusivity (MD), obtained from these tracts were
related to memory function. Our results show that in the tract with ‘‘crossing fibers’’ the relation between FA/MD and
memory was stronger with CSD than with DTI based FT. By contrast, in the fiber bundle where one fiber population
predominates, the relation between FA/MD and memory was comparable between both tractography methods.
Importantly, these associations were most pronounced after adjustment for the planar diffusion coefficient, a measure
reflecting the degree of fiber organization complexity. These findings indicate that compared to conventionally applied DTI
based FT, CSD based FT combined with DTI metrics can increase the sensitivity to detect functionally significant white
matter abnormalities in tracts with complex white matter architecture.
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Introduction

Diffusion tensor imaging (DTI) based fiber tractography (FT) is

currently the most widely used method to reconstruct fiber

pathways in the brain, despite its well known limitations in regions

with complex white matter architecture [1–3]. The common

second-rank diffusion tensor model, however, is based on the

assumption of Gaussian diffusion, which may not be valid in white

matter voxels that contain so-called ‘‘crossing fibers’’ [4], i.e.

complex fiber bundle architecture within a single voxel including

two or more crossing, interdigitating or ‘‘kissing’’ fiber popula-

tions, or one fiber population with a bending or splaying

architecture.

In the past decade, several advanced approaches for character-

izing the intra-voxel diffusion profile have been developed to

overcome the limitations of the second-rank diffusion tensor model

[5–11]. One of these techniques, constrained spherical deconvolu-

tion (CSD) [9], is especially promising as it can offer a reliable

reconstruction of multiple fiber orientation distributions within

clinically feasible MR acquisition settings [8]. Notwithstanding the

promising outlook, the CSD model has not yet been applied

quantitatively to clinical populations due to the lack of robust

diffusion metrics that can describe the underlying microstructure

unambiguously.

We hypothesize that if CSD based FT is more accurate in

reconstructing fiber bundle trajectories in regions with ‘‘crossing

fibers’’, it should be more sensitive to microstructural abnormal-

ities underlying cognitive dysfunction than DTI based FT in these

tracts. In tracts without ‘‘crossing fiber’’ regions, both methods

should perform equally. To test this hypothesis we used a hybrid

framework, in which CSD based FT is combined with conven-

tional DTI metrics to assess white matter abnormalities in patients

with early Alzheimer’s disease (AD). This allowed us to examine

the microstructural properties of specific white matter pathways in

relation to memory performance, while overcoming the well-

known limitations of DTI based FT in regions with ‘‘crossing
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fibers’’. We evaluated this CSD-DTI framework for two white

matter tracts: one specifically selected because it contains many

regions of ‘‘crossing fibers’’, i.e. the superior longitudinal fasciculus

(SLF) and one with only one fiber orientation, i.e. the midsagittal

section of the corpus callosum (CC). Diffusion measures in these

tracts have been previously shown to be altered in patients with

AD compared to controls using tract based analyses [12] and to

the AD-associated impairments in memory function [13].

In this paper, we examined whether CSD based FT combined

with DTI metrics can increase the sensitivity to detect functionally

significant white matter abnormalities in tracts with complex white

matter architecture compared to conventionally applied DTI

based FT.

Methods

1. Ethic Statement
The medical ethics committee for research in humans of the

University Medical Center Utrecht, the Netherlands has approved

this research. Informed written consent was obtained from all

participants. All clinical investigation has been conducted accord-

ing to the principles expressed in the Declaration of Helsinki.

Exclusion criteria were a history of stroke in the last 2 years, a

history of stroke with subsequent cognitive deterioration, schizo-

phrenia or other psychotic disorders, major depression, alcohol

abuse, brain tumor, epilepsy or encephalitis. Incapacitated patients

with a severe stage of AD, indicated by a clinical dementia rating

score .1 [14] or a MMSE score ,20 [15] were also excluded.

The clinical dementia rating score was determined by the patients’

doctor and the diagnosis (Alzheimer/a-MCI) was established at a

multidisciplinary meeting.

2. Participants
Twenty five patients (mean age 80.065.0 years, 48% male), 19

with early stage AD and 6 with amnestic mild cognitive

impairment (a-MCI) were recruited via a memory clinic at the

University Medical Center Utrecht. Probable or possible AD was

diagnosed according to the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer Disease

and Related Disorders Association (NINCDS-ADRDA) criteria

[16]. A-MCI was diagnosed according to the Petersen criteria

[17]. Exclusion criteria were a history of stroke in the last 2 years, a

history of stroke with subsequent cognitive deterioration, schizo-

phrenia or other psychotic disorders, major depression, alcohol

abuse, brain tumor, epilepsy or encephalitis. Incapacitated patients

with a severe stage of AD, indicated by a clinical dementia rating

score .1 [14] or a MMSE score ,20 [15], were also excluded.

3. Data acquisition
MRI data were collected using a Philips 3.0 Tesla scanner

(Intera, Philips, Best, the Netherlands). Diffusion MRI data were

obtained using a single-shot spin echo EPI sequence with the

following parameters: field of view = 22062206120 mm3, 2.5 mm

slice thickness (without gap), 48 slices, repetition time 6638 ms,

echo time 73 ms, flip angle 90 degree, acquisition matrix 88688

(in plane resolution of 2.5 mm) and reconstructed at 1286128, 45

isotropically distributed diffusion-sensitizing gradients with a b-

value of 1200 s/mm2, and one b = 0 s/mm2 image [18]. The

acquisition time was 5.32 min. Signal-to-noise ratio (SNR) within

all WM voxels (FA.0.2) of the b = 0 s/mm2 image was on average

33.5 with a standard deviation of 11.7 [19].

4. Image processing
The DTI data sets were corrected for eddy current induced

geometric distortions and subject motion by realigning the

diffusion-weighted images (DWIs) to the b = 0 s/mm2 image with

Elastix [20]. In this procedure, the diffusion gradients were

adjusted with the proper b-matrix rotation as described by

Leemans and Jones [21]. The diffusion tensor model was fitted

using the RESTORE approach [22]. The DTI scans were

transformed rigidly to MNI space in the motion–distortion

correction procedure by using a single interpolation step

(concatenation of transformation matrices) to maximize the

uniformity of brain angulation across subjects [23].

5. Tractography
Standard deterministic streamline DTI [24] and standard CSD

[25] based tractography were performed with the ExploreDTI

software package (www.exploredti.com). We reconstructed the

SLF and the CC using both FT methods with a uniform seed point

resolution of 2 mm3 and a maximum deflection angle of 30

degrees. For the DTI based FT an FA threshold of 0.2 was

applied. Analogously, the applied termination threshold for CSD

based FT was a fiber orientation distribution (FOD) value of 0.1

(the harmonic degree of the estimated FOD coefficients was

limited to 6) [8]. For this study we selected fiber tracts that were

previously shown to be affected in MCI and AD [12,13,26] and

either have a complex fiber architecture with crossing fibers or a

single fiber population without crossing fibers. The SLF contains a

relatively large number of voxels with multiple fiber orientations

due to the crossing of the corona radiata and/or laterally

projecting fibers of the CC and is therefore particularly susceptible

to tracking errors caused by the second-rank diffusion tensor

model [25]. By contrast, the midsagittal section of the CC contains

mainly voxels with one fiber population and is expected to be less

vulnerable to tracking errors.

The SLF, including SLF II, III and the arcuate fasciculus [27],

was reconstructed from the left hemisphere (all participants were

right handed) based on a standardized atlas of white matter tracts

[28]. For reconstruction of the SLF, a multiple region of interest

(ROI) selection approach was used. In total, three ‘‘AND’’ ROIs

were placed, two on a coronal and one on a sagittal slice (see

Figure 1). In this ROI protocol, previously defined anatomical

landmarks for slice selection and ROI placement were used to

reduce subjectivity in fiber tracking [28]. High intra- and inter-

rater reliability of manually segmenting fiber bundles has been

demonstrated in previous studies (e.g. [29–31]).

The CC was reconstructed as described previously [32]. In

summary, only the midsagittal segment of the CC was selected to

exclude regions of ‘‘crossing fibers’’ from the more laterally

projecting pathways of the CC that intersect the corticospinal fiber

trajectories (Figure 2). Note that as all data were analyzed in MNI

space, the midsagittal slice could be determined reliably in all

subjects.

Diffusion parameters: fractional anisotropy (FA), mean diffusiv-

ity (MD), radial diffusivity (DR), axial diffusivity (DA), and the

normalized planar diffusion coefficient (l22l3/l1) [33] were

obtained for each tract. The planar diffusion coefficient was used

to quantify the degree of fiber complexity in regions with ‘‘crossing

fibers’’ [33,34]. The planar diffusion coefficient ranges from zero

to one and is relatively high in voxels where the tensor has a disc-

like shape (i.e. the first and second eigenvalue are almost equal and

larger than the third eigenvalue). This is typically the case when

two fiber populations ‘‘cross’’ or ‘‘kiss’’ [34–37] (Figures 3, 4, and

5). It is important to note, that although the planar diffusion

coefficient and FA or MD are both an index of the tensor shape,

CSD Tractography in Alzheimer’s Disease
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they are not directly related: the FA can be similar in voxels with

linear or planar diffusion [38]. By contrast, the planar diffusion

coefficient provides a geometric description of the tensor and

hence is more specific to the fiber configuration [34].

6. Cognitive testing
All patients underwent a standardized cognitive assessment

including a test assessing verbal memory: the Raven’s Auditory

Verbal Learning Task (RAVLT) [39]. Because deficits in learning

and memory are the main cognitive symptoms of (early) AD, we

Figure 1. Selection of the superior longitudinal fasciculus (SLF). The SLF was selected using a multiple region of interest (ROI) approach. Two
‘‘AND’’ ROIs (shown in yellow) were placed on a coronal slice and one on a sagittal slice. Reconstruction was based on a standardized atlas of white
matter tracts [28].
doi:10.1371/journal.pone.0044074.g001

Figure 2. Selection of the medial segment of the corpus callosum (CC). The CC was selected using a multiple region of interest (ROI)
approach. The median ROI was placed on the midsaggital plane in MNI space, and the two segment-selecting ROIs were drawn two voxels (4 mm) to
either side of the midsagittal plane.
doi:10.1371/journal.pone.0044074.g002

CSD Tractography in Alzheimer’s Disease
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selected memory performance as the primary functional measure

of disease severity. Immediate and delayed recall scores of the

RAVLT were transformed into z-scores and averaged to obtain

one composite memory score.

7. Statistical analyses
Differences in configurational tract characteristics (volume,

length) after DTI and CSD based FT were analyzed with paired-

samples T-test. The composite memory score and diffusion

measures were all normally distributed. The relation between

mean DTI metrics (FA, MD, DA and DR) and memory

performance was evaluated using linear regression analysis

adjusted for age, sex, and level of education. Differences in the

relation between DTI metrics and memory obtained with DTI-

versus CSD-based FT was calculated using Steiger’s Z-statistic for

dependent correlations [40].

Because crossing fibers affect the tensor estimation [35,41,42],

the relation between DTI metrics and cognition cannot be reliably

Figure 3. Fiber orientation distribution profiles estimated with the CSD method. a) two crossing fiber populations in voxels in the superior
longitudinal fasciculus. b) one fiber population in the corpus callosum.
doi:10.1371/journal.pone.0044074.g003

Figure 4. Crossing fiber regions in the superior longitudinal fasciculus (SLF). Sub-regions of the SLF marked on a directionally encoded
color map (top row) and planar diffusion coefficient encoded (Cp) map (bottom row). The planar diffusion coefficient ranges from zero to one and is
relatively high in voxels were the tensor has a disc-like shape, which is typically the case when two fiber populations ‘‘cross’’. The white line marks a
sub- region of the SLF containing voxels with relatively few ‘‘crossing fibers’’, which is reflected by a Cp close to zero. By contrast, the more anterior
sub-region of the SLF, marked in yellow, contains relatively many voxels with ‘‘crossing fibers’’, due to crossing with the cortico-spinal tract and/or
laterally projecting fibers of the corpus callosum. This is reflected by a Cp closer to one.
doi:10.1371/journal.pone.0044074.g004

CSD Tractography in Alzheimer’s Disease
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assessed in regions with ‘‘crossing fibers’’. We therefore adjusted

for the degree of ‘‘crossing fibers’’ in a second model, by including

the planar diffusion coefficient of the diffusion tensor model [33],

reflecting the degree of fiber complexity, as a covariate. As such,

we limited the adverse effect of ‘‘crossing fibers’’ on the relation

between DTI metrics (i.e. FA, MD, DR, DA) and cognition. This

modulating effect is expected to be most pronounced in

combination with CSD based FT in tracts with crossing fibers,

since more voxels with ‘‘crossing fibers’’ will be included using this

method.

To examine the possibility that the relation between diffusion

measures and memory performance is affected by tract volume

[43], we ran a separate model with age, sex, education level and

estimated tract volume as covariates.

Results

1. CSD vs. DTI Based FT
Figure 6 shows the SLF of four representative patients

reconstructed with DTI and CSD based FT. In all patients, the

tract volume of the SLF was larger with CSD than DTI based FT

(mean tract volume 6 SD (cm3) CSD: 19.8865.25; DTI:

10.1062.78; p,0.001). In 75% of the patients the tract length

was longer with CSD compared to DTI based FT (mean tract

length 6 SD (mm) CSD: 109.2610.9; DTI: 98.3613.6;

p,0.001). The approximate tract volume of the CC segment

was also larger for all patients with CSD compared to DTI based

FT (mean tract volume 6 SD (cm3) CSD: 9.5960.98; DTI:

7.0360.94; p,0.001).

2. Association between DTI Metrics of the SLF and
Memory Performance with CSD and DTI Based FT

For the SLF, lower FA values of the SLF were associated with

worse memory performance for both FT methods, but this

association was only statistically significant for CSD based FT

(standardized regression coefficient (95% CI) DTI: 0.39 (0.01;

0.78); p = 0.054, CSD: 0.41 (0.02; 0.81); p = 0.042) (Table 1,

model 1). MD was not significantly associated with cognitive

performance. Additional adjustment for the planar diffusion

coefficient, reflecting the degree of fiber organization complexity,

did not change the results for the DTI based method (Table 1,

model 2). By contrast, the relation between the FA of the SLF and

memory performance in combination with CSD based FT became

stronger after adjustment for the planar diffusion coefficient (0.53

(0.14; 0.92); p = 0.010). The modulating effect was even more

pronounced for the MD: the regression coefficient became three

times as large after adjustment of the planar diffusion coefficient

(20.55 (21.07; 2.02); p = 0.044). Post hoc analyses showed that

memory performance was related with DR but not with DA

measures (DR: 2.55 (2.0; 2.11); p = 0.018, DA: 20.22 (20.92;

0.48); p = 0.511). Adjustment for tract volume did not change

these relations significantly (data not shown). Importantly, the

relation between DTI parameters and memory was significantly

stronger for CSD- compared to DTI based FT, for MD (Z = 4.38;

p,0.0001), DR (Z = 4.18; p,0.0001), and DA (Z = 2.02;

p = 0.02), but not FA (Z = 1.55; p = 0.06) (Tabel I, model 2).

Correlation plots of the adjusted and unadjusted data are

presented in Figure S1 and S2 respectively.

3. Association between DTI Metrics of the CC and
Memory Performance with CSD and DTI Based FT

We also assessed the relation between diffusion parameters and

cognitive performance in a tract without ‘‘crossing fibers’’: the

midsagittal segment of the CC. The FA of the CC was not

significantly associated with memory performance with either

tractography method, whereas a trend was observed for an

association between memory and mean MD (DTI:20.40 (20.80;

0.002); p = 0.051, CSD: 20.37 (20.78; 0.04); p = 0.074) (Table 2,

model 1). After adjustment of the planar diffusion coefficient, the

relation between the FA, MD and memory performance became

stronger. However, the regression coefficients remained compa-

rable between both tractography methods (all p,0.05; Table 2,

model 2). Post hoc analyses showed that memory performance was

related with DR and not with DA measures, with comparable

regression coefficients with DTI and CSD based FT (20.51 and

20.50 respectively). Again, adjustment for tract volume did not

change the results significantly (data not shown).

Discussion

This is the first report on the application of CSD based FT to

detect white matter abnormalities in patients with (early) AD. Our

results indicate that 1) CSD based FT in combination with DTI

metrics significantly increased the sensitivity to detect a relation

between white matter abnormalities and memory performance in

a tract with ‘‘crossing fibers’’ (SLF); and 2) the relation between

Figure 5. Crossing fiber regions reflected by the planar diffusion coefficient. The superior longitudinal fasciculus (SLF) and medial segment
of the corpus callosum (CC) color coded according to the value of the planar diffusion coefficient (Cp) (for interpretation of the color coding see also
fig. 3). The figure shows regions with ‘‘crossing fibers’’ reflected by a Cp close to one (green) and regions with relatively few ‘‘crossing fibers’’ reflected
by a Cp close to zero (red). a) the SLF shows many regions with ‘‘crossing fibers’’ due to crossing with the cortico-spinal tract and/or laterally
projecting fibers of the corpus callosum (CC) in frontal regions, and with the inferior longitudinal fasciculus in temporal regions. b) In the midsagittal
segment of the CC one fiber population predominates.
doi:10.1371/journal.pone.0044074.g005

CSD Tractography in Alzheimer’s Disease
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DTI metrics and memory was comparable between both FT

methods in a tract without ‘‘crossing fibers’’ (midsagittal section of

the CC).

In line with our expectations, fibers of the SLF were more likely

to terminate in regions with ‘‘crossing fibers’’ with DTI-based FT.

By contrast, with CSD based FT the SLF continued beyond these

crossings to more temporal and dorsal frontal regions, which is in

line with descriptions from autopsy studies [27,44] and with

previous papers using spherical deconvolution based FT [45]. Our

results extend these findings by showing that improvement of fiber

tract segmentation increases the sensitivity to white matter

abnormalities within the tract.

The adverse effects of ‘‘crossing fibers’’ on the interpretation of

diffusion measures such as MD and FA have been previously

demonstrated (e.g. [35,41,42]), but their impact on the detection of

white matter abnormalities is not known. A number of studies

have found contra-intuitive results in regions with ‘‘crossing

fibers’’, such as the centrum semiovale, demonstrating increased

Figure 6. Segmentation of the superior longitudinal fasciculus (SLF) with DTI and CSD based fiber tractography. Segmentation of the
SLF in four patients reconstructed with DTI (yellow) and CSD (red) based fiber tractography (FT). Delineation of the SLF resulted in larger and longer
pathways with CSD compared to DTI based FT. With the DTI method, fibers of the SLF were more likely to terminate at crossings between the SLF and
the cortico-spinal tract in frontal regions and between the SLF and the inferior longitudinal fasciculus in temporal regions.
doi:10.1371/journal.pone.0044074.g006

Table 1. Association diffusion parameters of the SLF and
memory performance.

DTI based tractography CSD based tractography

Beta (95% CI) p-value Beta (95% CI) p-value

Model 1

FA 0.39 (0.01; 0.78) 0.054 0.41 (0.02; 0.81) 0.042

MD 20.18 (20.62; 0.25) 0.383 20.16 (20.58; 0.27) 0.461

Axial diffusivity 0.01 (20.45; 0.47) 0.967 0.08 (20.39; 0.53) 0.737

Radial diffusivity 20.27 (20.68; 0.15) 0.195 20.26 (20.67; 0.15) 0.205

Model 2

FA 0.36 (20.04; 0.76) 0.074 0.53 (0.14; 0.92) 0.010

MD 20.23 (20.66; 0.20) 0.283 20.55 (21.07; 20.02)a 0.044

Axial diffusivity 20.10 (20.59; 0.40) 0.690 20.22 (20.92; 0.48)a 0.511

Radial diffusivity 20.27 (20.68; 0.14) 0.178 20.55 (21.0; 20.11)a 0.018

Data are presented as standardized regression coefficients with 95% CI.
Model 1: adjusted for age, sex, level of education.
Model 2: Model 1+ adjustment for the planar diffusion coefficient, reflecting the
degree of fiber organization complexity.
aRegression coefficient is significantly larger for CSD compared to DTI based
tractography, assessed with Steiger’s Z-statistic.
doi:10.1371/journal.pone.0044074.t001

Tabel 2. Association diffusion parameters of the CC and
memory performance.

DTI based tractography CSD based tractography

Beta (95% CI) p-value Beta (95% CI) p-value

Model 1

FA 0.31 (20.10; 0.72) 0.134 0.27 (20.15; 0.68) 0.197

MD 20.39 (20.80; 0.002) 0.051 20.37 (20.78; 0.04) 0.074

Axial diffusivity 20.34 (20.75; 0.08) 0.104 20.35 (20.76; 0.07) 0.097

Radial diffusivity 20.38 (20.79; 0.02) 0.061 20.34 (20.76; 0.07) 0.099

Model 2

FA 0.54 (0.06; 1.02) 0.031 0.50 (0.01; 1.00) 0.045

MD 20.45 (20.86; 20.04) 0.035 20.45 (20.88; 20.02) 0.040

Axial diffusivity 20.33 (20.76; 0.10) 0.122 20.34 (20.77; 0.08) 0.109

Radial diffusivity 20.51 (20.94; 20.08) 0.022 20.50 (20.96; 20.05) 0.031

Data are presented as standardized regression coefficients with 95% CI.
Model 1: adjusted for age, sex, level of education.
Model 2: Model 1+adjustment for the planar diffusion coefficient, reflecting the
degree of fiber organization complexity.
Regression coefficients obtained with DTI and CSD based FT did not differ
significantly, assessed with Steiger’s Z-statistic.
doi:10.1371/journal.pone.0044074.t002
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FA values in patients compared to controls [46,47] and a negative

correlation between FA and cognitive function [48,49]. These

unexpected findings may result from degeneration of one pathway,

with relatively sparing of the crossing pathway. For example in

AD, late-myelinating white matter tracts such as the SLF have

been shown to degenerate at an earlier stage than tracts that

myelinate early in life [50,51]. This is supported by results from a

recent study showing an increased mode of anisotropy in patients

with MCI compared to controls only in areas where the SLF

intersects the projection pathways [46].

Voxels with ‘‘crossing fibers’’ are more likely to be included with

CSD based FT. We therefore used the planar diffusion coefficient

as a covariate to overcome the confounding effects of these

‘‘crossing fibers’’ on the diffusion metrics in relation to cognition. If

two fiber populations within a voxel ‘‘cross’’ or ‘‘kiss’’, the shape of

the diffusion tensor becomes more planar (disc-like). As a result, a

voxel with intact crossing fibers can have a similar FA value

compared to a voxel with a degenerating non-crossing fiber

population. However, the planar diffusion coefficient between

these voxels will be different [38]. Our results showed that co-

varying for the planar diffusion coefficient effectively increased the

strength of the relation between DTI metrics in the SLF and

memory performance. As expected, this modulation was most

pronounced in combination with CSD based FT. Adjusting for the

planar diffusion coefficient also increased the association between

DTI metrics and memory in the CC, despite the lack of any

interdigitating fiber pathways. Possibly, this finding can be

explained by the presence of residual partial volume effects

between the dorsal part of the CC and the adjacent cingulum

bundles. Partial volume effects also affect the tensor estimation and

the measures derived from it [34,35] and may therefore confound

the relation between DTI metrics and cognition in the same way.

The effects of DTI metrics on cognitive performance were more

prominent for DR than for DA, suggesting that the observed

association is more likely driven by myelodegeneration than by a

loss of axonal integrity [52]. However, it should be noted that

many more cellular characteristics, such as hydration, cell packing

density and fiber diameter could cause the observed changes in

diffusion measures [53–55] and that the interpretation of these

diffusivity measures can be far from trivial [41].

Our study has a number of limitations. One is the modest

sample size, which may have decreased our sensitivity to detect a

relation between structure and function. Still, we were able to

replicate previously observed associations between diffusion

measures and AD severity [56,57]. Second, FT based segmenta-

tion is laborious and time consuming. However, the advantage

over automated voxel based or atlas based analyses is that it is less

sensitive to individual anatomical differences, imperfect registra-

tion, and smoothing errors [58–60]. Moreover, averaging of the

diffusion metrics along a fiber bundle reduces the variance in

diffusion measures and thereby increases the power to detect more

subtle WM changes. On the other hand, very localized changes

along a fiber bundle, for instance, only in the structure’s anterior

part, may not be picked up when the anterior and posterior parts

are combined. To limit the number of comparisons we focused in

the present study on two major tracts, but future studies should

demonstrate whether these findings extend to other fiber pathways

containing complex and simple white matter architecture known

to be affected in AD [61] or other neurological diseases.

Finally, the use of the planar diffusion coefficient as a

quantitative measure to characterize ‘‘crossing fibers’’ may be

valid in cases were two fiber bundles intersect or overlap, but may

not be directly applicable in regions where three or more fiber

bundles intersect. Although previous work reported that no more

than two fiber populations could be observed in the SLF [62],

there is still no consensus on the prevalence of multiple fiber

populations [4]. In this context, future studies are needed to

investigate this issue in detail and more specific measures for

‘‘crossing fibers’’ need to be developed to improve the sensitivity

for detecting white matter abnormalities in clinical populations

and to make the interpretation of structure-function relationships

less ambiguous.

Conclusion
Since DTI based FT fails in regions with ‘‘crossing fibers’’, more

accurate methods to characterize the microstructural properties of

fiber pathways are in need. Here we showed that CSD based FT

combined with standard DTI metrics increases the sensitivity to

detect functionally significant white matter abnormalities in a tract

with ‘‘crossing fibers’’ in patients with early AD compared to DTI

based FT. The use of a hybrid CSD-DTI framework is therefore a

promising tool to detect functionally significant white matter

changes in regions with complex white matter architecture.

Supporting Information

Figure S1 Adjusted correlations between diffusion pa-
rameters of the SLF and memory performance. Top row:

the relation between FA/MD and memory with DTI based fiber

tractography. Bottom row: the relation between FA/MD and

memory with CSD based fiber tractography. FA/MD and

memory are expressed as standardized residuals after adjusting

for age, sex, level of education, and the planar diffusion coefficient

(Table 1, model 2).

(TIF)

Figure S2 Unadjusted correlations between diffusion
parameters and memory performance. Top row: the raw

FA values of the SLF (left) and medial segment of the CC (right)

with DTI based fiber tractography. Bottom row: the FA of the SLF

(left) and medial segment of the CC (right) with CSD based fiber

tractography.

(TIF)
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