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Abstract
Background  Environmental exposure to benzene and toluene is a suspected risk factor for metabolic disorders 
among the general adult population. However, the effects of benzene and toluene on blood lipid profiles remain 
unclear. In this study, we investigated the association between urinary blood lipid profiles and metabolites of benzene 
and toluene in Korean adults.

Methods  We analyzed the data of 3,423 adults from the Korean National Environmental Health Survey Cycle 3 
(2015–2017). We used urinary trans,trans-muconic acid (ttMA) as a biomarker of benzene exposure, and urinary 
benzylmercapturic acid (BMA) as an indicator of toluene exposure. Multivariate logistic regression analyses were 
performed to explore the association between blood lipid profiles and urinary metabolites of benzene and toluene. 
Additionally, we examined the linear relationship and urinary metabolites of benzene and toluene between 
lipoprotein ratios using multivariate regression analyses.

Results  After adjusting for covariates, the fourth quartile (Q4) of ttMA [odds ratio (OR) (95% confidence interval, 
CI = 1.599 (1.231, 2.077)] and Q3 of BMA [OR (95% CI) = 1.579 (1.129, 2.208)] were associated with an increased risk of 
hypertriglyceridemia. However, the Q4 of urinary ttMA [OR (95% CI) = 0.654 (0.446, 0.961)] and Q3 of urinary BMA [OR 
(95% CI) = 0.619 (0.430, 0.889)] decreased the risk of a high level of low-density lipoprotein cholesterol (LDL-C). Higher 
urinary ttMA levels were positively associated with the ratio of triglycerides to high-density lipoproteins [Q4 compared 
to Q1: β = 0.11, 95% CI: (0.02, 0.20)]. Higher urinary metabolite levels were negatively associated with the ratio of low-
density lipoprotein to high-density lipoprotein [Q4 of ttMA compared to reference: β = -0.06, 95% CI: (-0.11, -0.01); Q4 
of BMA compared to reference: β = -0.13, 95% CI: (-0.19, -0.08)].

Conclusion  Benzene and toluene metabolites were significantly and positively associated with hypertriglyceridemia. 
However, urinary ttMA and BMA levels were negatively associated with high LDL-C levels. These findings suggest that 
environmental exposure to benzene and toluene disrupts lipid metabolism in humans.
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Introduction
Benzene and toluene are pollutants present in the atmo-
sphere [1, 2]. Individuals are unwittingly exposed to ben-
zene and toluene by breathing in outdoor and indoor 
air [3–5]. These pollutants can also be absorbed into 
the human body via dermal contact or oral routes [2, 3]. 
Exposure can be either occupational or environmental 
[5]. Environmental exposure is more common among the 
public, and occurs at lower concentrations than occupa-
tional exposure. In particular, workers in petrochemical, 
coke oven, rubber, painting, printing, transportation, and 
plastic manufacturing industries are easily exposed to 
high levels of benzene or toluene [2, 6].

The adverse health effects of benzene and toluene 
on humans have been well-documented over the past 
few decades. Benzene was designated as ‘group 1, car-
cinogenic to humans’ by the International Agency for 
Research on Cancer [7], and can cause various hemato-
poietic diseases, including myelodysplastic syndrome, 
acute non-lymphocytic leukemia, chronic lymphocytic 
leukemia, multiple myeloma, and non-Hodgkin lym-
phoma [8]. Acute exposure to toluene can lead to severe 
liver and kidney damage and permanent dysfunction of 
the central nervous system [2, 9]. However, to date, there 
has been little discussion of whether exposure to benzene 
or toluene causes metabolic diseases.

Several epidemiological studies have demonstrated a 
relationship between environmental exposure to benzene 
and metabolic diseases [10–15]. In a retrospective cohort 
study, participants with a high Framingham risk score 
had significantly higher levels of urinary trans,trans-
muconic acid (ttMA), which is a benzene metabolite 
[10]. Cross-sectional studies have reported that urinary 
ttMA is associated with metabolic syndrome, oxida-
tive stress, and insulin resistance in children and elderly 
adults [11–13]. Moreover, a relationship between urinary 
ttMA and an increased risk of diabetes mellitus (DM) 
has been found among the adult population of Korea [14, 
15]. In the same study, no significant relationship was 
found between DM and urinary benzylmercapturic acid 
(BMA), a metabolite of toluene [14]. However, to the best 
of our knowledge, no studies have investigated whether 
exposure to benzene and toluene affects the blood lipid 
profile in humans.

The main aim of this study was to investigate the asso-
ciation between blood lipid levels and urinary ttMA and 
BMA levels in Korean adults. Additionally, we deter-
mined whether environmental exposure to benzene and 
toluene affected insulin resistance and the risk of cardio-
vascular disease (CVD). In this study, we used urinary 

ttMA as an indicator of benzene exposure, and urinary 
BMA as an indicator of toluene exposure. Urinary ttMA 
is a useful biomarker for evaluating environmental expo-
sure to benzene at concentrations below 0.1 [16, 17]. 
Urinary BMA is a valid indicator of human exposure to 
toluene [18, 19]. In fact, urinary ttMA and BMA are used 
to evaluate exposure to benzene and toluene in national 
biomonitoring programs conducted in several countries, 
including the United States, Canada, and Republic of 
Korea [20–22].

Methods
Study population
This study used cross-sectional data from the Korean 
National Environmental Health Survey (KoNEHS) Cycle 
3 (2015–2017). This nationwide survey provides basic 
information for monitoring human exposure to environ-
mental chemicals and investigating influential factors. 
The KoNEHS includes information from interviews, self-
report questionnaires, physical examinations, and collec-
tion of biological samples. The KoNEHS uses a complex 
survey design stratified by residential houses, coastal 
regions, age, sex, and socioeconomic status. The survey 
was approved by the Institutional Review Board (IRB) of 
the National Institute of Environmental Research (NIER), 
Korea (IRB No. NIER-2016-Br-003-01).

A total of 3,787 participants (1,648 males and 2,139 
females) aged ≥ 19 years were enrolled in the survey. 
Among them, we excluded 11 participants with missing 
data on the urinary metabolites of benzene or toluene, 41 
with missing data on lipid profiles, and 312 taking dys-
lipidemia medications. Finally, 3,423 participants (1,533 
males and 1,890 females) were included in the analysis. 
The ethics review for this analysis was conducted by the 
IRB of Kyung Hee University Hospital (IRB No. KHUH 
2021-08-002). The IRB waived the requirement for 
informed consent because the study was retrospective.

Serum lipid profiles
Serum lipid profiles were collected and analyzed accord-
ing to the KoNEHS guidelines [23]. Total cholesterol (TC) 
was analyzed using colorimetric analysis (colorimetry, 
enzymatic method, ADVIA 1800, Siemens) at 505/694 
nm. High-density lipoprotein cholesterol (HDL-C) was 
analyzed by colorimetry (elimination/catalase method, 
ADVIA 1800, Siemens) after quinonimine was produced 
using hydrogen peroxide. Triglyceride (TG) was mea-
sured for glycerol after hydrolysis with lipoprotein lipase 
using colorimetry (GPO Trinder without serum blank 
method, ADVIA 1800, Siemens) [23]. When TG levels 
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were less than 400  mg/dL, low-density lipoprotein cho-
lesterol (LDL-C) levels were measured using the Friede-
wald formula [24]. Participants with TG levels > 400 mg/
dL were excluded from the LDL-C analyses. According to 
the criteria established by the National Cholesterol Edu-
cation Program   [25], hypercholesterolemia was defined 
as TC levels ≥ 240  mg/dL; hypertriglyceridemia was 
defined as TG levels ≥ 200 mg/dL; low HDL-C levels were 
defined as < 40 mg/dL in men and < 50 mg/dL in women; 
and high LDL-C levels were defined as ≥ 130 mg/dL.

We calculated the TG to HDL-C (TG/HDL-C) ratio 
and LDL-C to HDL-C (LDL-C/HDL-C) ratio. The TG/
HDL-C ratio was associated with insulin resistance and 
helpful in estimating the risk of DM in clinical practice 
[26–28]. The LDL-C/HDL-C ratio is an indicator of lipid 
profile imbalance and is used as an indicator of CVD risk 
[29].

Measurement of urinary metabolites
Urine samples were collected from sterile cups and 
transferred to light-blocked storage containers. The con-
tainer was then transferred to the laboratory in a refrig-
erated state (2–6  °C) [23]. Urine samples were frozen at 
-20  °C until analysis [30]. Urinary metabolite concen-
trations were quantified using high-performance liquid 
chromatography and mass spectrometry (Agilent 6420 
Triple Quadrupole LC-MS) [30]. This method removes 
unnecessary impurities by passing a solid-phase extrac-
tion, eluting the target material and injecting it into a 
liquid chromatography/mass spectrometer to analyze 
the sample concentration values using a standard addi-
tion method. The C18 (3.5  μm, 2.1 × 100  mm) column 
was used for chromatography [30]. The mobile phase was 
prepared by mixing 0.1% acetic acid solution (distilled 
water): 0.1% acetic acid solution (methanol) in a ratio of 
95:5, and the flow rate was 0.3 mL/min [30]. The ioniza-
tion method for the mass spectrometer was electrospray 
ionization [30].

Standard solutions were prepared for the range that 
included the lowest and highest concentrations in the 
general population. Calibration curves were constructed 
by adding standard solutions of ttMA at concentrations 
of 0, 10, 25, 50, 100, 200, 300, and 500  µg/L [30]. Simi-
larly, standard solutions of BMA at concentrations of 0, 
0.5, 2, 5, 10, 15, 30, and 50  µg/L were used [30]. The 
determination coefficient (R2) of the curves was 0.995 or 
higher [30]. To maintain the sensitivity of the device, the 
standard solution was measured after calibration of each 
of the 20 samples, and the accuracy was measured within 
± 15% of the reference value. The limits of detection of 
ttMA and BMA were 2.3 and 0.197  µg/L, respectively 
[22]. After adjusting for urine creatinine levels, urinary 
ttMA concentrations were measured in this study.

Urine creatinine level was determined by measur-
ing the absorbance of picric acid-creatinine complex at 
505/571 nm [23]. The picric acid-creatinine complex is 
formed by the chemical reaction of creatinine with pic-
ric acid in an alkaline medium, which is called the Jaffe’s 
reaction [31]. The ADVIA 1800 (Siemens) was used for 
creatinine measurements [23].

Statistical analyses
We conducted an analysis of covariance and the Rao-
Scott chi-square test to compare the differences among 
the study participants concerning the quartiles of uri-
nary ttMA and BMA concentrations. We used a sur-
vey-weighted multivariate logistic regression model 
to calculate the odds ratios (OR) and 95% confidence 
intervals (CI) for dyslipidemia based on the quartiles of 
urinary ttMA and BMA. The relationship between the 
lipoprotein ratios and urinary metabolites of benzene and 
toluene was examined using multivariate linear regres-
sion models. We utilized log-transformed values of the 
TG/HDL-C and LDL-C/HDL-C ratios because the distri-
bution of each variable was not normal. All multivariate 
regression models were adjusted for covariates, including 
age, body mass index (BMI), smoking (never smoker, for-
mer smoker, and current smoker), alcohol consumption 
(never drinker or drinker), exercise (no, low intensity to 
avoid sweat during exercise, and moderate-intensity as 
sweat during exercise), educational level (none, less than 
high school graduation, and more than college), house-
hold income (< 871 US dollars, $871–2614, $2614–4357, 
≥ 4357 US dollars, and unknown), and marital status 
(single, married, and others). All statistical analyses were 
performed using IBM SPSS version 19 for Windows 
(IBM Corp., Armonk, NY, USA), and stratified variables 
and weights were applied. Statistical significance was set 
at P < 0.05.

Results
Baseline characteristics of the study population
The baseline characteristics of the study population are 
shown in Table 1. This study included 1,533 (44.79%) men 
and 1,890 (55.21%) women. The mean concentrations 
of urinary ttMA were 148.83 (± 5.62) µg/g creatinine in 
men and 177.86 (± 12.70) µg/g creatinine in women. The 
mean concentrations of urinary BMA were 7.26 (± 0.47) 
µg/g creatinine in men and 17.53 (± 6.88) µg/g creati-
nine in women. The concentrations of urinary ttMA and 
BMA were significantly higher in women than in men. 
There was no significant difference between serum TC 
and LDL-C levels among men and women; however, 
serum TG level, TG/HDL-C ratio, and LDL-C/HDL-C 
ratio were higher in men, and serum HDL-C levels were 
higher in women (p < 0.001).
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Association between blood lipid profiles and urinary 
metabolites of benzene and toluene
Multivariate logistic regression analysis was conducted 
to estimate the association between dyslipidemia and the 
urinary metabolites of benzene and toluene (Table  2). 
Compared with the reference quartile of urinary ttMA, 
the adjusted OR for hypertriglyceridemia in second, third 
and fourth quartiles were 1.433 (95% CI, 1.107–1.856), 
1.397 (95% CI, 1.037–1.881) and 1.599 (95% CI, 1.231–
2.077), respectively. Compared with the reference quar-
tile of urinary ttMA, the OR for high levels of LDL-C 
decreased to 0.681 (95% CI, 0.475–0.976) in the third 
quartile and 0.654 (95% CI, 0.446–0.961) in the fourth 
quartile. For urinary BMA, the OR for hypertriglyceri-
demia were 1.486 (95% CI, 1.105–1.998), 1.579 (95% CI, 
1.129–2.208) after adjusting for all covariates in the sec-
ond and third quartiles, respectively. Compared with the 
reference quartile of urinary BMA, the adjusted OR for 

high LDL-C levels decreased only in the third quartile to 
0.619 (95% CI, 0.430–0.889).

Multivariate linear regression was performed to assess 
the linear association between serum lipid profiles and 
urinary metabolites of benzene and toluene (Table  3). 
Urinary ttMA levels were positively associated with 
serum TG levels in the second and fourth quartiles after 
covariate adjustment (The second quartile (Q2) com-
pared to Q1: β = 0.08, 95% CI: [0.01, 0.15], Q4 compared 
to Q1: β = 0.13, 95% CI: [0.06, 0.20]). Both urinary ttMA 
(Q4 compared to Q1: β = -0.06, 95% CI: [-0.10, -0.02]) 
and urinary BMA (Q4 compared to Q1: β = -0.10, 95% 
CI: [-0.14, -0.05]) levels were negatively associated with 
serum LDL-C levels.

Table 1  Baseline characteristics of the study population
Characteristics Total

n = 3423
Males
n = 1533

Females
n = 1890

p value

Age (years) 45.88 (± 0.52) 45.23 (± 0.53) 46.55 (± 0.82) 0.034

BMI (kg/m2) 24.26 (± 0.10) 24.87 (± 0.13) 23.64 (± 0.12) < 0.001

Education, n (%) None 106 (3.10) 16 (1.04) 90 (4.76) 0.708

≤ High school 2056 (60.06) 878 (57.27) 1178 (62.33)

≥ College 1261 (36.84) 639 (41.68) 622 (32.91)

Marital status, n (%) Single 408 (11.92) 235 (15.33) 173 (9.15) < 0.001

Married, cohabited 2653 (77.51) 1218 (79.45) 1435 (75.93)

Other (divorce, separation) 362 (10.58) 80 (5.22) 282 (14.92)

Household income (US dollars), n (%) < 871 610 (17.82) 245 (15.98) 365 (19.31) 0.012

871–2614 1366 (39.91) 639 (41.68) 727 (48.47)

2614–4357 876 (25.59) 395 (25.77) 481 (25.45)

≥ 4357 556 (16.24) 249 (16.24) 307 (16.24)

Unknown 15 (0.44) 5 (0.33) 10 (0.53)

Smoking, n (%) Never 2166 (63.28) 372 (24.27) 1794 (94.92) < 0.001

Former 689 (20.13) 649 (42.33) 40 (2.12)

Current 568 (16.59) 512 (33.40) 56 (2.96)

Alcohol, n (%) Never drinker 658 (19.22) 127 (8.28) 531 (28.10) < 0.001

Drinker 2765 (80.78) 1406 (91.72) 1359 (71.90)

Exercise, n (%) No 901 (26.32) 801 (52.25) 1100 (58.20) 0.002

Low intensity 266 (7.77) 122 (7.96) 144 (7.62)

Moderate intensity 1266 (36.99) 610 (39.79) 646 (34.18)

Urinary metabolites (µg/g⋅creatinine) ttMA 163.11 (± 7.38) 148.83 (± 5.62) 177.86 (± 12.70) 0.025

BMA 12.31 (± 3.44) 7.26 (± 0.47) 17.53 (± 6.88) 0.136

Blood lipid levels TC (mg/dL) 186.10 (± 0.87) 185.87 (± 1.49) 186.33 (± 0.99) 0.804

TG (mg/dL) 170.27 (± 3.35) 198.55 (± 4.98) 141.06 (± 2.76) < 0.001

HDL-C (mg/dL) 56.14 (± 0.43) 51.57 (± 0.50) 60.86 (± 0.52) < 0.001
aLDL-C (mg/dL) 98.12 (± 0.83) 98.31 (± 1.47) 97.93 (± 0.88) 0.830

TG/HDL-C ratio 3.51 (± 0.09) 4.33 (± 0.13) 2.66 (± 0.07) < 0.001
aLDL-C/HDL-C ratio 1.83 (± 0.02) 1.97 (± 0.04) 1.70 (± 0.02) < 0.001

The continuous variables are presented as mean ± (standard deviation), and the categorical variables are presented as n (%).
Urinary metabolites levels were presented after creatinine adjustment.
aLDL was calculated by the Friedewald formula after excluding persons with TG > 400 (mg/dL).
BMI, body mass index; ttMA, trans,trans-muconic acid; BMA, benzylmercapturic acid; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipopro-
tein; LDL-C, low-density lipoprotein



Page 5 of 9Shin et al. BMC Public Health         (2022) 22:1917 

Association between lipoprotein ratio and urinary 
metabolites of benzene and toluene
The highest quartile of urinary ttMA levels was positively 
associated with a 0.11 [95% CI (0.02, 0.20)] increase in 

TG/HDL-C ratio (Table 4). In contrast, higher ttMA lev-
els were negatively associated with the LDL-C/HDL-C 
ratio in the study population after the covariate adjust-
ment, and the β of Q4 compared to Q1 was − 0.06 [95% 

Table 2  Odds ratio and 95% confidence intervals for dyslipidemia according to quartiles of urinary metabolites of benzene and 
toluene among Korean adults (n = 3423)

Hypercholesterolemia
(≥ 240 mg/dL) 

Hypertriglyceridemia
(≥ 200 mg/dL) 

Low level of HDL-C
(< 40 mg/dL for males and 
< 50 mg/dL for females)

aHigh level of LDL-C 
(≥ 130 mg/dL)

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted
Urinary ttMA

Q1 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 1.269 
(0.805–2.001)

1.194 
(0.745–1.919)

1.610 
(1.233–2.101)

1.433 
(1.107–1.856)

1.093 
(0.821–1.455)

1.047 
(0.771–1.422)

0.827 
(0.568–1.204)

0.774 
(0.528–1.134)

Q3 0.857 
(0.546–1.345)

0.867 
(0.556–1.353)

1.547 
(1.164–2.055)

1.397 
(1.037–1.881)

0.852 
(0.641–1.133)

0.813 
(0.605–1.092)

0.692 
(0.485–0.987)

0.681 
(0.475–0.976)

Q4 0.886 
(0.580–1.403)

0.878 
(0.545–1.417)

1.750 
(1.383–2.213)

1.599 
(1.231–2.077)

1.035 
(0.758–1.414)

1.069 
(0.771–1.482)

0.637 
(0.439–0.925)

0.654 
(0.446–0.961)

p for trend 0.158 0.215 0.055 0.087 0.676 0.953 0.017 0.053

Urinary BMA

Q1 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 1.025 
(0.654–1.607)

1.013 
(0.657–1.561)

1.128 
(0.857–1.484)

1.486 
(1.105–1.998)

1.065 
(0.796–1.425)

0.906 
(0.678–1.212)

0.841 
(0.612–1.155)

0.806 
(0.581–1.119)

Q3 0.817 
(0.499–1.336)

0.753 
(0.460–1.230)

1.195 
(0.891–1.604)

1.579 
(1.129–2.208)

1.124 
(0.835–1.514)

0.780 
(0.589–1.033)

0.736 
(0.516–1.050)

0.619 
(0.430–0.889)

Q4 0.809 
(0.490–1.334)

0.770 
(0.459–1.294)

0.989 
(0.722–1.353)

1.338 
(0.946–1.894)

1.258 
(0.962–1.646)

0.812 
(0.623–1.058)

0.785 
(0.533–1.154)

0.668 
(0.440–1.015)

p for trend 0.241 0.192 0.559 0.821 0.088 0.180 0.398 0.109
aParticipants with TG levels > 400 mg/dL were excluded from LDL-C analysis (n = 3230).
Adjusted model was adjusted for age, sex, BMI, education level, marital status, household income level, smoking, alcohol consumption, and exercise.
ttMA, trans,trans-muconic acid; BMA, benzylmercapturic acid; HDL-C, high-density lipoprotein; LDL-C, low-density lipoprotein; TG: triglyceride

Table 3  β and 95% confidence intervals for lipid profiles according to quartiles of urinary metabolites of benzene and toluene in the 
Korean adult (n = 3423)

Total cholesterol Triglyceride HDL-C aLDL-C
Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

Urinary ttMA

Q1 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 0.00 (-0.02, 
0.03)

-0.01 (-0.03, 
0.02)

0.14 (0.05, 0.23) 0.08 (0.01, 
0.15)

-0.03 (-0.06, 
0.01)

-0.01 (-0.04, 
0.02)

-0.03 (-0.07, 
0.01)

-0.05 (-0.08, 
-0.01)

Q3 -0.01 (-0.03, 
0.01)

-0.01 (-0.04, 
0.01)

0.10 (0.01, 0.18) 0.04 (-0.03, 
0.11)

0.01 (-0.02, 
0.05)

0.02 (-0.01, 
0.05)

-0.06 (-0.10, 
-0.02)

-0.06 (-0.10, 
-0.03)

Q4 0.00 (-0.02, 
0.02)

-0.01 (-0.03, 
0.02)

0.19 (0.12, 0.27) 0.13 (0.06, 
0.20)

-0.01 (-0.04, 
0.03)

-0.01 (-0.04, 
0.03)

-0.05 (-0.09, 
-0.02)

-0.06 (-0.10, 
-0.02)

p for trend 0.932 0.979 0.225 0.159 0.186 0.853 0.325 < 0.001

Urinary BMA

Q1 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 -0.01 (-0.03, 
0.01)

-0.01 (-0.03, 
0.01)

-0.01 (-0.08, 
0.07)

0.06 (-0.01, 
0.12)

0.05 (0.01, 0.08) 0.02 (-0.01, 
0.05)

-0.03 (-0.07, 
0.01)

-0.04 (-0.08, 
-0.01)

Q3 0.00 (-0.02, 
0.02)

-0.02 (-0.04, 
-0.01)

0.01 (-0.06, 
0.09)

0.06 (-0.01, 
0.11)

0.06 (0.03, 0.10) 0.04 (0.01, 
0.07)

-0.05 (-0.09, 
-0.01)

-0.09 (-0.13, 
-0.05)

Q4 -0.03 (-0.05, 
-0.01)

-0.04 (-0.06, 
-0.01)

-0.02 (-0.11, 
0.06)

0.03 (-0.03, 
0.10)

0.05 (0.01, 0.08) 0.02 (-0.01, 
0.06)

-0.07 (-0.12, 
-0.02)

-0.10 (-0.14, 
-0.05)

p for trend 0.055 < 0.001 0.684 0.361 0.989 0.052 0.115 < 0.001
aParticipants with TG levels > 400 mg/dL were excluded from LDL-C analysis (n = 3230).
Adjusted model was adjusted for age, sex, BMI, education level, marital status, household income level, smoking, alcohol consumption and exercise.
ttMA, trans,trans-muconic acid; BMA, benzylmercapturic acid; HDL-C, high-density lipoprotein; LDL-C, low-density lipoprotein
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CI (-0.11, -0.01)]. Urinary BMA levels were also nega-
tively associated with LDL-C/HDL-C ratio in the overall 
population after the covariate adjustment, in which the β 
of Q4 compared to Q1 was − 0.13 [95% CI (-0.19, -0.08)].

Discussion
In this study, we observed a relationship between lipid 
profiles and urinary metabolites of benzene and toluene 
in Korean adults. Urinary ttMA and BMA levels were 
associated with an increased risk of hypertriglyceride-
mia. In contrast, both urinary ttMA and BMA levels were 
found to be negatively correlated with serum LDL-C lev-
els. Regarding the relationship between lipoprotein ratio 
and urinary ttMA and BMA, urinary ttMA was positively 
associated with the TG/HDL ratio, and both metabolites 
were inversely related to the LDL-C/HDL-C ratio.

Urinary ttMA was positively associated with serum 
TG levels and negatively associated with serum LDL-C 
levels. These findings on the associations between uri-
nary ttMA and blood lipid levels are different from those 
of previous animal studies [10, 32]. Mice that inhaled 

volatile benzene had increased levels of serum LDL-C, 
TC, and HDL-C [10]. For orally administered benzene in 
mice, the plasma TC level decreased in proportion to the 
exposure dose, and there were no significant changes in 
blood TG, HDL-C, and LDL-C levels [32]. This discrep-
ancy may be due to differences in benzene metabolism, 
depending on concentration and species. Benzene can 
have different effects on animals and humans because of 
quantitative differences in the fraction of metabolic path-
ways [33]. Mice metabolize more hydroquinone metabo-
lites than primates [33]. Additionally, the metabolism of 
benzene differs between high and low exposure concen-
trations [34]. In previous animal studies, the concentra-
tion of benzene in mice was significantly higher than that 
in humans [10, 32]. In contrast, the association between 
urinary BMA and hypertriglyceridemia was in accor-
dance with previous research. Rabbits exposed to a dose 
of toluene (0.5  mg/kg) have been reported to develop 
hypertriglyceridemia and glucose intolerance [35].

The effects of benzene exposure on blood lipid profiles 
can be explained by molecular biological mechanisms. A 
metabolomic study in humans reported that metabolic 
pathways, including carnitine shuttle, fatty acid metabo-
lism, glycolysis, and gluconeogenesis were increased in 
workers exposed to benzene [36]. Benzene induced the 
expression of enzymes involved in the beta-oxidation 
pathway and fatty acid transfer in the mitochondria of 
male C3H/He mice [37]. Recently, Cui et al. reported that 
crucial genes involved in lipid metabolism, including per-
oxisome proliferator-activated nuclear receptor gamma, 
are downregulated in mice exposed to benzene [32]. 
Additionally, the mRNA expression of adiponectin and 
leptin was significantly decreased in benzene-exposed 
white adipose tissues [32]. Changes in the transcription 
of genes involved in energy metabolism at the molecular 
level may affect the blood lipid profile in humans [38, 39]. 
However, the effects of toluene on the expression of genes 
involved in metabolic pathways have not been studied.

The relationship between TG/HDL-C ratio, an indica-
tor of insulin resistance, and urinary ttMA levels revealed 
in this study is in line with previous researches [12–15]. 
An association between urinary ttMA levels and insulin 
resistance has been reported in children, adolescents, 
and elderly adults [12, 13]. Additionally, several studies 
have revealed that benzene metabolites are associated 
with an increased risk of DM [14, 15]. During benzene 
metabolism, Cytochrome P450 (CYP) 2E1 produces 
reactive oxygen species and free radicals, leading to oxi-
dative stress [40–42]. Oxidative stress plays a role in the 
development of insulin resistance by interrupting insu-
lin signaling pathways and dysregulating adipocytokines 
[43, 44]. In an animal study, C57B/6 mice exposed to 
benzene showed insulin resistance by inhibiting insulin-
stimulated Akt phosphorylation and enhanced nuclear 

Table 4  β and 95% confidence intervals for lipoprotein ratio 
according to quartiles of urinary metabolites of benzene and 
toluene among Korean adults (n = 3423)

TG/HDL-C ratio aLDL-C/HDL-C ratio
Unadjusted Adjusted Unadjusted Adjusted

Urinary 
ttMA

Q1 Ref. Ref. Ref. Ref.

Q2 0.13 (0.03, 0.24) 0.07 (-0.01, 
0.16)

-0.01 (-0.06, 0.04) -0.03 (-0.08, 
0.01)

Q3 0.07 (-0.04, 0.17) 0.03 (-0.06, 
0.12)

-0.07 (-0.12, 
-0.02)

-0.09 (-0.13, 
-0.04)

Q4 0.11 (0.01, 0.21) 0.11 (0.02, 
0.20)

-0.07 (-0.12, 
-0.01)

-0.06 (-0.11, 
-0.01)

p for 
trend

0.093 0.044 0.002 0.003

Urinary 
BMA

Q1 Ref. Ref. Ref. Ref.

Q2 -0.05 (-0.15, 
0.04)

0.04 (-0.03, 
0.01)

-0.08 (-0.14, 
-0.03)

-0.07 (-0.12, 
-0.02)

Q3 -0.05 (-0.15, 
0.04)

0.02 (-0.05, 
0.12)

-0.12 (-0.17, 
-0.07)

-0.14 (-0.19, 
-0.09)

Q4 -0.07 (-0.18, 
0.04)

0.01 (-0.08, 
0.09)

-0.12 (-0.18, 
-0.06)

-0.13 (-0.19, 
-0.08)

p for 
trend

0.216 0.999 < 0.001 < 0.001

aParticipants with TG levels > 400 mg/dL were excluded from LDL-C 
analysis (n = 3230).
Adjusted model was adjusted for age, sex, BMI, education level, marital 
status, household income level, smoking, alcohol consumption and 
exercise.
ttMA, trans,trans-muconic acid; BMA, benzylmercapturic acid; TG, 
triglyceride; HDL-C, high-density lipoprotein; LDL-C, low-density 
lipoprotein
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kappa phosphorylation [45]. Treatment with TEMPOL, 
a superoxide dismutase mimetic, restores this alteration, 
demonstrating that benzene-induced oxidative stress 
enhances insulin resistance [45]. Moreover, exposure of 
pregnant C57BL/6JB mice to benzene resulted in glucose 
intolerance and severe insulin resistance in male off-
spring [46].

Insulin resistance and hypertriglyceridemia have been 
studied in depth, and a complicated relationship has 
been identified. White adipose tissue releases free fatty 
acids (FFA) into the blood when the body is insulin-
resistant, and skeletal muscle cells and the liver obtain 
increased amounts of FFA [47, 48]. Excessive influx of 
FFA into skeletal muscle cells promotes the accumula-
tion of ceramide and diacylglycerols, which inhibit the 
translocation of glucose transporter type 4 and the Akt/
PKB signaling pathway [49]. Free fatty acid promotes 
the formation of very low-density lipoprotein with high 
TG concentration in the liver, resulting in hypertriglyc-
eridemia [50]. Hypertriglyceridemia causes lipotoxicity 
by accumulating fatty acids in other tissues, which wors-
ens systemic insulin resistance [51]. Therefore, the find-
ings of this paper, which revealed the positive association 
between urinary metabolites of benzene and toluene, 
hypertriglyceridemia, and insulin resistance, point in the 
same direction.

Therefore, LDL-C/HDL-C is a well-known risk indica-
tor of CVD and the progression of atherosclerosis [29, 
52, 53]. Hypercholesterolemia and low HDL-C levels are 
critical contributors of CVD development [54, 55]. In 
this study, increased concentrations of urinary ttMA and 
BMA were observed to have a strong relationship with 
decreased LDL-C and LDL-C/HDL-C levels. It is neces-
sary to confirm whether the anti-atherogenic effects of 
benzene and toluene have been reproduced in other pop-
ulation studies.

Strengths and limitations
To our knowledge, this is the first study to explore the 
association between lipid profiles and exposure to ben-
zene and toluene in a general population. The potential 
lipid metabolism-disrupting effects of benzene and tolu-
ene are supported by the mechanisms revealed in animal 
experiments. However, this study has several limitations. 
First, as this was a cross-sectional study, the findings can 
only be used to indicate associations and not to assess 
causal relationships. Second, the lifestyle behaviors and 
medical history of the participants were investigated 
through interviews and questionnaires. Self-reporting 
may lead to recall bias and incorrect classification [56]. 
Third, this study did not consider individual-specific 
gene expression or polymorphisms. Individual sensitiv-
ity to benzene exposure may be influenced by nucleotide 
polymorphisms in NQO1, MPO, CYP2E1, GSTT1, and 

GSTM1 [57, 58]. Genetic polymorphisms in ALDH2, 
CYP1A1, CYP2E1, GSTM1, and GSTT2 can affect their 
ability to metabolize toluene [59, 60]. Fourth, the speci-
ficity of ttMA in assessing environmental exposure to 
benzene may have some limitations. It has been reported 
that ttMA levels were not correlated with actual exposure 
to benzene at exposure levels below 0.5 ppm [61]. More-
over, urinary ttMA levels are affected by individual sorbic 
acid intake [62]. Trans,trans-muconic acid is a metabo-
lite of sorbic acid that is commonly used as a preserva-
tive in a wide range of food [63]. Fifth, our findings on 
serum LDL-C levels may be limited by the inaccuracy 
of the Friedewald formula. In patients with moderate to 
high LDL-C levels, Friedewald estimation yields an accu-
rate result [64, 65]. However, the Friedewald equation is 
unreliable to calculate serum LDL-C levels in patients 
with low LDL-C (< 70 mg/dL) [64, 65]. In this study, 534 
(16.53%) participants had LDL-C levels < 70 mg/dL (Sup-
plementary Fig. 1).

Conclusion
This cross-sectional study suggest that human lipid 
metabolism may be altered by exposure to benzene and 
toluene. The urinary metabolites of benzene and toluene 
are associated with an increased risk of hypertriglyc-
eridemia. Additionally, TG/HDL-C levels increased in 
individuals with high urinary ttMA levels. The urinary 
metabolites of benzene and toluene were negatively asso-
ciated with serum LDL-C levels. Further studies in other 
ethnic groups are required to verify these findings.
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