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pecific Evolutionary Subtypes in
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Abstract
Bi-allelic inactivation of the VHL gene on chromosome 3p is the characteristic feature in most clear cell renal cell
carcinomas (ccRCC). Frequent gene alterations were also identified in SETD2, BAP1 and PBRM1, all of which are
situated on chromosome 3p and encode histone/chromatin regulators. The relationship between gene mutation,
loss of protein expression and the correlations with clinicopathological parameters is important for the
understanding of renal cancer progression. We analyzed PBRM1 and BAP1 protein expression as well as the tri-
methylation state of H3K36 as a surrogate marker for SETD2 activity in more than 700 RCC samples. In ccRCC loss
of nuclear PBRM1 (68%), BAP1 (40%) and H3K36me3 (47%) expression was significantly correlated with each
other, advanced tumor stage, poor tumor differentiation (P b .0001 each), and necrosis (P b .005) Targeted next
generation sequencing of 83 ccRCC samples demonstrated a significant association of genetic mutations in
PBRM1, BAP1, and SETD2 with absence of PBRM1, BAP1, and HEK36me3 protein expression (P b .05, each). By
assigning the protein expression patterns to evolutionary subtypes, we revealed similar clinical phenotypes as
suggested by TRACERx Renal. Given their important contribution to tumor suppression, we conclude that
combined functional inactivation of PBRM1, BAP1, SETD2 and pVHL is critical for ccRCC progression.
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i-allelic inactivation of the tumor suppressor gene von Hippel–
indau (VHL) due to chromosome 3p deletion and gene mutation is
hallmark of clear cell RCC (ccRCC), the most common subtype of
CC [1]. Despite its prominent role as multi-adaptor protein that
teracts with more than 30 different binding partners involved in
any oncogenic processes, functional inactivation of pVHL is not
fficient for tumorigenesis [2]. Recent data suggest that additional
netic and epigenetic events in driver genes act cooperatively with a
ss of pVHL function to promote ccRCC progression [3].
Systematic sequencing identified a broad spectrum of genetic
sions, some of which are closely linked to the clinical behavior of
RCC [4]. Interestingly, three of those genes map, like VHL, to
romosome 3p and encode histone and chromatin regulators
TD2, BAP1, and PBRM1 [5]. PBRM1 encodes a subunit of the
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I/SNF (SWItch/Sucrose Non-Fermentable) transcription-
odulating chromatin remodeling complex [6], BAP1 encodes the
stone deubiquitinating enzyme BRCA1-associated protein 1 [7],
d SETD2 encodes a methyltransferase that specifically trimethylates
sine-36 of histone H3 (H3K36me3) [8]. Mutations in PBRM1
ve been detected in 40% of ccRCC, whereas 12 and 19% have
quence alterations in BAP1 and SETD2, respectively [3,9].
All three proteins are involved in cellular pathways related to
morigenesis and the high frequency of mutations in their genes
pport their role as tumor suppressors in ccRCC. Inactivation of
BRM1 has been shown to promote ccRCC cancer cell proliferation
d migration [10] as well as to enhance the HIF-response [11].
AP1 also contributes to chromosome stability by binding the
icrospherule protein 1 (MCRS1) which plays an essential role in
indle assembly [12]. Mice deficient for either VHL or VHL
gether with one allele of BAP1 developed multiple lesions spanning
om benign cysts to cystic and solid ccRCC [13] suggesting a tumor
ppressive cooperation between BAP1 and pVHL. Notably, a
operative function was also reported for BAP1 and PBRM1 by
monstrating that combined loss of BAP1 and PBRM1 drive
RCC in mice [14]. SETD2 depletion in ccRCC cells suggests a role
maintaining genome integrity through nucleosome stabilization,
ppression of replication stress and the coordination of DNA repair
5]. Finally, SETD2 knockdown in renal primary tubular epithelial
lls led to bypass the senescence barrier, facilitating a malignant
ansformation toward ccRCC [16].
In previous studies the clinical relevance of PBRM1, BAP1 and
TD2 expression was analyzed separately [17–20] or only two of the
ree proteins were investigated in parallel [21–23] with partly
ntroversial results. Here we aimed at investigating PBRM1 and
AP1 expression as well as methylation of H3K36me3 as surrogate
arker for SETD2 activity simultaneously by immunohistochemistry
HC) using tissue microarrays with more than 700 RCC and at
rrelating the expression data with gene mutation status, prognostic
rameters and evolutionary subtypes of ccRCC as recently described [9].

aterial and Methods

ell lines, Cell and Tissue Microarrays
The cell lines used for cell microarrays were the same as previously
scribed [24]. Wild type and transfected cell lines were authenticated
short tandem repeat profiling by IdentiCell (Department of

olecular Medicine, Aarhus University, Hospital Skejby, Aarhus,
enmark) or Microsynth (Balgach, Switzerland). Cell and tissue
icroarrays (CMA and TMA) were generated using a tissue
icroarrayer (Beecher Instruments Inc., Sun Prairie, WI, USA).
To analyze the expression of PBRM1, BAP1 and H3K36me3 in
CC, two tissue microarrays (TMA) containing 721 RCC and 44
rmal kidney tissue (one punch per sample) were constructed as
scribed [25]. Clinico-pathological information about RCC tissues
d patients is listed in Suppl. Table 1. The samples were retrieved from
e archives of the Department of Pathology and Molecular Pathology,
niversity Hospital Zurich (Zurich, Switzerland) between the years
93 to 2013. For each tumor, one representative tumor tissue block,
ith a minimum of 1 cm tumor diameter, was re-evaluated using
matoxylin and eosin-stained sections. Tumor samples with necrosis
d high content of inflammatory cells were excluded. Only those cases
ith representative tumor regions that contained at least 70% tumor
lls were selected for the TMA construction. All tumors were reviewed
two pathologists specialized in uropathology (R.O. and H.M.).
lassification, grading and staging was performed according to TNM
th ed.) [26] and 2016 WHO classification [27]. This study was
proved by the local commission of ethics (KEK-ZH-No.2013–0629).

munohistochemistry Analysis
CMA and TMA sections (2.5 μm) on glass slides were subjected to
munohistochemical analysis according to the conditions listed in
ppl. Table 2. Tumors were considered positive if tumor cells showed
equivocal strong or weak nuclear expression. The intensity of staining
tected in normal proximal tubules and glomeruli as well as in non-
morous HEK and HK-2 cells was considered as reference for normal/
rong staining. A conventional cut-off N5%positive tumor cells was used
prevent false positivity. For staining evaluation, stained slides were
anned using aNanoZoomer (Hamamatsu Photonics, Shizuoka, Japan).
nalysis of the immunostainings were done by S.B., R.O. and J.R.

ext Generation Sequencing
DNA extracted from 2–3 punched (0.6 mm diameter) and
atched tumor-normal FFPE samples from 83 ccRCC patients was
alyzed. These tumors were also part of the TMA cohort. Total
NA was extracted as previously described [28]. The high coverage
xt generation sequencing data of these biopsies was generated and
alyzed in a recent ccRCC study, where all details about the
quencing and computational analysis pipeline can be found [29].

tatistics
Contingency table analysis and Pearson's chi-square tests were used
analyze the associations between PBRM1, BAP1 and SETD2
pression patterns, gene mutations and pathological parameters.
verall survival rates were determined according to the Kaplan–
eier method and analyzed for statistical differences using a log-rank
st. A Cox proportional hazard analysis was used to test for
dependent prognostic information. The statistics were performed
ith SAS Institute's StatView 5.0 statistical package (Cary, NC, USA)
d SPSS Statistics 25 (IBM).
esults

BRM1, BAP1, SETD2 and H3K36me3 Antibody Testing in
CC Cell Lines
The suitability and specificity of the antibodies against PBRM1,
AP1, SETD2 and H3K36me3 on formalin-fixed material were
timized by testing several immunostaining protocols on a CMA
nsisting of 20 RCC and three kidney cell lines (Fig. 1). As expected,
rong nuclear expression of the four proteins was seen in non-tumorous
EK and HK-2 cells. PBRM1 was not expressed in A704, Caki-2,
CC4, SLR-24, SLR-25 and confirmed previous data [20,30]. Nuclear
d cytoplasmic BAP1 positivity was seen in most of the RCC cell lines
cluding 769-P known to be BAP1 mutated [31] but still expresses the
otein. KC-12 and SLR-23 were BAP1 negative in both cellular
mpartments, whereas SLR-26 was strongly positive only in the
toplasm. Although SETD2 mutations have been reported for A-498,
-704, and Caki-1 [32], all RCC cell lines were SETD2 positive. An
tibody, which specifically binds methylated lysine at amino acid
sition 36 of histone 3 was used for immunostaining to test SETD2’s
tivity in our RCC cell lines. H3K36me3 was absent in SETD2
utated A-498 and A-704 but not in Caki-1 suggesting different effects
SETD2 mutations on SETD2 function in these cell lines. Notably,
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Figure 1. Schematic illustration of the cell microarray (CMA) with different RCC and kidney cell lines (top). Immunohistochemical staining
of PBRM1, BAP1 and H3K36me3 with representative examples of nuclear positive (circled red) and negative (circled blue) stained cell
lines (20- and 60-fold magnification). Core diameter: 0.6 mm.
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3K36me3 was also negative in ccRCC cell lines SLR21, SLR25, and
R26 with yet unknown SETD2 mutation status. Based on these
sults we decided to use H3K36me3-specific antibody as surrogate
arker for SETD2 activity for TMA analysis.
ble 1. PBRM1, BAP1 and H3K36me3 Expression in RCC Subtypes

Clear Cell
n (%)

Papillary
Type 1
n (%)

Papillary
Type 2
n (%)

RM1
Negative 306 (68) 27 (43.5) 22 (41.5)
Weak 96 (21.3) 19 (30.6) 17 (32.1)
Strong 48 (10.7) 16 (25.8) 14 (26.4)
Total 450 62 53
P1
Negative 193 (40.4) 5 (7.5) 9 (15.8)
Weak 205 (42.9) 32 (47.8) 31 (54.4)
Strong 80 (16.7) 30 (44.8) 17 (29.8)
Total 478 67 57
3K36me3
Negative 220 (47) 1 (1.5) 11 (19.6)
Weak 124 (26.5) 3 (4.5) 9 (16.1)
Strong 124 (26.5) 62 (93.9) 36 (64.3)
Total 468 66 56
xpression Frequencies of PBRM1, BAP1 and SETD2 in RCC
btypes
Normal tubular and glomerular cells showed strong staining similar
the expression patterns observed in cell lines without mutations.
Chromophobe
n (%)

Oncocytoma
n (%)

Clear Cell Papillary
n (%)

32 (66.7) 1 (8.3) 1 (20)
10 (20.8) 2 (16.7) 3 (60)
6 (12.5) 9 (75) 1 (20)

48 12 5

21 (45.7) 0 (0) 1 (20)
21 (45.7) 5 (38.5) 2 (40)
4 (8.6) 8 (61.5) 2 (40)

46 13 5

6 (11.8) 1 (7.7) 0 (0)
11 (21.6) 2 (15.4) 2 (40)
34 (66.6) 10 (76.9) 3 (60)
51 13 5

Image of Figure 1
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Figure 2. Representative images of immunohistochemically stained tissue samples: strong nuclear PBRM1 expression in normal kidney
(a) and one ccRCC (b); strong nuclear BAP1 expression in one pRCC and strong nuclear H3K36me3 expression in one pccRCC (20- and 60-
fold magnification; core diameter: 0.6 mm).
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or all antibodies, we observed renal tumors with strong, weak or
sent staining. In most previous studies, calculations were performed
grouping tumors in either negative versus positive or low versus

gh expression, although different criteria were used for interpreting
munohistochemical staining [17–19,21,33,34]. Weak staining
tensity may be caused by mutations and chromosomal loss of 3p,
hich may influence protein expression of PBRM1, BAP1, and
ble 2. Expression frequencies of PBRM1, BAP1 and H3K36me3 in relation to tumor stage and ISU

pT1/pT2
n (%)

pT3/pT4
n (%)

P-value

P1
Negative 93 (34.2) 98 (50) b0.0001
Weak 119 (43.7) 81 (41.3)
Strong 60 (22.1) 17 (8.7)
Total 272 196
3K36me3
Negative 104 (39.4) 115 (59) b0.0001
Weak 71 (26.9) 47 (24.1)
Strong 89 (33.7) 33 (16.9)
Total 264 195
RM1
Negative 151 (59) 150 (81.5) b0.0001
Weak 67 (26.2) 25 (13.6)
Strong 38 (14.8) 9 (4.9)
Total 256 184
3K36me3, but also by the age of paraffin blocks, tissue fixation, and
C detection protocols, making it difficult to distinguish between
nomic driven and artificial reduction of protein expression.
herefore, we decided to keep tumors with weak and strong staining
parated for the calculations and used a 3-tierd scoring system
egative, weak, strong staining) for all antibodies. As in our ccRCC
t the portion of pT2 and pT4 tumors was very low (9% and 1.6%,
P grade in ccRCC.

Grade 1/2
n (%)

Grade 3
n (%)

Grade 4
n (%)

P-value

55 (29.1) 66 (45.2) 71 (51.1) b0.0001
77 (40.7) 65 (44.5) 61 (43.9)
57 (30.2) 15 (10.3) 7 (5)
189 146 139

55 (30.5) 66 (52.1) 89 (64) b0.0001
52 (28.9) 44 (30.1) 25 (18)
73 (40.6) 26 (17.8) 25 (18)
180 146 139

92 (53.2) 98 (71) 113 (83.7) b0.0001
48 (27.7) 30 (21.7) 18 (13.3)
33 (19.1) 10 (7.2) 4 (3)
173 138 135

Image of Figure 2
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Table 3. PBRM1, BAP1 and H3K36me3 Expression and Presence of Necrosis and Tumor Infiltrating Lymphocytes in ccRCC

Necrosis
n (%)

P-value Tumor Infiltrating Lymphocytes
n (%)

Absent Present Sparse Moderate Dense P-value

BAP1
Negative 130 (38.6) 61 (44.5) 0.0023 25 (36.8) 93 (39.7) 73 (42.4) 0.0162
Weak 138 (40.9) 66 (48.2) 23 (33.8) 101 (43.2) 80 (46.5)
Strong 69 (20.5) 10 (7.3) 20 (29.4) 40 (17.1) 19 (11)
Total 337 137 68 234 172

H3K36me3
Negative 139 (42) 81 (60.5) 0.0014 27 (40.3) 113 (47.2) 88 (50.3) ns
Weak 94 (28.4) 27 (20.1) 18 (26.9) 89 (29.3) 71 (21.3)
Strong 98 (29.6) 26 (19.4) 22 (32.8) 28 (23.6) 12 (28.4)
Total 331 134 67 229 169

PBRM1
Negative 198 (62.7) 105 (80.8) 0.0009 31 (51.7) 148 (67.6) 124 (74.3) 0.001
Weak 80 (25.3) 16 (12.3) 16 (26.7) 44 (20.1) 36 (21.6)
Strong 38 (12) 9 (6.9) 13 (21.7) 27 (12.3) 7 (4.2)
Total 316 130 60 219 167
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spectively), we grouped pT1 and pT2 ccRCC (organ-confined) as
ell as pT3 and pT4 ccRCC (advanced tumors) for further
lculations. Expression frequencies of PBRM1, BAP1 and
3K36me3 in different RCC subtypes are listed in Table 1.
xamples of immunostained RCCs as well as normal kidney are
ustrated in Fig. 2.
Absence of PBRM1 expression was observed in about two-thirds of
RCCs and chromophobe RCCs (chRCCs). In contrast, only about
% of both type 1 and type 2 of the papillary RCC (pRCC), 20% of
e clear cell papillary RCCs and 8% of the oncocytomas were
RM1-negative. Compared to PBRM1, the frequency of BAP1 and
3K36me3 negative tumors was considerably lower in ccRCC (40%
d 47%), pRCC (type 1: 7.5% and 1.5%; type 2: 16% and 20%) as
ell as in chRCC (46% and 12%). Only one of 13 (8%)
gure 3. Relationships between BAP1, PBRM1 and H3K36me3 express
clear expression.
cocytomas was H3K36me3 negative and one of 5 clear cell
pillary RCC was BAP1 negative.

orrelation of Protein Expression with Tumor Stage and ISUP
rade
By linking our TMA IHC data to pathological parameters we
und that loss of BAP1, H3K36me3 and PBRM1 was highly
sociated with late tumor stage as well as high nuclear differentiation
ade (P b .0001, each; Table 2). In advanced stage ccRCC the
rtion of tumors which lost expression of the three proteins ranged
tween 50% and 81.5%. Similarly, the majority of grade 4 tumors
ere negative for BAP1, H3K36me3, and PBRM1 (51.1–83.7%).
Also, loss of PBRM1, H3K36me3, and BAP1 expression was
gnificantly associated with presence of necrosis and, excepting
ion patterns in ccRCC. 0, 1, 2 refers to negative, weak and strong

Image of Figure 3
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Figure 4. Correlation of PBRM1, SETD2, and BAP1 mutation and protein expression.
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3K36me3, a high density of tumor infiltrating lymphocytes
able 3). Although tumor stage and WHO/ISUP grade were highly
ked to patient survival (P b .0001, each) (Suppl. Fig. 1 A and B),
ly loss of PBRM1 and H3K36me3 expression showed a trend to
orse outcome, but this did not reach significance (Suppl. Fig. 1 C-E).
ultivariate analysis of PBRM1, BAP1 andH3K36me3 expression did
t add independent prognostic information (Suppl. Table 3).

elationship Among PBRM1, BAP1 and H3K36me3 Expression
atterns in ccRCC
Next, we investigated potential associations of the expression data
elded for BAP1, H3K36me3 and PBRM1 in ccRCC. As illustrated
Fig. 3, the correlations of BAP1, H3K36me3 and PBRM1

pression patterns were highly significant among each other
b .0001). For example, 88% of PBRM1 negative tumors were

so negative for BAP1. Similarly, 83% of tumors with H3K36me3
ss were also deficient for PBRM1, and 60% of BAP1 negative
RCC had no methylated H3K36.

ssociation of Mutations in PBRM1, BAP1, and SETD2 with
oss of Protein Expression
DNA sequencing data including non-silent mutations of PBRM1,
AP1 and SETD2 are summarized in Suppl. Table 4. Seventeen of 83
0%) ccRCC had PBRM1 mutations and 11 tumors had BAP1 and
TD2 mutations (13%, each). In 4 ccRCC (5%) both PBRM1 and
AP1 were affected, 2 tumors had mutations in PBRM1 and SETD2
%), and 1 tumor in BAP1 and SETD2 (1%). None of the analyzed
mors had non-silent mutations in all 3 genes. Sequence alterations
at highly likely lead to truncation of the proteins (frameshift,
nsense, splice site) were seen in 15 of 17 (88%; PBRM1), 6 of 11
6%; BAP1), and 9 of 11 (82%; SETD2) mutated ccRCC. There
as no association with tumor grade and stage. We compared also our
quence data with protein expression. As shown in Fig. 4, PBRM1,
AP1, and SETD2 mutations correlated with loss of PBRM1, BAP1
pression and H3K36me3 methylation.
ssigning PBRM1, BAP1 and SETD2 Expression Patterns to
volutionary ccRCC Subtypes
Comparisons of sequencing and expression data obtained from our
RCC cohorts imply that loss of PBRM1, BAP1 and SETD2
pression is caused by gene mutations but also by additional, yet
known, molecular and epigenetic mechanisms. As the three
oteins are critical key players in five of seven deterministic
olutionary trajectories [9], we attempted to assign our TMA results
the PBRM1, SETD2 and BAP1 driven ccRCC subtypes (Fig. 5A
d B). About half of the tumors belonged to the subtype “multiple
onal drivers” in which at least two of the three proteins were
gative. This subtype consisted mainly of high grade and late stage
RCC. The majority of BAP1 driven tumors, which represented the
allest group (2.6%), were characterized by elevated grade and a
tter survival rate (5-year survival rate: 75%) compared to the other
btypes (about 60%). As we were not able to distinguish between the
btypes “PBRM1- N PI3K” and “PBRM1- N SCNA”, the two
btypes both characterized by early PBRM1 inactivation were
mbined. This group was enriched for lower grade (40% grade 2)
d early stage tumors (69%). The remaining cases consisted of only
TD2 negative ccRCC and tumors in which all three proteins were
pressed. We therefore grouped these tumors into “VHL mono-
iver” and “VHL wildtype” subtype. Notably, the majority of
mors presented at lower grade and early stage.

iscussion
e provide a comprehensive expression analysis of BAP1, PBRM1 as
ell as the methylation state of H3K36me3 as surrogate marker for
TD2 activity in RCC cell lines and more than 600 clinically well
aracterized human RCC tumor specimens. Loss of expression of
e three proteins was highest in ccRCC with about 70% for
BRM1, 40% for BAP1, and 50% for H3K36me3. Similar
equencies were obtained for PBRM1 and BAP1 in chRCC. In
CC, in which 5–10% of the tumors have also PBRM1, SETD2,
d BAP1mutations [35], approximately 40% were PBRM1 negative

Image of Figure 4
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Figure 5. A. ccRCC grouped by evolutionary subtypes: BAP1 driven (only BAP1 negative), PBRM1- N SCNA and PBRM1- N PI3K (only
PBRM1 negative), Multiple clonal drivers (≥2 BAP1, SETD2 or PBRM1 negative), VHL monodriver/wildtype and other (PBRM1, BAP1 and
SETD2 positive as well as only SETD2 negative). PBRM1 and SETD2 negative tumors were assigned to both multiple clonal drivers and
PBRM1- N SETD2 subtype (gray arrow). B. Distribution of tumor grade, tumor stage and overall survival per subtype.
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both main subtypes type 1 and type 2. Of note, compared to
CC type a higher deficiency of BAP1 and H3K36me3 was
served in the more aggressive pRCC type 2 (type 1: 8% and 2%;
pe 2: 16% and 20%). In oncocytoma and clear cell papillary RCC
most all tumors were positive for the three proteins. Furthermore,
r results demonstrate that the absence of the three proteins in
RCC is highly related to each other suggesting overlapping down-
gulatory mechanisms of their genes in many of the tumors.
utations in PBRM1, BAP1 and SETD2 contribute to loss of
otein expression. Finally, the significant association of loss of
pression of BAP1, SETD2 and PBRM1 with advanced tumor stage
d high tumor grade together with their critical role in recently
entified evolutionary trajectories [9] emphasizes an important
ncerted tumor-suppressive role of the three proteins in ccRCC.
By doubling the number of RCCs from 300 to 600 we could
nfirm the results from a previous study [20] showing that loss of
RM1 expression is strongly linked to a more aggressive tumor
havior. We further extended our study by analyzing the expression
BAP1 and H3K36me3 and obtained associations, which were very
milar to those observed for PBRM1. The strong relationship among
e expression profiles of PBRM1, BAP1, and H3K36me3 may be
plained by the location of PBRM1, BAP1, and SETD2 on

Image of Figure 5
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romosome 3p. As chromosome 3p deletion occurs in about 90% of
RCC [2], our data imply that in most early stage tumors the
maining alleles of PBRM1, BAP1 and SETD2 are still expressed,
beit to a lower dosage in comparison to normal tubular kidney cells.
ollowing the classical two-hit hypothesis of tumor suppressor genes
6], gene inactivation by mechanisms such as truncating mutations
curs mainly in late stage and high grade tumors.
The fractions of non-expressing tumors in our tumor cohort was
nerally higher (40% BAP1, 50% H3K36me3, 70% PBRM1)
mpared to those described in several previous studies, which ranged
tween 10–50% for BAP1 [19,21,22,37], 14–34% for SETD2
8,23], and 31–70% for PBRM1 [20,21,23,38,39]. The use of
fferent scoring criteria, antibodies, immunostaining protocols,
mbers and fixation of the tumors included in the analyses as well
large sections versus tissue microarrays may explain some of the
screpancies. However, regardless of the diverse patient cohorts and
rategies used to examine ccRCC, the consistent finding of these
udies is that loss of expression of PBRM1, SETD2 and BAP1 is
osely linked to tumor progression [17–19,23,40].
Mutations of PBRM1, BAP1 and SETD2 determined in 83
RCC revealed their important negative influence on protein
pression, but in a considerable fraction of tumors loss or reduction
expression seem to follow mechanisms other than mutations and
romosome 3p loss. Hypermethylation of CpG islands in the gene
omoter region were reported for several genes located on
romosome 3p, including VHL [41,42]. However, no aberrant
omoter hypermethylation of PBRM1, BAP1 and SETD2 were
und in 50 ccRCC suggesting that silencing of the three genes by
ethylation is absent or rare in this tumor type [43]. Also, SETD2,
AP1 as well as PBRM1 mutations have been reported in pRCC,
hich has no chromosome 3p deletions [35]. Therefore, other
echanisms may drive down regulation on the transcriptional or
ost-) translational level. Recently, PBRM1 has been reported to be
nctionally regulated by p53-induced protein degradation in RCC
4]. Whether or not this interaction promotes ccRCC is yet unclear.
Although gene mutations were significantly associated with loss of
otein expression in our ccRCC cohort, BAP1 and H3K36me3 were
pressed in a small subset of ccRCC despite BAP1 and SETD2
utations. As shown in previous VHL studies [28,45,46], mutations
n have different impact on expression, protein function and
abilization. It is therefore conceivable that PBRM1, BAP1, and
TD2 mutations identified in ccRCC, as well as in other cancer
pes, may also exert diverse effects on protein expression and
nction.
Inactivation of tumor suppressor genes by genetic or epigenetic
ents is crucial for tumor progression. In this context, PBRM1,
AP1, and SETD2 mutation and loss of expression was described to
associated with advanced tumor stage, high grade and patient
tcome [17–23,39,40,47–49]. Surprisingly, PBRM1-deficient
mor clones in mice were more sensitive to T-cell-mediated
totoxicity compared to their wild-type counterparts [50]. Our
udy demonstrates a significant association between PBRM1
terations and a high amount of TIL in ccRCC. This could in part
plain a recent observation by Miao et al. showing an increased
inical benefit of immune checkpoint therapy in ccRCC patients
ith inactivated PBRM1 [51]. This suggests that PBRM1 loss
duces changes resulting in an increased susceptibility to immuno-
erapy. PBRM1 loss-of-function mutations may thus serve as
favorable prognostic marker but also as favorable predictive marker
garding PD-(L)1 blockade therapy. This finding also helps explain
e conflicting data about the prognostic value of PBRM1 in ccRCC.
PBRM1, BAP1 and SETD2 are involved in chromatin remodeling
regulating transcription of genes and modifying histones [6–8].

unctional in vitro and in vivo analyses strongly suggest that their
activation leads to increased cell proliferation and loss of genome
tegrity [10,12,15,16]. It is therefore plausible that loss of PBRM1,
AP1 and SETD2 function is tightly linked to nuclear de-
fferentiation, which is accompanied by high mitotic rates of
mor cells, and larger tumor size. In this context, it was recently
own that deletion of VHL together with either BAP1 or PBRM1
ives tumor grade [11]. Notably, functional inactivation of the four
mor suppressors pVHL, PBRM1, BAP1 and SETD2 affects spindle
ientation, spindle assembly, histone modification, nucleosome
abilization and chromatin remodeling, all of which strongly impair
romosomal stability [8,12,15,52,53]. The lack of concerted action
pVHL, PBRM1, BAP1 and SETD2 through chromosome 3p loss
d additional molecular mechanisms may therefore increase the risk
chromosomal instability, which is characteristic for high-grade
RCC [52].
Intratumor heterogeneity exists in most of ccRCC and can lead to
nfounding estimates of gene mutation and protein expression
evalence. Multiregion-NGS procedures demonstrated that in
RCC the majority of identified driver aberrations derive from
atially separated subclones [4]. In addition, a deterministic nature
subclonal diversification has been identified, which allows ccRCC
be grouped into seven evolutionary subtypes each representing
tential prognostic markers [9]. Notably, in five of these subtypes
BRM1, SETD2, and BAP1 mutations play a dominant role as driver
nes. These subtypes were defined i) by mutations in PBRM1
llowed by SETD2; ii) by PBRM1 mutations followed by alterations
the PI3K/AKT pathway; iii) by mutations in PBRM1 followed by a
iver somatic copy number alteration event; iv) by BAP1 mutations
the single driver event with VHL, and v) by tumors in which at
ast two of the genes BAP1, SETD2, PBRM1 or PTEN where
onally mutated.
In almost all previous immunohistochemical and DNA sequencing
udies usually one tissue section and one or very few punches per tumor
mple were analyzed. Given the subclonal diversity and its different
pact on patient outcome in ccRCC, it becomes evident why the
equencies and clinical relevance of gene mutations and protein
pression of BAP1, SETD2, and PBRM1, let alone their subtyping,
ffer from each other [5,17–23,49]. The different combinations of
AP1, PBRM1 or SETD2 expression changes obtained from our TMA
munostainings support the proposed genetic and clonal evolution
atures [9] and suggest that the diverse clinical phenotypes of ccRCC
ay also be identified by protein expression data.
By grouping our tumors into the proposed evolutionary subtypes,
e obtained clinical phenotypes that were quite similar to those
vealed by comprehensive NGS analysis [9]. We observed on the
otein level only 85 of 429 (19.8%) tumors without evidence of
AP1, PBRM1 or SETD2 expression changes. These tumors highly
ely belong to “VHL wildtype” and “VHL monodriver” ccRCC as
AP1, PBRM1 and SETD2 are not affected in these subtypes.
otably, we identified one group of only SETD2 inactive ccRCC
ainly consisting of lower grade and early stage tumors. This is in line
ith the hypothesis that a strong niche-specific selection of SETD2
utant subclones induce a limited clonal growth [9]. Whether or not
TD2 only tumors belong to a different subtype is still unclear.
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A BAP1 driven pattern with elevated higher grade tumors was only
en in 11 (2.6%) cases. PBRM1 driven subtypes followed by
TD2, as well as copy number alterations and alterations in the
3K/AKT pathway were assigned to 69 (16.1%) and 72 (16.8%)
mors, respectively. Finally, the multiple clonal driver subtype
presented the largest group consisting of 238 ccRCC (55.5%). In
ntrast to PBRM1- N SCNA/PI3K driven tumors, both multiple
onal driver and PBRM1- N SETD2 subtypes were enriched with
gher grade and late stage ccRCC.
Despite of the different clinical phenotypes obtained from the
olutionary subtypes there was no significant correlation with overall
rvival. Only patients with BAP1 driven tumors showed a better
tcome after 5 years (75% vs 60%).
In summary, we show a strong relationship between the expression
ofiles of PBRM1, BAP1 and SETD2 in ccRCC suggesting reciprocal
nergy effects in the context of tumor suppression. Chromosome 3p
letion, which is very frequent and occurs early in ccRCC, may cause
ploinsufficiency of PBRM1, BAP1, SETD2 as well as VHL, which
ay be a critical step toward tumor development [54]. Additional
ccessive events affecting the second alleles of these genesmight explain
e formation of recently proposed evolutionary subtypes and the
rying prognostic significance obtained for these tumor suppressors in
evious studies [17–21,23,39,40,44,47,48,55,56].
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2018.12.006.
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