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ABSTRACT
The mammalian nuclear envelope (NE) can develop complex dynamic membrane-bounded
invaginations in response to both physiological and pathological stimuli. Since the formation of
these nucleoplasmic reticulum (NR) structures can occur during interphase, without mitotic NE
breakdown and reassembly, some other mechanism must drive their development. Here we
consider models for deformation of the interphase NE, together with the evidence for their
potential roles in NR formation.
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Nucleoplasmic reticulum, a widespread organelle

The nuclear envelope (NE) is a unique structure
forming a physical barrier between the nucleoplasm
and the cytoplasm. It is comprised of 2 phospholipid
bilayers, the inner nuclear membrane (INM) and
outer nuclear membrane (ONM), with an interven-
ing luminal space between (for a review, see ref. 1).
Underlying the INM is the nuclear lamina, a protein-
aceous meshwork of intermediate filament proteins.
It is well established that the structure of the nucleus
is more complex than just a membrane-bound
spheroid containing chromatin, and pierced by
nuclear pore complexes (NPC). Nuclei vary in shape
not only in different cell types, but also under differ-
ent pathological and physiological conditions.2 The
NE frequently shows multiple invaginations of the
nuclear membrane into the nucleus, forming an
often elaborate network of tubules and sheets of
INM, and sometimes ONM, continuous with the NE
(See Fig. 1). This feature is termed a nucleoplasmic
reticulum (NR), so named for its structural resem-
blance to the endoplasmic reticulum.3,4 The NR is a
widespread feature of many cells and tissues under
normal cellular conditions.5-8 In addition, it is also
observed in cells grown in 2D and 3D cultures,
including many tumor cell types, for example breast,

brain, bladder, kidney, ovary, and prostate.9 More-
over, NR abundance is altered in various pathologies
such as cancer,10,11 Alzheimer’s disease,12 myotonic
dystrophy,13 Hutchinson-Gilford Progeria Syn-
drome,14 and others, suggesting a dysregulation of
mechanisms responsible for NR regulation under
pathological conditions.

NR structure

NR structures are classified into 2 main classes, type I
and type II.3 Type I invaginations are those where the
INM alone invaginates into the nucleoplasm, whereas
type II involves invagination of both the inner and
outer nuclear membranes, hence type II NR contains a
cytoplasmic core. Moreover, in the cytoplasmic core of
type II NR microtubules, microfilaments, and mito-
chondria have all been detected.15,16 The NR structure
can be more complex though, with type I invaginations
branching off type II, both as membrane sheets and as
tubules. In addition, these complex invaginations may
traverse the nucleus, forming cross-nuclear channels.

NR function

Despite the fact that NR is a widely spread organelle,
present in multiple cell types, its exact function is still
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not fully understood. New reports, however, keep
emerging, shedding more light on its role. The NR is
thought to provide a structural support for the
nucleus, as well as to bring functions of the peripheral
NE deep into the interior of nucleus and aid in nuclear
import-export due to presence of NPC at the invagi-
nations.17 NR has also been shown to aid in cellular
processes such as transcription, DNA repair and lipid
metabolism.

Probably the best studied role of the NR is the cal-
cium signaling inside the nucleus. Endoplasmic reticu-
lum, the main reservoir of calcium ions in a cell shares
its lumen with the nuclear double membrane, thus it
is also continuous with the intervening luminal space
of the NR channels. Indeed, it has been shown that
calcium can be released from the NE store into the
nucleoplasm through channels sensitive to inositol tri-
phosphate (IP3).18,19 Interestingly, both PIP2 and
phospholipase C (PLC), required for production of
IP3, are also present in the nucleus.20,21 While PLC
can associate with the nuclear membrane,22 the
nuclear PIP2 was suggested to reside within the
nuclear membrane forming NR invaginations.23

Moreover, it has been reported that NR invaginations
contain inositol triphosphate receptors (IP3R)4 as well
as ryanodine receptors,24 which are involved in a
selective calcium release into the nucleus, therefore
the NR allows for controlled and spatially localized
calcium signaling in nuclear functions,25 including
transcription regulation.26 In addition, it has been pro-
posed that presence of NR allows for not only initia-
tion of localized nuclear calcium signaling, but also for
its termination due to presence of IP3-kinase isoform

B (IP3KB) at nuclear invaginations27 which can inacti-
vate IP328,29 as well as sarco/endoplasmic reticulum
calcium ATPase (SERCA).30 Moreover, it has been
suggested that NR identified in plant cells has a similar
role in regulation of nuclear calcium signaling,31,32

hence implying a conserved role for this structure
between the two kingdoms.

It has been widely observed that NR invaginations
often associate with nucleoli5,33,34 and are found in
close proximity to fibrillarin-positive regions or point
toward UBF-1-positive nucleolar compartments.35

These are sites of active transcription of ribosomal
genes, thus, association of type II NR channels with
cytoplasmic core, and pierced by NPC, could suggest a
role for the NR in facilitating a nuclear export of
rRNA. However, these are microscopy co-localization
studies, therefore further experiments are required to
determine whether rRNA export truly occurs and
dominates such associations. In addition, cells treated
with the histone-deacetylase inhibitor trichostatin A
show higher abundance of NR,36 thus it may further
support the hypothesis that NR helps with increased
gene expression and RNA export in general.
Moreover, NR channels have been observed to closely
associate with repressive complexes such as
BMI1-positive Polycomb group proteins (PcG) -
related bodies and heterochromatin marker HP1b,35

which could further facilitate NR involvement in
chromatin organization and transcription regulation.
Indeed, soluble intra-nuclear lamin A/C was shown to
interplay and regulate PcG-mediated transcriptional
repression,37,38 thus lamin A/C underlying NR
channels could offer additional anchor points of PcG

Figure 1. Super resolution light microscopy on normal human dermal fibroblasts, labeled with anti-lamin B1 antibody (green), anti-
lamin A/C antibody (orange) and DAPI (blue). White arrowheads point to intranuclear NR tubules. Scale bar, 2 mm.
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compartmentalization. It may seem contradictory that
NR channels associate with repressive PcG complexes,
and yet become more abundant upon chromatin
relaxation induced by a histone-deacetylase inhibi-
tor.36 Association with the NE, however, has also been
shown to promote both chromatin activation and
silencing, depending on context and interactors,39-41

thus NR as an intranuclear extension of nuclear
envelope may exhibit similar properties. Legartova
and colleagues also observed a tight association of NR
tubules with gH2AX-positive DNA lesions, induced
by g-radiation, and with 53BP1, a regulator of cellular
response to DNA damage,42 implying a role for a
dynamic NR in DNA damage repair.35

Another cellular process in which NR has been
implicated is lipid metabolism. Recently, it was shown
that type I NR closely associates with lipid droplets
and their number correlates with the amount of type I
NR in a promyelocytic leukemia nuclear body-
dependent manner.43 Nuclear lipid droplets appear to
incorporate newly synthesized lipid esters and stain
positively for diacylglycerol O-acyltransferase 2
(DGAT2) and CTP:phosphocholine cytidylyltransfer-
ase a (CCTa), the key enzymes in triglyceride and
phosphatidylcholine synthesis, respectively.44,45 Inter-
estingly, NR formation can not only be induced by
CCTa,46 but also depends on this enzyme.17 More-
over, CCTa upon activation translocates to the NE
and the NR, thus, bearing in mind a wide spectrum of
functions performed by CCTa in lipid metabolism45

and its close links with NR, it could suggest additional
roles for NR in lipid signaling.

NR formation

NR tubules can be a result of post-mitotic reassembly
of the nucleus, when the fusion of recruited NE sheets
is imperfect and some get trapped within the
nucleus.47 However, a number of reports showed
clearly that new NR channels can form in a cell-cycle-
independent manner in post-mitotic primary cells,48

in cycle-arrested cells,5,17 and during interphase in
free-cycling cells,17 thus suggesting the existence of a
controlling mechanism for NR formation in an inter-
phase nucleus.

Nuclear architecture is complex and various physi-
cal forces affect the organization and shape of the NE,
both from within the nucleus and/or from the cyto-
plasm.49-54 Proliferation of highly curved NR channels

is an energy demanding process, because pure lipid
bilayers, a major component of NE, remain flat unless
energy is provided to stimulate them to curve.55 The
energy that aids in curvature introduction to the cellu-
lar membranes could be sourced from either modifica-
tion of lipid composition or bilayer asymmetry, or
from membrane-associated proteins (for a review, see
ref. 56). Protein mechanisms vary and can rely purely
on the shape of transmembrane proteins, further
enhanced by partitioning or crowding effects of the
protein insertion, or on docking of hydrophobic pro-
tein domains in the membrane. Oligomerization of
protein monomers and formation of protein coats can
greatly enhance and stabilize membrane curvature
(for a review, see ref. 57).

This diversity of regulated membrane curvature
inducing processes leads to a range of possible mecha-
nisms that could cause the drastic alterations to the
properties of the NE and drive NR formation (See
Fig. 2). Although relying on different principles, these
models are not mutually exclusive.

Pulling in

Nuclear architecture may be defined by interactions
between chromatin and the NE, as a substantial litera-
ture on chromatin-lamina and chromatin-INM pro-
tein interactions attests (for reviews, see refs. 58-60). It
is well established that chromatin organization is not
random and higher order chromosomal territories
exist (for reviews, see refs. 61,62), although their organi-
zation seem to be cell-type specific. Distribution of
chromosomes can be dictated either by their size63 or
gene density.64 In addition, in an interphase nucleus,
dynamic chromatin movements occur as a result of
chromosome condensation.65,66 Thus, NR invagina-
tions could be driven by rearrangements of chromatin
tethered to the NE and pulling in the nuclear mem-
brane (Fig. 2). This observation was made for NR for-
mation in polytene nuclei from Drosophila
melanogaster salivary glands.67 Conversely, however, a
link between NR and chromatin decondensation could
be implied by the observation that mouse embryonic
fibroblasts treated with histone-deacetylase inhibitor
show an increased abundance of type II NR.36

Pushing in

Alternatively, the pressure on the NE that curves the
membrane and induces NR formation may come
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from outside of the nucleus (Fig. 2). It is well estab-
lished that the cytoskeleton can counterbalance inter-
nal forces of chromatin and the nuclear lamina, thus
playing a pivotal role in stabilization of nuclear archi-
tecture.50,51,68 It is possible then that the cytoskeleton
exerts a force on the NE and pushes it in, driving
invagination. In fact, it has been shown that type II
NR invaginations contain microtubules and microfila-
ments in their cytoplasmic core.3,5,69,70 In addition, a
close proximity of centrioles to major nuclear invagi-
nations of granulocytic cells was shown, with the sug-
gestion that centrosomes exhibit the tensor force

curving the NE through cytoskeletal proteins.71

Although likely to be relevant under some conditions,
a putative cytoskeleton-driven formation of NR can-
not explain proliferation of type I NR, consisting of
the INM only.

Selective recruitment

The final scenario suggests the existence of dedicated
machinery that assembles the NR structure de novo,
rather than through rearrangement of pre-existing NE
(Fig. 2). In fact many cellular machineries exist dedi-
cated specifically to induction of lipid bilayer curva-
ture and cellular membrane invaginations.56

One of the best studied is clathrin-mediated endo-
cytosis, which is initiated by focal assembly of a cla-
thrin lattice at a flat membrane area, a process
orchestrated by adapter proteins in conjunction with
actin polymerisation.72-74 Several other clathrin-inde-
pendent mechanisms of plasma membrane invagina-
tion have been characterized as well. They also require
specific interactions of mediator proteins and can lead
to varying membrane morphologies such as tubular or
vesicular structures. Clathrin-independent carriers/
glycosylphosphatidylinositol-enriched early endoso-
mal compartment pathway,75 endophilin-mediated
endocytosis76 or caveolae formation.77,78 are just a few
of them.

Phospholipid bilayer deformation is not limited
to the plasma membrane. Many intracellular struc-
tures exist as membrane-bound organelles compart-
mentalising the cell interior and rely on membrane
curvature in order to perform their functions, such
as the endoplasmic reticulum. Reticulons and DP1/
YOP1 (defective in polyposis/yeast ortholog) pro-
teins are regulators of membrane curvature,
involved in the formation of tubular ER in animals,
fungi, and plants.79-81 Moreover, reticulons can
generate arc-shaped scaffolds by an oligomerization
process further contributing not only to induction,
but also to the maintenance of high membrane cur-
vature.82 Therefore, reticulons can influence the
balance between the ER sheet and ER tubule prolif-
eration, favoring conversion of sheets into tubules.
Interestingly, some reticulons have been suggested
to be involved in NPC insertion at the NE.83 More-
over, reticulon 4a was found in junctions between
ER and the edges of growing NE in both Xenopus
oocytes and in in vitro nuclei assembly system,84

Figure 2. Schematic representation of nucleus with possible
mechanisms driving NR formation. (A) Pushing the NE by cyto-
skeleton (red) as visualised by yellow arrow; (B) Pulling the NE by
chromatin movement (green), movement indicated by yellow
arrow; (C) Focal and de novo assembly and growth (yellow arrow)
of NR invaginations (red) by dedicated machinery.
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thus, this protein appears be involved in facilitating
NE growth by stabilizing high curvature where new
membrane is added to the re-forming nuclei.
Therefore, it is tempting to speculate that reticulons
might also aid in NR development through positive
curvature generation in the nuclear membrane.

Coatomer protein complex I and II (COPI and
COPII) have well defined roles in vesicle budding
from the Golgi and ER.85,86 It is a process requiring
membrane deformation in which COPI and COPII
are orchestrated by small GTPases Arf1 and Sar1,
respectively, and stabilize curvature.87,88 Interestingly,
it was shown that COPI may be involved in NE
mitotic breakdown in Xenopus by formation of
vesicles and tubular structures with the ER.89 Compo-
nents of COPI are recruited by nucleoporins and are
critical for disassembly of the NE.90,91 Of note, it was
proposed that nucleoporins share a common ancestor
with COPI, COPII and clathrin/adaptin complexes
and diverged during the evolution of internal mem-
brane systems that ultimately led to the acquisition of
the nucleus.92,93 Moreover, depletion of Rab5, a
GTPase with a well established role in endocytosis,94,95

was also shown to impair mitotic NE breakdown and
membrane remodelling.96 Post-mitotic NE reassembly
is a process requiring a massive rearrangement of
membrane as well. Recently, it was reported that the
endosomal sorting complex required for transport
(ESCRT)-III proteins, classically involved in mem-
brane fission during formation of multivesicular endo-
somes, enveloped virus budding and cytokinetic
abscission,97 are also responsible for annular fusion in
the reassembling NE.98,99 These observations indicate
a wider role of membrane bending and modifying
proteins at the NE, potentially also involved in the NR
regulation.

Cells have developed a multitude of membrane
deformation mechanisms. They appear to be tightly
regulated and multistage, with an array of molecular
sensors of curvature and machineries allowing for
controlled proliferation of membrane tubules and ves-
icle formation. Thus, it is very likely that selective
mechanisms also exist in the process of NR induction
and stabilization of intranuclear channels.

Role of proteins and lipids in NR development

Over-expression of some NE proteins has been
reported to increase NR abundance. Most notably,

overexpression of lamins harbouring C-terminal CaaX
motif was a strong inducer of NR proliferation.100 In
agreement, progerin, a lamin A mutant expressed in
Hutchinson-Gilford Progeria Syndrome which exhib-
its farnesylation of the cysteine in a retained CaaX
motif, causes NR proliferation.101 Inhibition of the
lamin A maturation process which leads to build up of
precursor prelamin A, retaining farnesylation at the
cysteine, was also shown to induce NR prolifera-
tion.17,102 The presence of the isoprenylated cysteine
at the protein C-terminus most likely increases its
affinity for the INM and may affect membrane curva-
ture by exhibiting additional physical strain on the
nuclear membrane.103 Blocking lamin A farnesylation,
by using farnesyl transferase inhibitors, improves the
dysmorphic nuclear shape by displacing prelamin A
to the nuclear interior; processing of the protein to its
mature form still fails, but the product is not held at
the NE by a persistent hydrophobic interaction.103,104

Similar observations were made for progerin.105 It is
also possible that retention of farnesylation at the C-
terminus of lamin A impacts its interaction with the
lamin B network, which normally remains perma-
nently farnesylated and forms a closely associated, but
separate fiber meshwork.106 Thus mixing of the 2 and
potential perturbation of their normal assembly could
also prove relevant in regard to formation of nuclear
membrane invaginations. Interestingly, other lamin A
mutants associated with Emery–Dreifuss muscular
dystrophy or Dunnigan-type familial partial lipodys-
trophy have also been shown to increase NR
prevalence.107

Other inducers of NR proliferation such as overex-
pression of INM protein LAP2b108 or nucleolar shut-
tling protein NOPP140109 have also been reported. It
should be noted, however, that overexpression of any
nuclear membrane protein will perturb the nuclear
envelope by changing protein overload and access for
interactions, which may result in a distorted nuclear
rim, but not necessarily in the NR structures as
defined earlier. Interestingly though, in certain cell
types knock-down of SUN proteins, components of
the linker of nucleoskeleton and cytoskeleton (LINC)
complex,110 can also increase abundance of type I
NR,43 presumably by decoupling the INM and ONM,
permitting a morphogenic process to operate on either
membrane alone.

NR development seems to depend on the enzyme
choline-phosphate cytidylyltransferase a (CCTa).46 It
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is the rate limiting enzyme in phosphatidylcholine
synthesis, and is crucial for membrane biosynthesis.45

CCTa is also believed to introduce positive membrane
curvature by its insertion into the INM.111 This causes
infolding of the INM, and may further support tubula-
tion of the NR. Interestingly, some interplay between
nuclear lamina and CCTa appears to occur in the pro-
cess of NR formation; knocking-down of either lamin
A/C or B1 expression significantly reduced NR devel-
opment, even after CCTa stimulation.112

Despite a clear requirement for new membrane
synthesis in order to form NR, as shown by experi-
ments investigating CCTa role, our knowledge of how
phospholipids are added to an expanding NE and NR
is rather limited. It would be of particular interest to
determine whether NR expansion is a result of the free
flow of lipids between peripheral endoplasmic reticu-
lum and NE, resulting in rearrangement of pre-
existing membranes, or a focal assembly process more
akin to coated pit formation exists.

Physiological regulation

The NR appears in many cell types with multiple
pathways contributing to its formation. It also occurs
as a physiological cellular response to external stimuli.
It has long been recognized that a structurally
advanced NR, referred to as the nucleolar channel sys-
tem (NCS) is a hallmark of the endometrium follow-
ing ovulation.113,114 Its transient presence manifests in
human endometrial cells during a 3 to 4 day period
during the midluteal, receptive phase of the menstrual
cycle.115 The NCS structure forms multilamellar and
tubular membrane cisternae within the nucleus that
are derived from the INM.109,114 These cisternae
exhibit the presence of NPC proteins and a subset of
NE-specific components.115 The proposed significance
of the NCS is that it is formed in preparation for blas-
tocyst attachment and implantation to the endome-
trium. This hypothesis is supported by several reports
demonstrating the absence or delayed development of
NCS in cases of unexplained primary infertility.116,117

It is further supported by observations that oral con-
traceptives interfere with NCS formation.118,119 It has
been demonstrated that the formation of NCS can be
elicited by the action of estrogen and progesterone at
the time of ovulation.120,121 While NCS represents a
unique tubular structure, its development from the
INM suggests that it may originate as an NR

invagination which, in response to hormones, gains
further complexity, possibly representing an advanced
and differentiated form of NR. Of note, human leuke-
mic cell line HL-60, after in vitro induced differentia-
tion into granulocytic form, develops highly
structured and unique NE invaginations named
nuclear envelope-limited chromatin sheets (ELCS).122

ELCS, predominantly observed in haematological
malignancies, is also proposed to originate as an INM
invagination,123 thus may share with NR similar
mechanisms for membrane curving, at least at the ini-
tial formation stage.

Recently, is has been demonstrated that rabbit pre-
implantation development is accompanied by changes
in NR abundance.124 Type II NR, although bountiful
in rabbit embryos in general, was consistently present
at the highest number at the 4-cell stage, after which
the number of NR invaginations declined. Interest-
ingly, it correlates with a significant nuclear volume
decline that begins at the 8-cell stage. Moreover, these
type II NR channels stained positively for NPC and
were in close contact with nucleolar precursor bodies,
thus suggesting a transient role for the NR in a high
protein import demand of nucleolar precursor bodies
during that precise developmental stage. Cell differen-
tiation state has also been shown to affect the abun-
dance of NR.70 Johnson and colleagues not only
observed transient NR channels in the nuclei of
embryonic cells, but also noted that differentiated cells
had significantly fewer nuclear invaginations, than
highly de-differentiated or cancerous cells. These
observations lend some support to the idea that
dynamic NR changes might play a role in the regula-
tion of gene expression programmes.

Concluding remarks

In conclusion, the NR forms a distinct and widespread
feature in nuclear organization, therefore gaining fur-
ther understanding of its form and function is an
important aspect of the cell biology of the nucleus.
Regulation of the NR is a dynamic process and a num-
ber of cellular pathways involved in its regulation have
already been identified. However, many questions still
remain unanswered. It would be of particular interest
to see if dedicated membrane bending machineries are
also involved in NR induction/stabilization. The origin
of components, such as phospholipid bilayer or
nuclear lamina which are the building blocks for the
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NR is also not well defined, and would certainly repay
further research.
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