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ABSTRACT The molecular chaperone machinery is important for the maintenance
of protein homeostasis within the cells. The principle activities of the chaperone ma-
chinery are to facilitate protein folding and organize conformationally dynamic client
proteins. Prominent among the members of the chaperone family are heat shock
protein 70 (Hsp70) and 90 (Hsp90). Like cellular proteins, viral proteins depend upon
molecular chaperones to mediate their stabilization and folding. Bluetongue virus
(BTV), which is a model system for the Reoviridae family, is a nonenveloped arbovi-
rus that causes hemorrhagic disease in ruminants. This constitutes a significant bur-
den upon animals of commercial significance, such as sheep and cattle. Here, for the
first time, we examined the role of chaperone proteins in the viral lifecycle of BTV.
Using a combination of molecular, biochemical, and microscopic techniques, we ex-
amined the function of Hsp90 and its relevance to BTV replication. We demonstrate
that Hsp70, the chaperone that is commonly usurped by viral proteins, does not in-
fluence virus replication, while Hsp90 activity is important for virus replication by
stabilizing BTV proteins and preventing their degradation via the ubiquitin-proteasome
pathway. To our knowledge this is the first report showing the involvement of Hsp90 as
a modulator of BTV infection.

IMPORTANCE Protein chaperones are instrumental for maintaining protein homeo-
stasis, enabling correct protein folding and organization; prominent members in-
clude heat shock proteins 70 and 90. Virus infections place a large burden on this
homeostasis. Identifying and understanding the underlying mechanisms that facili-
tate Bluetongue virus replication and spread through the usurpation of host factors
is of primary importance for the development of intervention strategies. Our data
identify and show that heat shock protein 90, but not heat shock protein 70, stabi-
lizes bluetongue virus proteins, safeguarding them from proteasomal degradation.
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binding at the N-terminal ATPase domain, mediating the closing of the dimer and that
reopens following ATP hydrolysis (6, 8). An inability of Hsp90 to successfully chaperone
its client proteins directs these into proteasomal degradation via the ubiquitin-
proteasome pathway (9-11). Given the importance of Hsp90 in mediating protein
homeostasis, accumulating evidence highlights the importance of this cellular protein
to virus replication, through either a direct or indirect reliance upon it (12).

Bluetongue virus (BTV), the prototype member of the Orbivirus genus in the Reo-
viridae family, is an insect-vectored emerging pathogen causing hemorrhagic disease in
wild ruminants and livestock (with mortality reaching 70% in sheep) in many parts of
the world. BTV is an icosahedral double-capsid virus with an architecturally complex
structure. The double-capsid is comprised of 7 structural proteins (VP1 to VP7) that are
organized in two concentric protein shells encasing a genome of 10 segmented
double-stranded RNAs (dsRNAs) (13-15). In addition to the seven structural proteins,
four nonstructural proteins (NS1 to NS4) are also synthesized in the infected host cells
(16, 17). BTV also utilizes a number of essential host factors to facilitate successful
infection, replication, and viral spread. These include, but are not limited to, the late
endosome-specific lipid lysobisphosphatidic acid (18), casein kinase 2 (19, 20), calpactin
(21), and the NEDD4 family of proteins (22), respectively. BTV has also been found to
require multi vesicular body components and exocytic pathway proteins for infectious
virus production (22).

In a recent study of the phosphoproteome of BTV-infected cells, our data predicted
the potential novel importance of Hsp90AB1, here referred to as Hsp90, activity in
BTV-infected cells, but not that of Hsp70 (23). We consequently set out to validate this
prediction and elucidate the role of Hsp90 during BTV infection. Here, we performed a
series of studies, using a combination of molecular, biochemical, and microscopic
techniques. Using specific pharmacological inhibitors and siRNA knockdowns, we
demonstrate that Hsp90 activity is required for BTV replication. This may enable the
development of novel therapeutic interventions during acute infections to mitigate
disease progression.

RESULTS

Inhibition of Hsp90 decreases viral protein levels in BTV-infected cells. In order
to obtain direct evidence that Hsp90 activity is involved during the virus life cycle, we
used a specific inhibitor for Hsp90, geldanamycin, which binds the N-terminal ATP/
ADP-binding domain of Hsp90 and interferes with its ability to stabilize client proteins
(6). HeLa cells were either pretreated 2 h prior to infection or 1 h postinfection (hpi) with
dimethyl sulfoxide (DMSO) or 300 nM geldanamycin and infected at a multiplicity of
infection (MOI) of 1. At 18 hpi, replicate samples were harvested for Western blot
analysis and virus titer determination. Lysates were then analyzed by Western blotting
using specific antibodies, which showed comparable decreases in both structural (VP2,
VP5, and VP7) and nonstructural (NS1, NS2, and NS3) protein levels, while Hsp90 protein
levels remained unperturbed by the inhibition (Fig. 1A). Densitometry quantification
confirmed significant decreases in protein levels between 70 and 95%; specifically, NS1
decreased ~70% = 10%, NS2 decreased ~80% =+ 11%, NS3 decreased ~95% =+ 2%,
VP2 decreased ~85% * 15%, VP5 decreased ~85% =+ 5%, and VP7 decreased ~70% =+
15%, normalized to GAPDH (glyceraldehyde-3-phosphate dehydrogenase), under both
experimental conditions (Fig. 1B). To address whether the inhibitor treatment de-
creased viral protein levels due to cellular toxicity, the effect of the inhibitor on cell
viability was assessed by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] assay. The data showed that 300 nM geldanamycin was not toxic to the Hela
cells at this concentration (Fig. 1C). Moreover, we also observed an ~2-log,, decrease
in virus titer under both conditions (Fig. 1G). Cumulatively, these data suggest that
Hsp90 is required for viral replication after cell entry.

Whether the BTV infection in natural host cells requires the same cellular chaperone,
we subsequently extended our study using sheep cells (PT cells), derived from a natural
host species. As described for Hela cells, the same experimental conditions were
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FIG 1 (Continued)

applied to sheep PT cells. At 18 hpi, Western blot analysis of infected cell lysates
showed comparable decreases of both structural (VP2 and VP5) and nonstructural (NS1,
NS2, and NS3) protein levels, whereas Hsp90 protein levels remained unperturbed by
the inhibition (Fig. 1D). Similar to the Hela cell infections, NS1 decreased ~65% = 12%,
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FIG 1 Inhibition of Hsp90 activity decreases viral protein levels in BTV-infected cells. HelLa cells (A to C)
and sheep PT cells (D to F) were treated with DMSO or 300 nM geldanamycin for 2 h prior to or at 1 hpi
with BTV1 (MOI = 1) and then harvested at 18 hpi .As controls, mock-infected and DMSO-treated cells
were included. (A and D) Samples were analyzed by Western blotting with specific antibodies as
indicated. (B and E) Densitometry analysis results for the Western blots are expressed as percentages,
normalized to GAPDH. (C and F) Viability of cells treated with DMSO or 300 nM geldanamycin for 24 h.
(G) Virus titers (PFU/ml) derived from Hela and sheep PT cells treated as described above. (H) Focus-
forming units (FFU)/ml at 18 hpi using HeLa cells infected with BTV1 (MOI = 1) and treated as described
above. (I) Immunofluorescence microscopy of Hela cells and virus inclusion bodies denoted by NS2
staining depicts infected cells. White bars, 10 um. Error bars represent the SD values of stimulations from
three independent experiments. An asterisk (*) denotes a significant difference from the control (P <
0.05).

NS2 decreased ~80% = 5%, NS3 decreased ~90% = 5%, VP2 decreased ~85% = 10%,
and VP5 decreased ~75% = 15% (Fig. 1E). As had been done for Hela cells, we
examined whether the inhibitor treatment decreased viral protein levels in PT cells due
to cellular toxicity; cell viability was assessed by an MTT assay. The data showed that
300 nM geldanamycin was not toxic to the PT cells at this concentration (Fig. 1F).
Further, as observed in Hela cells, we also observed an ~2-log,, decrease under both
conditions (Fig. 1G). Cumulatively, there appeared to be no significant difference in the
examined protein levels nor virus titers between samples treated prior to infection or
postinfection. To further address whether the decrease in viral protein levels was due
to a difference in the percentage of cells successfully infected in the DMSO and
geldanamycin-treated samples, we conducted a focus-forming assay and confocal micros-
copy. Hela cells were treated as described above and fixed 18 hpi for the focus-forming
assay to determine the focus-forming units (FFU)/ml and indirect immunofluorescence
using the NS2 antibody as a marker for infection. Determination of the FFU/ml showed
no difference between DMSO and geldanamycin-treated samples (Fig. TH). Further-
more, confocal microscopy confirmed the successful infection of the cells under both
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FIG 2 siRNA knockdown of Hsp90 decreases BTV protein levels. HeLa cells were either mock transfected
or transfected with 400 nM control siRNA or Hsp90 siRNA for 24 h. Transfected cells were then infected
with BTV1 (MOI = 1) for 18 h. (A) Samples were analyzed by Western blotting with specific antibodies as
indicated. (B) Densitometry analysis results for the Western blots are expressed as percentages repre-
senting the NS1, NS2, and Hsp90 protein levels, normalized to GAPDH. (C) Viability of cells transfected
with mock, negative-control siRNA, and Hsp90 siRNA for 42 h. (D) Virus titers (PFU/ml) derived from Hela
cells at 18 hpi. Error bars represent the SD values of stimulations from three independent experiments.
An asterisk (*) denotes a significant difference from the control (P < 0.05).

conditions (Fig. 11). These data indicate that Hsp90 inhibition affected the viral life cycle
after virus entry, across different cell lines, in both Hela cells (Fig. 1A, B, C, G, H, and 1)
and sheep PT cells (Fig. 1D, E, F, and G).

To support the data obtained using the Hsp90 inhibitor and mitigate the possibility
of off-target effects, we subsequently undertook small interfering RNA (siRNA) knock-
down experiments targeting Hsp90. HelLa cells were mock transfected or transfected
either with a control siRNA or with Hsp90 siRNA for 24 h prior to infection. At 24 h
posttransfection (hpt), the samples were assessed to confirm the successful knockdown
of Hsp90 protein levels prior to infection. Cells were then infected with BTV, harvested
18 hpi, and analyzed by Western blotting (Fig. 2A). Densitometry quantification con-
firmed that at the time of infection (24 hpt), Hsp90 protein levels normalized to GAPDH
had decreased by ~60% = 10%. Subsequent to infection, we observed a decrease in
NS1 and NS2 protein levels that correlated to the corresponding decreased levels of
Hsp90. The level Hsp90 protein at 18 hpi was decreased by ~60% = 4%. This decrease
correlated with an ~60% = 12% decrease in NS1 protein levels and an ~70% * 8%
decrease in NS2 protein level (Fig. 2B). To address whether the siRNA knockdown
decreased viral protein levels due to cellular toxicity, the effect of the knockdown on
cell viability was assessed by using an MTT assay. The data showed that Hela cell
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viability decreased ~24% * 9% using the Hsp90 siRNA; however, this decrease was
comparable to the decrease observed using the negative-control siRNA, which de-
creased cell viability by ~15% = 7% (Fig. 2C). Furthermore, when supernatants from
Hsp90 siRNA knockdown samples were analyzed, we observed a decrease in virus titer
of ~3 log,, (Fig. 2D). The decreases in viral protein levels and virus titers observed
using siRNA knockdown of Hsp90 correlate with the decreases observed using the
chemical Hsp90 inhibitor.

To further elucidate how inhibition of Hsp90 by geldanamycin was affecting virus
replication, we examined viral genome and protein synthesis alongside viral particle
assembly during BTV infection at 4, 8, and 18 hpi Concurrently, we monitored the host
cell protein CK2a, which forms a complex with Hsp90 (24, 25) and is also essential for
BTV virus replication (20). HeLa cells were mock infected or infected with BTV (MOI = 1)
and treated with DMSO or 300 nM geldanamycin at 1 hpi. Lysates were then analyzed
by Western blotting using specific antibodies, which showed comparable decreases of
both structural (VP5 and VP7) and nonstructural (NS2) protein levels, while host cell
Hsp90 and CK2a protein levels remained unperturbed by the inhibition (Fig. 3A).
Densitometry quantification confirmed significant decreases in viral protein levels at all
examined time points. Specifically, at 4 hpi NS2 decreased ~75% * 7%, VP5 decreased
~79% * 8%, and VP7 decreased ~75% = 12%. At 8 hpi NS2 decreased ~74% * 7%,
VP5 decreased ~74% = 5%, and VP7 decreased ~78% = 5%, and at 18 hpi NS2
decreased ~80% = 5%, VP5 decreased ~79% =+ 3%, and VP7 decreased ~76% * 5%,
normalized to GAPDH (Fig. 3B). To assay dsRNA synthesis, we quantified viral genome
copy numbers using quantitative reverse transcription-PCR (qRT-PCR). Samples were
treated and harvested as described above. Viral RNA was isolated and, using segment
6 as a genome representative, quantified. The qRT-PCR comparison results of
DMSO-treated and geldanamycin-treated samples showed that at 4 hpi there was
no significant decrease in genome copy numbers. However, 8 hpi the genome copy
numbers had decreased ~60% = 10%, and at 18 hpi the genome copy numbers
had decreased ~94% = 6% (Fig. 3C). Furthermore, when supernatants of samples
were analyzed, the kinetics of virus production showed that geldanamycin treat-
ment decreased the virus titer at 8 and 18 hpi by ~2 to 3 log,, compared to the
DMSO-treated control (Fig. 3D).

Interaction of Hsp90 and BTV proteins. To investigate the interaction between
Hsp90 and BTV proteins, coimmunoprecipitation (Co-IP) assays were performed. To
examine the interaction of BTV proteins with Hsp90, Hela cells were either mock
infected or infected with BTV, and at 17 hpi the cells were treated with DMSO or 300 nM
geldanamycin for 1 h. Cells were harvested 18 hpi in the presence of DMSO or 300 nM
geldanamycin. Cell lysates were incubated with protein A-Sepharose beads conjugated
with an isotype control or anti-Hsp90 antibody. The protein complexes coimmunopre-
cipitated with the beads were eluted and analyzed by Western blotting with antibodies
against Hsp90, VP2, VP5, VP7, NS1, NS2, NS3, Hsp70, CK2«, and GAPDH (Fig. 4A).
Alongside Hsp90, coimmunoprecipitating bands were detected for VP2, VP5, VP7, NS1,
NS2, NS3, Hsp70, and CK2a. No GAPDH was detectable in the immunoprecipitated
samples. Samples derived from cells that had been treated for 1h with 300 nM
geldanamycin showed significantly lower quantities of coimmunoprecipitating bands.
Densitometry quantification confirmed significant decreases of viral protein levels
between 80 and 95%, specifically, NS1 decreased ~92% = 7%, NS2 decreased ~95% =+
4%, NS3 decreased ~89% * 10%, VP2 decreased ~83% = 12%, VP5 decreased
~83% * 12%, and VP7 decreased ~92% = 3%, normalized to the Hsp90 eluted
from the beads (Fig. 4B). There was no significant decrease in Hsp70 and CK2« host
protein levels, indicating that the Hsp90 chaperone complexes remained intact.
These results show that inhibition of the chaperone function of Hsp90 via geldana-
mycin decreased the association of the assessed viral proteins with Hsp90.

Inhibition of the proteasome pathway decreases viral protein degradation. To
investigate further the direct influence of Hsp90 on BTV proteins in the absence of virus
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FIG 3 Inhibition of Hsp90 activity during an infection time course decreases viral replication. HeLa cells
were mock infected or infected with BTV1 (MOl = 1) and treated with DMSO or 300 nM geldanamycin at
1 hpi. The cells were harvested 4, 8, and 18 hpi. (A) Samples were analyzed by Western blotting, using
specific antibodies as indicated. (B) Densitometry analysis results for the Western blots are expressed as
percentages representing NS2, VP5, VP7, Hsp90, and CK2a protein levels, normalized to GAPDH. (C) Viral
genomic copy numbers using segment S6 were quantified by qRT-PCR. Quantities of S6 in geldanamycin-
treated samples were compared to the DMSO-treated control in the same experiment. (D) Virus titers
(PFU/ml) derived from Hela cells treated as described above. Error bars represent the SD values of
stimulations from three independent experiments. An asterisk (*) denotes a significant difference from
the control (P < 0.05).

replication, we examined the transient expression of individual structural and nonstruc-
tural virus proteins. We first assessed the chaperone function of Hsp90 to determine
whether the decrease in the expression of the viral proteins was due to proteasomal
degradation via the ubiquitin-proteasome pathway. Hela cells were transfected with
either a plasmid expressing a viral protein (NS1, NS2, NS3, VP2, VP5, and VP7) or a
enhanced green fluorescent protein (eGFP)-control plasmid for 24 h and subsequently
treated with DMSO, geldanamycin (300 nM), the proteasome inhibitor MG132 (250 nM),
or geldanamycin and MG132 combined for a further 24 h. Cell lysates were then
analyzed by Western blotting with specific antibodies for each protein (Fig. 5A to D). As
shown in Fig. 4E, geldanamycin treatment decreased protein levels between 50 and
80%, specifically, NST by ~60% = 13%, NS2 by ~75% = 13%, NS3 by ~70% = 10%,
VP2 by ~50% = 14%, VP5 by ~80% = 7%, and VP7 by ~60% =+ 13%. These decreases
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FIG 4 Hsp90 coimmunoprecipitation analysis of BTV proteins. HeLa cells were mock infected or infected
with BTV1 (MOI = 1), and at 17 hpi the cells were treated with DMSO or 300 nM geldanamycin for 1 h.
The cells were harvested 18 hpi in the presence of DMSO or 300 nM geldanamycin. A Co-IP assay was
performed with an anti-Hsp90 antibody (11405-1-AP). (A) Samples were analyzed by Western blotting
with specific antibodies as indicated for coimmunoprecipitating BTV proteins. (B) Densitometry analysis
results for Western blotting are expressed as percentages representing NS1, NS2, NS3, VP2, VP5, VP7,
Hsp70, and CK2a protein levels, normalized to Hsp90. Error bars represent the SD values of stimulations
from three independent experiments. An asterisk (*) denotes a significant difference from the control
(P < 0.05).

correlate with the decreases observed during a viral infection (Fig. 1B). There was no
significant change in protein levels associated with the proteasomal inhibitor MG132
treatment. However, in the presence of geldanamycin and the proteasomal inhibitor
during the combined treatment, viral protein levels were restored, showing a signifi-
cant recovery from geldanamycin-only treatment levels. These data confirmed a role for
Hsp90 in stabilizing these viral proteins, preventing their turnover via the proteasome
pathway. Further, this effect appeared to be specific for the assayed viral proteins, since
the protein levels of the transfected eGFP-control showed no significant change during
the same treatment regime.

In contrast to Hsp90 inhibition, inhibition of Hsp70 does not affect BTV protein
levels or virus titer. Hsp90 can function in concert with Hsp70 via the cochaperone
Hsp70/Hsp90 organizing protein (HOP). This creates an active complex in which client
proteins are transferred from Hsp70 to Hsp90 to advance their folding (26, 27). Here, we
assessed what effect the inhibition of Hsp70 had on BTV replication. To inhibit Hsp70
function, we used a specific inhibitor of Hsp70, VER-155008 (28). HeLa cells were either
pretreated 2 h prior to infection or at 1 hpi with either DMSO or 1 or 10 wM VER-155008.
Under both conditions, inhibition of Hsp70 did not result in any significant changes,
neither increasing nor decreasing the levels of structural protein (VP5 and VP7) or the
level of the nonstructural protein (NS2) at the indicated concentrations (Fig. 6A and B).
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cin, 250 nM MG132, or geldanamycin and MG132 combined for 24 h. (A to D) Samples were harvested 48 hpt and
analyzed by Western blotting with specific antibodies as indicated. (E) Densitometry analysis results for the Western
blots are expressed as percentages, normalized to GAPDH. Error bars represent the SD values of stimulations from
three independent experiments. An asterisk (*) denotes a significant difference from the control (P < 0.05).

To examine whether the inhibitor concentrations used resulted in cellular toxicity, the
effect of the inhibitor on cell viability was assessed by an MTT assay. The data showed
that 1T or 10 uM VER-155008 was not toxic to Hela cells (Fig. 6C). Furthermore, we did
not observe any effect on virus titers, which neither increased nor decreased (Fig. 6G).
Replicate experiments using sheep PT cells confirmed the observations made using
Hela cells. Analysis of viral protein levels showed no significant increases or decreases
(Fig. 6D and E). Cell viability was also not found to be compromised (Fig. 6F). Further-
more, there was no increase or decrease in virus titer evident (Fig. 6G). Cumulatively,
these data indicate that Hsp70 inhibition in HeLa and sheep PT cells does not affect BTV
protein levels or virus titer, mediating neither increases nor decreases, independent of
inhibition prior to or after infection. To mitigate the possibility of off-target effects or
that the inhibitor concentrations used were insufficient to affect BTV, we undertook
siRNA knockdown experiments targeting Hsp70. Hela cells were mock transfected or
transfected either with a control siRNA or with Hsp70 siRNA for 24 h prior to infection.
At 24 hpt, the samples were assessed to confirm the successful knockdown of Hsp70
protein levels prior to infection. The cells were then infected with BTV, harvested 18 hpi,
and analyzed by Western blotting (Fig. 7A). Densitometry quantification confirmed that
at the time of infection (24 hpt) the Hsp70 protein levels normalized to GAPDH had
decreased by ~54% = 8%. Upon infection, we observed no increase or decrease in NS1,
NS2, or VP5 protein levels that correlated to the corresponding decreased levels of
Hsp70 protein. The level Hsp70 protein at 18 hpi was decreased by ~60% = 3% (Fig.
7B). To address whether the siRNA knockdown of Hsp70 resulted in cellular toxicity, cell
viability was assessed by an MTT assay. The data showed that Hela cell viability
decreased ~30% = 8% using the Hsp70 siRNA; however, this decrease was comparable
to the decrease observed using the negative-control siRNA, which decreased cell
viability by ~15% = 7% (Fig. 7C). Furthermore, when the supernatants from the Hsp70
siRNA knockdown samples were analyzed, we observed no increase or decrease in virus
titers (Fig. 7D). Cumulatively, the siRNA knockdown of Hsp70 correlates with the data
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and E) Densitometry analysis results for Western blots are expressed as percentages, normalized to
GAPDH. (C and F) Viability of cells treated with DMSO or 1 or 10 uM VER-155008 for 24 h. (G) Virus titers
(PFU/mI) derived from Hela and PT cells infected with BTV1 (MOI = 1) and treated as described above.
Error bars represent the SD values of stimulations from three independent experiments. An asterisk (*)
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FIG 7 siRNA knockdown of Hsp70 does not affect BTV protein levels. HelLa cells were either mock
transfected or transfected with 400 nM control siRNA or Hsp70 siRNA for 24 h. Transfected cells were then
infected with BTV1 (MOI = 1) for 18 h. (A) Samples were analyzed by Western blotting with specific
antibodies as indicated. (B) Densitometry analysis results for Western blots are expressed as percentages
representing NS1, NS2, VP5, and Hsp70 protein levels, normalized to GAPDH. (C) Viability of cells
transfected with mock, negative-control siRNA and Hsp70 siRNA for 42 h. (D) Virus titers (PFU/ml) derived
from Hela cells 18 hpi. Error bars represent the SD values of stimulations from three independent
experiments. An asterisk (*) denotes a significant difference from the control (P < 0.05).

using the inhibitor VER-155008, showing no significant increases or decreases in BTV
protein levels or virus titers.

DISCUSSION

To date, viral reliance upon Hsp90 appears pervasive, with viral replication showing
a hypersensitivity to Hsp90 inhibition at concentrations that do not compromise
cellular viability (12). This hypersensitivity may derive from unique aspects of the viral
proteome and the burden that it places upon the host-cell protein folding machinery.
First, the viral proteins may be structurally complex, which entails a susceptibility to
misfolding and aggregation, requiring extensive protein stabilization. Second, the
proteins are synthesized in copious quantities during a brief period of time that
generates a high demand for chaperones (12, 29-32). These aspects may combine and
create a vulnerability to even minor perturbations to the host cell protein folding
capacity. Furthermore, specific examples show how certain RNA viruses, such as human
immunodeficiency virus type 1 (33), Ebola virus (34), vesicular stomatitis virus (35),
poliovirus (31), mumps virus (36), and hepatitis C virus (37) exhibit a dependency on
Hsp90 to facilitate transcription and cell survival, virus propagation, protein folding, and
replication complex formation. Thus far, for members of the Reoviridae, it has been
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reported that Hsp90 facilitates dimerization of nonstructural protein 3 (NSP3) of rota-
virus (38) and participates in the biogenesis of trimeric cellular attachment protein
sigmal of reovirus (39).

During the Hsp90 inhibition experiments with geldanamycin, we found that inhibi-
tion prior to virus entry did not significantly impair virus replication beyond the
significant decreases that were observed during inhibition postinfection. This signified
that Hsp90 may not have played a role during virus entry versus that reported for
dengue virus (40). Furthermore, the significant decrease in viral protein levels and titers
could also be recapitulated in a natural host-derived cell line, the sheep PT cells. For
both cell lines, the effective concentration of geldanamycin did not significantly
influence cell viability, as measured by an MTT assay, while proving detrimental to BTV
replication. This is significant for showcasing the possibility of a therapeutic interven-
tion using geldanamycin in a natural host of BTV.

A time-course experiment examining viral and host cell protein levels, viral dsRNA
synthesis, and virus titers at 4, 8, and 18 hpi showed that profile differences already
existed at 4 hpi. Although protein levels at 4 hpi were significantly lower compared to
the DMSO control, the viral genomic copy numbers had not significantly decreased.
This indicated that the low abundance of viral protein present in the geldanamycin-
treated samples was not due to a lack in viral genomes that could function as templates
for viral mMRNA synthesis. Furthermore, as the infection progressed, at 8 hpi, in addition
to decreased viral protein levels, viral genome copy numbers were also decreased
compared to the DMSO control. This could indicate that a lack of sufficient viral proteins
to drive virus replication resulted in the discrepancy in viral genome copy numbers. At
18 hpi, as observed at 8 hpi, both viral protein levels and genome copy numbers were
significantly lower compared to the DMSO control, with the genome copy numbers
having decreased further relative to the DMSO control. Overall, the lack of viral proteins
and viral genomes was reflected in the decreased viral titers that were observed at
these latter time points. Furthermore, at all assayed time points, CK2« protein levels
remained unperturbed, suggesting that inhibition of Hsp90 did not affect an essential
host protein for BTV replication.

During the Hsp70 inhibition experiments with VER-155008, we could not detect any
significant effect on BTV replication. Inhibition of Hsp70 did not significantly decrease
or increase viral protein levels (structural and nonstructural) or titers in both HelLa and
sheep PT cells. This clearly separates BTV from rotavirus, in which it has previously been
reported that inhibition of Hsp70 mediated increases in structural protein levels and
virus titers (41). In regard to cell viability, in both cell lines the concentrations of
VER-155008 that were used had no significant effect. Furthermore, the observed
decreases in cell viability, as measured by the MTT assays, for siRNA knockdowns of
Hsp70 and Hsp90 could be due to a cellular antiproliferative response, which has been
previously observed for Hsp70 and Hsp90 siRNA knockdowns (42, 43). However, this
effect was compensated for by the equal loading of protein samples during Western
blotting.

Mechanistically, while it has been reported that the active HOP/Hsp70/Hsp90 com-
plex facilitates client protein folding (26, 27), both Hsp70 and Hsp90, in conjunction
with the cochaperone carboxyl terminus of Hsc70-interacting protein (CHIP), can
facilitate the ubiquitination of defective client proteins for proteasomal degradation
(44). Our data showed that Hsp90 could coimmunoprecipitate the viral proteins NST,
NS2, NS3, VP2, VP5, and VP7 and the host cell proteins Hsp70 and CK2a. The presence
of Hsp70 and CK2« indicated that the cochaperone protein complexes formed with
Hsp90 remained intact and unperturbed. Further, when singly expressing these pro-
teins, it proved possible to show that the chaperone function of Hsp90 prevented the
viral proteins from undergoing proteasomal degradation, since blocking proteasomal
function using MG132 in the presence of geldanamycin restored viral protein levels.
This shows that the Hsp90 chaperoning of viral proteins and preventing their degra-
dation via the proteasome is a mechanism of action exploited by BTV. Furthermore,
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that Hsp70 inhibition did not influence BTV protein levels suggests that it was not as
essential as Hsp90 for preventing the proteasomal degradation of BTV proteins.

Cumulatively, our data show that during a BTV infection Hsp90 performs in its
canonical capacity, functioning to chaperone and stabilize viral proteins, safeguarding
them from proteasomal degradation. Inhibition of Hsp90 did not result in decreased
levels of the host cell CK2« protein, which is an Hsp90 interactor and client (24, 25) and
is also essential for BTV replication (20). This indicated that the effect of inhibition of
Hsp90 activity on BTV replication was not an off-target effect due to depriving BTV of
CK2a. Furthermore, these data suggest that throughout the infection, inhibition
of Hsp90 resulted in the proteasomal degradation of viral proteins, which led to an
inability to efficiently replicate viral genomes and produce infectious virus particles. As
had been observed with Hsp90, a similar function could not be confirmed for Hsp70, as
viral protein levels remained unperturbed by either pharmacological intervention or
siRNA knockdown of Hsp70. In conclusion, our study demonstrates that Hsp90 may be
listed among the expanding pantheon of host factors coopted by BTV to facilitate virus
replication.

MATERIALS AND METHODS

Cell lines and virus. BSR cells (BHK-21 subclone, BHK21 cells (ATCC CCL10), HeLa cells (ATCC CCL-2),
and sheep PT cells (ovine-derived kidney cells, ATCC CRL-1633) were maintained in Dulbecco modified
Eagle medium (Sigma-Aldrich Co.). The medium was supplemented with 10% (vol/vol) fetal bovine
serum (FBS; Invitrogen), 100 U of penicillin/ml and 100 ug of streptomycin/ml (Sigma-Aldrich Co.), and
minimal essential medium nonessential amino acids (Gibco). BTV serotype 1 (BTV-1) stock was obtained
by infecting BSR cells at a low MOI and harvested when a 100% cytopathic effect was evident. Virus
stocks were stored at 4°C.

Plasmids. Transient protein expression plasmids were previously generated by cloning the open
reading frames downstream of the chicken B-actin promoter of the pCAGGS expression vector reported
previously (45, 46) to generate pCAG VP2, pCAG VP5, pCAG VP7, pCAG NS1, pCAG NS2, pCAG NS3, and
eGFP.

Pharmacological reagents. The HSP90 inhibitor geldanamycin was purchased from InvivoGen, and
the HSP70 inhibitor VER-155008 was purchased from Sigma-Aldrich Co. All reagents were used at the
concentrations specified.

Immunofluorescence microscopy. Hela cells were grown on glass coverslips to 90% confluence
prior to infection with BTV1 (MOI = 1). At specified times, the cells were washed with phosphate-buffered
saline (PBS) before being fixed for 10 min in 4% paraformaldehyde. Cells were permeabilized and blocked
using 1% bovine serum albumin (BSA) in 0.1% PBS-Tween for 1 h to permeabilized the cells and block
nonspecific protein-protein interactions. The cells were then incubated with the primary antibody
primary antibody NS2 (guinea pig anti-NS2 serum) for 1 h at room temperature. The cells were washed
in PBS before incubation with secondary antibody [goat anti-guinea pig IgG(H+L) secondary antibody],
Alexa Fluor 488 conjugate-A-11073 [Thermo Fisher]), and Hoechst 33342 (Invitrogen) for 1 h at room
temperature. The cells were washed with PBS before being mounted on slides on mounting medium
(Invitrogen).

siRNA knockdowns. Hela cells were transfected with 400 nM Silencer Negative Control No. 1 siRNA
(AM4611; Ambion), with HSP90AB1 Silencer validated siRNA (AM51331; Ambion), or with Hsp701A
Silencer select predesigned siRNA (s194536; Thermo Fisher) using the Lipofectamine RNAIMAX transfec-
tion reagent (13778-100; Invitrogen). Transfections were carried out according to the supplier’s instruc-
tions. Cells were transfected for 24 h prior to BTV1 infection (MOl = 1). Samples were harvested at the
indicated time points for Western blot analysis or plaque assay.

Western blot analysis. SDS-PAGE gels were transferred via a semidry blotter to polyvinylidene
difluoride transfer membranes and blocked for 4 h with TBS-T containing 10% (wt/vol) milk powder.
Primary antibodies were used to detect Hsp90 (rabbit anti-HSP90AB1 [11405-1-AP; Proteintech]), Hsp70
(mouse anti-Hsp70 [ab2787]), CK2a (rabbit anti-CSNK2A1 [ab10466]), NS2 (guinea pig anti-NS2 serum),
VP2 (rabbit anti-VP2 serum), VP5 (guinea pig anti-VP5 serum), VP7 (guinea pig anti-VP7 serum), NS1
(rabbit anti-NS1 serum), NS3 (rabbit anti-NS3 serum), GFP (mouse anti-GFP [G1546-200UL]; Sigma-Aldrich
Co), and GAPDH (rabbit anti-GAPDH (ab9485; Abcam). These were added to blocked membranes and
incubated overnight at 4°C. Secondary antibodies included an alkaline phosphatase-conjugated goat
anti-guinea pig immunoglobulin G (1:10,000; Sigma-Aldrich Co., A5062), goat anti-rabbit (A0418), and an
alkaline phosphatase-conjugated goat anti-mouse (A3562) IgG (1:10,000; Sigma-Aldrich Co.), respectively.

Coimmunoprecipitation assay. Hela cells were grown in 10-cm tissue culture dishes. Mock infec-
tions and infections were carried out according to a standard protocol. At 17 hpi, the cells were treated
with DMSO or 300 nM geldanamycin for 1 h prior to harvesting. Cell lysates (1 ml) were incubated with
100 ul of a protein A-Sepharose bead slurry (P3391; Sigma-Aldrich) conjugated to isotype control (rabbit
anti-FLAG [F7425; Sigma-Aldrich]) or Hsp90 antibody (rabbit anti-HSP90AB1 [11405-1-AP; Proteintech]).
Lysate and beads were gently mixed overnight on ice. Subsequently, the mixture was centrifuged at
2,000 X g for 2 min at 4°C, and the supernatant was discarded. The beads were washed four times with
lysis buffer. The beads were resuspended in 50 ul of 2X SDS sample buffer and heated at 100°C for 5 min,
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followed by centrifugation at 2,000 X g for 3 min. The proteins were separated by electrophoresis
through SDS-PAGE gels, and Western blot analysis was carried out as described above.

MTT assay. The cell viability of HeLa and PT cells was measured by using an MTT assay (Sigma). In

brief, HeLa and PT cells were seeded in 96-well plates at a density of 10* cells per well in 100 ul of
medium. The plates were incubated in a 37°C humidified incubator for adherence overnight. The cells
were then treated with the indicated inhibitor (24 h) or transfected with the indicted siRNA (42 h). The
formazan dye was detectable by spectrophotometric analysis (As,,; Spectramax plate reader).

Plaque assays. Hela cells were grown in 12-well plates. Cells were either pretreated for 2 or 1 h
postinfection with 300 nM geldanamycin or 1 or 10 uM VER-155008 or DMSO control. Cells were infected
with BTV1 or the supernatant of previously harvested cells. After adsorption for 30 min at 4°C, the cells
were incubated at 37°C in growth medium for 1 h in the presence of inhibitor. The growth medium was
removed and replaced with 0.6% Avicel (FMC BioPolymer) overlay medium (Eagle minimal essential
medium containing L-glutamine, 10% FBS, and antibiotics) in conjunction with inhibitors, where appro-
priate. Cells were incubated at 37°C for 72 h before being fixed with 4% paraformaldehyde and
subsequently stained with crystal violet. Titers are expressed as PFU/ml.
Focus-forming assay. Hela cells were grown in 12-well plates. Cells were either pretreated for 2 h
or at 1 h postinfection with 300 nM geldanamycin or DMSO control. The cells were infected with BTV1.
After adsorption for 30 min at 4°C, the cells were incubated at 37°C in growth medium for 1 h in the
presence of inhibitor. Growth medium was removed and replaced with fresh medium containing either
300 nM geldanamycin or DMSO control. The cells were incubated at 37°C for 18 h before being fixed with
4% paraformaldehyde. The cells were permeabilized with ice-cold methanol for 10 min, washed with PBS,
and then blocked with 1% BSA in PBS for 1 h at room temperature. The cells were incubated with the
primary antibody NS2 (guinea pig anti-NS2 serum) for 4 h at room temperature and then washed in PBS
before being incubated with secondary antibody alkaline phosphatase-conjugated goat anti-guinea pig
1gG (1:10,000; Sigma-Aldrich Co., A5062) for 1 h at room temperature. The cells were then washed with
PBS before incubation with BCIP/NBT chromogenic substrate.

qRT-PCR. For the detection of genomic single-stranded RNA, BTV-1 segment 6 were analyzed by

gRT-PCR using the primers reported by Toussaint et al. (47). BTV viral RNAs from the experiments were
reverse transcribed with segment 6 forward primer (GGCAACYACCAAACATGGA) into cDNA using Re-
verseAid premium reverse transcriptase (Thermo) and quantified with suitable primers using the 7500
Fast Real-Time PCR system and SYBR select master mix (Applied Biosystems). Three independent
experiments were undertaken, and qPCR was performed in duplicate. Standard deviations (SD) from the
three experiments were calculated.
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