
Citation: Petrillo, A.; Fusco, R.; Di

Bernardo, E.; Petrosino, T.; Barretta,

M.L.; Porto, A.; Granata, V.; Di

Bonito, M.; Fanizzi, A.; Massafra, R.;

et al. Prediction of Breast Cancer

Histological Outcome by Radiomics

and Artificial Intelligence Analysis in

Contrast-Enhanced Mammography.

Cancers 2022, 14, 2132. https://

doi.org/10.3390/cancers14092132

Academic Editors: Enrico Cassano,

Filippo Pesapane and Oliver J. Ott

Received: 14 March 2022

Accepted: 21 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Prediction of Breast Cancer Histological Outcome
by Radiomics and Artificial Intelligence Analysis in
Contrast-Enhanced Mammography
Antonella Petrillo 1,* , Roberta Fusco 2, Elio Di Bernardo 2, Teresa Petrosino 1, Maria Luisa Barretta 1,
Annamaria Porto 1, Vincenza Granata 1 , Maurizio Di Bonito 3, Annarita Fanizzi 4, Raffaella Massafra 5,
Nicole Petruzzellis 5, Francesca Arezzo 6 , Luca Boldrini 7 and Daniele La Forgia 8

1 Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
t.petrosino@istitutotumori.na.it (T.P.); m.barretta@istitutotumori.na.it (M.L.B.);
a.porto@istitutotumori.na.it (A.P.); v.granata@istitutotumori.na.it (V.G.)

2 Medical Oncology Division, Igea SpA, 80013 Naples, Italy; r.fusco@igeamedical.com (R.F.);
e.dibernardo@igeamedical.com (E.D.B.)

3 Pathology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
m.dibonito@istitutotumori.na.it

4 Direzione Scientifica—IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124 Bari, Italy;
a.fanizzi@oncologico.bari.it

5 SSD Fisica Sanitaria—IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124 Bari, Italy;
r.massafra@oncologico.bari.it (R.M.); n.petruzzellis@oncologico.bari.it (N.P.)

6 Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of
Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy; francescaarezzo@libero.it

7 Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico
Universitario A. Gemelli IRCCS, 00168 Roma, Italy; luca.boldrini@policlinicogemelli.it

8 Struttura Semplice Dipartimentale di Radiodiagnostica Senologica—IRCCS Istituto Tumori Giovanni Paolo II,
Via Orazio Flacco 65, 70124 Bari, Italy; d.laforgia@oncologico.bari.it

* Correspondence: a.petrillo@istitutotumori.na.it

Simple Summary: The assessment of breast lesions through mammographic images is currently
challenging, especially in dense breasts. Contrast-enhanced mammography has been shown to
overcome the limitations of standard mammography but it greatly depends on the interpretative
skills of the physician. The aim of this study was to evaluate the potentialities of statistical and
artificial intelligence algorithms as a tool for helping the radiologists in the interpretation of images.
The most remarkable results were achieved in discriminating benign from malignant lesions and
in the identification of the presence of the hormone receptor. A tool to support the physician’s
decision-making process may be designed starting from simple logistic regression and tree-based
algorithms. This type of tool may help the radiologist in assessing the investigated breast and in
choosing the appropriate follow-up without resorting to histology.

Abstract: Purpose: To evaluate radiomics features in order to: differentiate malignant versus benign
lesions; predict low versus moderate and high grading; identify positive or negative hormone recep-
tors; and discriminate positive versus negative human epidermal growth factor receptor 2 related
to breast cancer. Methods: A total of 182 patients with known breast lesions and that underwent
Contrast-Enhanced Mammography were enrolled in this retrospective study. The reference standard
was pathology (118 malignant lesions and 64 benign lesions). A total of 837 textural metrics were ex-
tracted by manually segmenting the region of interest from both craniocaudally (CC) and mediolateral
oblique (MLO) views. Non-parametric Wilcoxon–Mann–Whitney test, receiver operating charac-
teristic, logistic regression and tree-based machine learning algorithms were used. The Adaptive
Synthetic Sampling balancing approach was used and a feature selection process was implemented.
Results: In univariate analysis, the classification of malignant versus benign lesions achieved the best
performance when considering the original_gldm_DependenceNonUniformity feature extracted on
CC view (accuracy of 88.98%). An accuracy of 83.65% was reached in the classification of grading,
whereas a slightly lower value of accuracy (81.65%) was found in the classification of the presence
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of the hormone receptor; the features extracted were the original_glrlm_RunEntropy and the origi-
nal_gldm_DependenceNonUniformity, respectively. The results of multivariate analysis achieved the
best performances when using two or more features as predictors for classifying malignant versus
benign lesions from CC view images (max test accuracy of 95.83% with a non-regularized logistic
regression). Considering the features extracted from MLO view images, the best test accuracy (91.67%)
was obtained when predicting the grading using a classification-tree algorithm. Combinations of
only two features, extracted from both CC and MLO views, always showed test accuracy values
greater than or equal to 90.00%, with the only exception being the prediction of the human epidermal
growth factor receptor 2, where the best performance (test accuracy of 89.29%) was obtained with the
random forest algorithm. Conclusions: The results confirm that the identification of malignant breast
lesions and the differentiation of histological outcomes and some molecular subtypes of tumors
(mainly positive hormone receptor tumors) can be obtained with satisfactory accuracy through
both univariate and multivariate analysis of textural features extracted from Contrast-Enhanced
Mammography images.

Keywords: Contrast-Enhanced Mammography (CEM); Dynamic Contrast Magnetic Resonance
Imaging (DCE-MRI); radiomics; artificial intelligence

1. Introduction

Mammography is one of the main techniques in the diagnosis of breast cancer, show-
ing a key role in both screening and follow-up [1,2]. Mammographic screening has been
shown to be highly accurate in detection of breast lesions; however, it suffers from some lim-
itations, especially in the case of dense breasts. In fact, dense breasts show a hyper-intense
signal over the mammary parenchyma, resulting in very little contrast between the latter
and the lesions. For the mammographic screening of patients with dense breasts, other
techniques, such as Magnetic Resonance Imaging (MRI), are commonly preferred [3,4]. In
particular, one of the most recent novel approaches is Contrast-Enhanced Mammography
(CEM). Combining the potential and benefits of Full-Field Digital Mammography (FFDM),
CEM has been shown to be highly effective for the detection and the correct staging of
cancer, particularly in dense breasts [4–10]. More specifically, CEM combines the enhancing
properties of the intravenous administration of an iodinated contrast medium with the
high precision of digital imaging from FFDM; therefore, the neo-vascularity associated
with actively growing malignancy is remarkably emphasized. Due to this property, CEM
is not only able to detect cancer with high accuracy, but it is also a powerful technique
for the identification of cancers that are obscure at mammography; furthermore, it allows
a more accurate evaluation of the disease extent and offers guidance in the planning of
surgery and treatment [4–10]. However, as in all imaging techniques, the evaluation of
CEM images depends on the experience and skills of the radiologist, making the identifica-
tion of automated or semi-automated techniques, which can provide decision support, a
considerable challenge.

Recent significant advancements in this sense rely on the application of artificial
intelligence and radiomics for the processing of large quantities of data by different imaging
modalities [11,12].

Radiomics is the process of extracting quantitative properties, named features, from
medical images. This feature extraction generally includes pattern recognition algorithms
and provides, as a result, a set of numbers, each representing a quantitative description of a
specific either geometrical or physical property of the image portion under consideration. In
the context of tumor characterization, the radiomics features typically considered are those
that describe properties related to size, shape, intensity, and texture of the tumor [13–27].

Biological and molecular features related to breast cancer are commonly extracted
by biopsy, which is invasive and not always able to detect tumor heterogeneity [28]. In
recent years, there has been growing interest in non-invasive methods to directly derive
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insights from radiologic images. In this context, the radiomics analysis of tumor features
extracted from CEM represents an important tool for breast tumor characterization. As
several authors suggest, radiomics analysis combined with artificial intelligence techniques
can be used to create a tool to support the physician’s decision-making process in the
classification of breast cancer [29–44]. In fact, through an appropriate tool, the physician
would be able to discriminate the tumor nature and/or grading, identifying the adequate
treatment for a single patient (e.g., neoadjuvant therapy) or even a more conservative
approach (e.g., wait-and-see or conservative surgery). However, based on our knowledge,
only some recent studies have used CEM in the prediction of histological grading and
receptor status of breast cancer [45,46].

This work aimed to evaluate radiomics features to differentiate malignant versus
benign lesions, to predict low versus moderate and high grading, to identify positive or
negative hormone receptors, and to discriminate positive versus negative human epidermal
growth factor receptor 2 related to breast cancer.

2. Methods
2.1. Patient Selection

From October 2017 to December 2021, according to regulations issued by the local In-
stitutional Review Board, 182 patients (mean age ± standard deviation of 55.3 ± 10.9 years
(range 31–80)) with known breast lesions were enrolled retrospectively. All women signed
informed consent.

Inclusion criteria: patients with known breast lesions (from radiological or clinical
screening, symptom of palpable lesions), histologically proven, and that underwent dual-
energy CEM. CEM images of patients were acquired at Istituto Nazionale Tumori-IRCCS-
Fondazione G. Pascale (Naples, Italy) and at Istituto Tumori “Giovanni Paolo II” of Bari
(Bari, Italy).

Exclusion criteria: patient with breast implants, presence of non-removable drilling at
the nipple, pacemakers, clips or other metal implants, pregnancy or possible pregnancy,
inability to keep upright immobility during the examination, renal disease, or chemotherapy
treatment at the time of imaging [41].

Overall, 118 malignant lesions and 64 benign lesions were analyzed.

2.2. Imaging Protocol

A total of 136 CEM examinations were performed using the Selenia® Dimensions® Unit
dual-energy mammography system (Hologic, Bedford, MA, USA), whereas the remaining
46 CEM image were acquired with the Senographe Essential dual-energy mammography
system (GE Healthcare, Princeton, NJ, USA).

The same acquisition protocol was implemented for all the images using both scanners.
Specifically, two minutes after the intravenous injection of 1.5 mL/(kg bw) of iodinated
contrast medium (Visipaque 320; GE Healthcare, Inc., Princeton, NJ, USA) at a rate of
2–3 mL/s, a set of images was acquired in quick succession, in both CC and MLO views.
The CEM examination obtained two images: a low-energy (LE) acquisition at 26–30 kVp and
a high-energy (HE) acquisition at 45–49 kVp, depending on breast density and thickness.
CEM acquisition details were reported in previous studies [41,42,45].

2.3. Image Processing

Two expert radiologists, with 25 and 20 years of experience in breast imaging, manually
segmented images by drawing slice-by-slice the contours of the lesions where contrast
uptake was emphasized both in CC and MLO views.

MRI Post-Processing with PyRadiomics Tool

For each region of interest, 837 radiomics features were extracted as median values
using the PyRadiomics Python package [47] including: First Order Statistics, Grey Level
Co-occurrence Matrix, Grey Level Run Length Matrix, Grey Level Size Zone Matrix, Neigh-
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boring Grey Tone Difference Matrix, and Grey Level Dependence Matrix features before
and after the wavelet filtering. The extracted features comply with feature definitions as
described by the Imaging Biomarker Standardization Initiative (IBSI) [48] and as reported
in (https://readthedocs.org/projects/pyradiomics/downloads/, accessed on 20 January
2017).

We used wavelet filtering, with all possible combinations of both high-pass (H) and
low-pass (L) filters along the three axes (X, Y, and Z axes), to derive six different matrices:

• First Order (FIRST ORDER): Describes the individual values of voxels obtained as
a result of ROI cropping. These are generally histogram-based properties (energy,
entropy, kurtosis, skewness).

• Gray Level Co-occurrence Matrix (GLCM): Calculates how often the same and similar
pixel values come together in an image and records statistical measurements according
to this matrix. These resulting values numerically characterize the texture of the image.

• Gray Level Run Length Matrix (GLRLM): Defined as the number of homogeneous
consecutive pixels with the same gray tone and quantifies the gray-level values.

• Gray Level Size Zone Matrix (GLSZM): Describes voxel counts according to the logic
of measuring gray-level regions in an image.

• Neighboring Gray Tone Difference Matrix (NGTDM): Digitization of textures obtained
from filtered images and their fractal properties.

• Gray Level Dependence Matrix (GLDM): Number of bound voxels at a fidex distance
from the central voxel.

A graphical representation of the process for features extraction in a radiomics context
is reported in Figure 1.
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Figure 1. A graphical representation of the features extraction process in a radiomics context. The
green lines represent the segmentation of lesion contours.

2.4. Histopathological Analysis

The reference standard (ground truth) was the histopathologic examination of tissue
as reported in [41]. Breast lesions were categorized based on the American Joint Committee
on Cancer staging. The histological grade and the expression of estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-
67 antigen associated with cell proliferation were determined by immune-histochemical
analysis.

The tumor grade G was defined on a three-grade scale according to the Elston–Ellis
modification of the Scar–Bloom–Richardson grading system.

The hormone receptor (HR) was also considered; a breast cancer is classified as HR-
positive if its cells have receptors for the hormones estrogen and progesterone.

https://readthedocs.org/projects/pyradiomics/downloads/
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2.5. Statistical Analysis

The statistical analysis was performed using the R programming language (version
4.0.2) with the RStudio software, version 1.3.959 (https://www.rstudio.com/, accessed on
20 January 2017) [49].

Considering the histologic results as ground truth, four different types of outcomes
were used in both univariate and multivariate analysis: (1) nature of tumor (benign versus
malignant); (2) grading (G1 versus G2 + G3); (3) presence of human epidermal growth
factor receptor 2 (HER2+ versus HER2−); (4) presence of hormone receptor (HR+ versus
HR−).

Before proceeding with statistical analysis, the dataset was balanced with respect
of each outcome. The balancing was performed through the synthetization of sam-
ples for the less-represented classes using the Adaptive Synthetic Sampling (ADASYN)
approach [50,51].

In the context of univariate analysis, the non-parametric Wilcoxon–Mann–Whitney
test for continuous variables was used. Receiver operating characteristic (ROC) analysis
and the Youden index were considered to obtain the optimal cut-off value for each feature;
then, the area under ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive pre-
dictive value (PPV), negative predictive value (NPV), and accuracy (ACC) were computed.
Bonferroni correction was used to adjust for multiple comparison.

In the context of multivariate analysis, logistic regression and tree-based algorithms
were appropriately designed to predict each outcome individually; the main predictive
features were also extracted. Before proceeding with the analysis, three pre-processing
steps were performed.

Firstly, the dataset was randomly split into a training set and a test set, using the
createDataPartition R function. Specifically, 90% of the entire dataset was used to train the
algorithms, designing a cross-validated procedure; the remaining 10% of samples was used
to estimate the accuracy of algorithms on ‘new’ samples, which are samples not used to
train the algorithms themselves. Successively (and before running algorithms), a variable
selection procedure was designed to remove redundant features from the training set. To
achieve this aim, the cross-correlation between each predictor was calculated and all the
features with a correlation higher than 0.7 (as an absolute value) with each single predictor
were discarded. Finally, the input predictors were centered and scaled before running the
logistic regression algorithm.

The machine learning approaches designed for the aim of this paper are described in
the following. For each approach, the performance (accuracy) was assessed on both the
training and test sets, also considering the values of sensitivity and specificity.

Logistic Regression. Considering the dichotomic nature of each outcome, a logistic
regression was executed using all non-redundant features. The method was run using the
glm R function.

Logistic Regression with least absolute shrinkage and selection operator (LASSO)
method. In a different approach, the logistic regression model was fitted on training data,
performing a further variable selection with the LASSO regularization method [52,53]. The
LASSO was designed using the glmnet R function and the hyperparameter was tuned
through a 10-fold cross validation procedure. The variables selected were saved to train the
logistic regression algorithm.

Logistic Regression with two predictors. An additional variation of the logistic regres-
sion was considered predicting each outcome with all possible couples of features. All
combinations that reached a test accuracy higher than 0.9 were saved and analyzed.

Tree-based algorithms. Among all tree-based algorithms, Classification and Regression
Trees (CART) and Random Forest (RF) algorithms were chosen and designed. The CART
algorithm was trained taking into account the possibility of obtaining a decision chart,
whereas the RF method was used for a more robust evaluation of performances. Tuning of
functions’ hyperparameters was performed through a 10-fold cross validation procedure.

https://www.rstudio.com/


Cancers 2022, 14, 2132 6 of 13

3. Results

Table 1 shows the distribution of characteristic of analyzed patients.

Table 1. Distribution of analyzed patients.

Characteristic Distribution

Age
Min value 25
Max value 82

Median value 52

Tumor nature
benign 64

malignant 118

Tumor grading G1 78
G2 + G3 104

Human epidermal growth factor receptor 2 HER2+ 135
HER2− 47

Hormone receptor HR+ 93
HR− 89

Histotype

0 16
1 2
2 80
3 19
4 14
5 51

Table 2 reports the diagnostic accuracy of significant textural parameters for dual-
energy CEM, in both CC and MLO views, obtained in the context of univariate analysis.

Table 2. Performance results of univariate analysis both on CC and MLO view.

Performance
Results at
Univariate
Analysis

Benign Versus
Malignant Lesions by

CC-View

Benign Versus
Malignant Lesions by

MLO-View

G1 Versus G2 + G3
by CC-View

G1 Versus G2 + G3
by MLO-View

Identification of
HER2+ by CC-View

Identification of
HER2+ by

MLO-View

Identification of HR+
by CC-View

Identification of HR+
by MLO-View

original_gldm_
Dependence

NonUniformity

wavelet_LLL_gldm_
Dependence

NonUniformity

original_glrlm_
RunEntropy

wavelet_LLL_glrlm_
RunEntropy

wavelet_HLL_
glcm_Idn

wavelet_HLH_
glcm_Idm

original_gldm_
Dependence

NonUniformity

wavelet_LLL_gldm_
Dependence

NonUniformity

AUC 0.8587 0.8406 0.8237 0.7643 0.7150 0.7081 0.7500 0.7334

SENS 0.9237 0.8220 0.9038 0.7981 0.5481 0.5704 0.9699 0.8495

SPEC 0.8559 0.8814 0.7692 0.7692 0.8148 0.8148 0.6559 0.6882

PPV 0.8651 0.8739 0.7966 0.7757 0.7475 0.7549 0.7355 0.7315

NPV 0.9182 0.8320 0.8889 0.7921 0.6433 0.6548 0.9385 0.8205

ACC 0.8983 0.8517 0.8365 0.7837 0.6815 0.6926 0.8165 0.7688

Cut-off 2.3093 4.1147 0.8023 0.8732 0.8866 0.7384 2.5524 4.2121

As the table shows, in the classification of malignant versus benign lesions, the best
performance was reached by the original_gldm_DependenceNonUniformity feature, ex-
tracted on CC view, with an accuracy of 89.83%, a sensitivity of 92.37%, and a specificity of
85.59%, and with a cut-off of 2.31.

In the classification of grading, the best performance was reached by the origi-
nal_glrlm_RunEntropy feature, extracted on CC view, with an accuracy of 83.65%, a
sensitivity of 90.38%, and a specificity of 76.92%, and with a cut-off of 0.80.

In the identification of HER2+, the best performance was reached by the wavelet_HLH_
gldm_LargeDependenceHighGrayLevelEmphasis feature, extracted on MLO view, with an
accuracy of 69.63%, a sensitivity of 62.22%, and a specificity of 77.04%, and with a cut-off
of 0.74.

In the identification of HR+, the best performance was reached by the original_gldm_
DependenceNonUniformity feature, extracted on CC view, with an accuracy of 81.65%, a
sensitivity of 96.99%, and a specificity of 65.59%, and with a cut-off of 2.55.
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Tables 3 and 4 show the results obtained with logistic regression-based and tree-based
methods, respectively.

Table 3. Results for logistic regression with and without LASSO regularization.

Results for Single
Outcome

Logistic Regression Logistic Regression with LASSO

Trainset Test Set Trainset Test Set

ACC ACC SENS SPEC ACC ACC SENS SPEC

CC—Tumor nature 0.9583 0.9583 1.0000 0.9286 0.9167 0.9167 0.9000 0.9286

MLO—Tumor nature 0.7500 0.7500 0.8333 0.6667 0.8750 0.8750 1.0000 0.7500

CC—Grading 0.8333 0.8333 0.8571 0.8000 0.7917 0.7917 0.9286 0.6000

MLO—Grading 0.7083 0.7083 0.8462 0.5455 0.7917 0.7917 0.7692 0.8182

CC—HER2 0.7143 0.7143 0.7778 0.6000 0.7857 0.7857 1.0000 0.4000

MLO—HER2 0.6786 0.6786 0.5333 0.8462 0.8214 0.8214 0.8000 0.8462

CC—HR 0.8500 0.8500 0.8182 0.8889 0.8500 0.8500 0.7273 1.0000

MLO—HR 0.7500 0.7500 0.7500 0.7500 0.7000 0.7000 0.5000 1.0000

Table 4. Results for CART and RF methods.

Results for Single
Outcome

CART Random Forest

Trainset Test Set Trainset Test Set

ACC ACC SENS SPEC ACC ACC SENS SPEC

CC—Tumor nature 0.9122 0.9167 0.9000 0.9286 0.9259 0. 9167 0.9000 0.9286

MLO—Tumor nature 0.8825 0.8333 1.0000 0.6667 0.8968 0.8750 1.0000 0.7500

CC—Grading 0.8073 0.9167 0.9286 0.9000 0.8265 0.8750 0.9286 0.8000

MLO—Grading 0.7660 0.8333 0.8462 0.8182 0.8021 0.8750 0.9231 0.8182

CC—HER2 0.6992 0.6071 0.4444 0.9000 0.7463 0.7143 0.6111 0.9000

MLO—HER2 0.7084 0.8214 0.8667 0.7692 0.8289 0.8929 0.8667 0.9231

CC—HR 0.8045 0.8000 0.6364 1.0000 0.8125 0.8500 0.7273 1.0000

MLO—HR 0.7331 0.7000 0.5000 1.0000 0.7756 0.8000 0.6667 1.0000

Considering the CC view, the best performances were obtained when predicting
the tumor nature (malignant versus benign). Logistic regression proved to be the best
performing model (test accuracy of 95.83%) when using an approach without LASSO
regularization. The goodness of the logistic regression method was also observed with
LASSO regularization (test accuracy of 91.67%). Almost comparable results were obtained
when using the tree-based algorithms (Table 5), with a test accuracy of 91.67% in the
prediction of tumor nature. The decisional chart obtained with the CART method is shown
in Figure 2 and the goodness of training procedure on 500 trees with the RF method is
shown in Figure 3.
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Table 5. Examples of results for logistic regression methods run using all possible combinations of
two predictors.

Results for Single
Outcome ACC SENS SPEC Var 1 Var 2

CC—Tumor nature 0.9583 1.0000 0.9286 original_gldm_
SmallDependenceEmphasis original_firstorder_TotalEnergy

MLO—Tumor nature 0.9167 1.0000 0.8333
original_gldm_

LargeDependence
HighGrayLevelEmphasis

wavelet_LHL_glcm_
MaximumProbability

CC—Grading 0.9167 0.9286 0.9000 original_gldm_
SmallDependenceEmphasis wavelet_HLL_firstorder_Energy

MLO—Grading 0.9167 1.0000 0.8182 original_glrlm_
RunPercentage

original_glszm_
LargeAreaLowGrayLevelEmphasis

CC—HR 0.9000 0.8182 1.0000 original_glcm_
InverseVariance

original_glcm_
DifferenceVariance

MLO—HR 0.9500 0.9167 1.0000 original_firstorder_
Maximum

wavelet_LHL_glrlm_
RunPercentage
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CC—Grading 0.8073 0.9167 0.9286 0.9000 0.8265 0.8750 0.9286 0.8000 

MLO—Grading 0.7660 0.8333 0.8462 0.8182 0.8021 0.8750 0.9231 0.8182 
CC—HER2 0.6992 0.6071 0.4444 0.9000 0.7463 0.7143 0.6111 0.9000 

MLO—HER2 0.7084 0.8214 0.8667 0.7692 0.8289 0.8929 0.8667 0.9231 
CC—HR 0.8045 0.8000 0.6364 1.0000 0.8125 0.8500 0.7273 1.0000 

MLO—HR 0.7331 0.7000 0.5000 1.0000 0.7756 0.8000 0.6667 1.0000 

Table 5. Examples of results for logistic regression methods run using all possible combinations of 
two predictors. 

Results for  
Single Outcome 

ACC SENS SPEC Var 1 Var 2 

CC—Tumor na-
ture 

0.9583 1.0000 0.9286 original_gldm_SmallDepend-
enceEmphasis 

original_firstorder_TotalEnergy 

MLO—Tumor na-
ture 

0.9167 1.0000 0.8333 original_gldm_LargeDepend-
enceHighGrayLevelEmphasis 

wavelet_LHL_glcm_Maxi-
mumProbability 

CC—Grading 0.9167 0.9286 0.9000 original_gldm_SmallDepend-
enceEmphasis 

wavelet_HLL_firstorder_Energy 

MLO—Grading 0.9167 1.0000 0.8182 original_glrlm_RunPercentage original_glszm_LargeAreaLow-
GrayLevelEmphasis 

CC—HR 0.9000 0.8182 1.0000 original_glcm_InverseVariance original_glcm_DifferenceVariance 

MLO—HR 0.9500 0.9167 1.0000 original_firstorder_Maximum wavelet_LHL_glrlm_RunPercent-
age 
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use of all non-redundant features (44 predictors) in a logistic regression model significantly
reduces the accuracy value (max test accuracy of 75.00%). The goodness of tree-based
algorithms is confirmed by the error evolution plot of RF, reaching an accuracy value of
87.50% on the test set. The decision chart and error evolution are shown in Figure 4.
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Figure 4. The decision chart and error evolution for the prediction of grading from MLO images.

Combinations of only two features, extracted from both CC and MLO views, always
showed test accuracy values greater than or equal to 90.00% (Table 5), with the only
exception being the HER2 outcome, where the best performance (test accuracy of 89.29%)
was obtained with the RF algorithm.

4. Discussions

The radiomics analysis of tumor features extracted from CEM images represents an
important tool for breast cancer characterization.

In this study, we aimed to perform radiomics analysis with texture features extracted
by dual-energy CEM, evaluating its ability to classify malignant and benign breast lesions,
and to predict grading and breast cancer receptors status (HER2+ and HR+).

In recent years, many studies have addressed the problem of breast lesion classifi-
cation using several feature categories, such as morphological and textural features, in
combination with different machine learning approaches, based on CEM and Dynamic
Contrast-Enhanced MRI image analysis [29–40,54–58], whereas other studies used CEM to
predict histological outcomes [45,46].

La Forgia et al. [45] assessed the discrimination power of the statistical features ex-
tracted from CEM images to predict histological outcomes and two particular subtypes of
tumors, HER2-positive and triple-negative. In their work, they showed encouraging re-
sults for the differentiation between ER+/ER−, PR+/PR−, HER2+/HER2−, Ki67+/Ki67−,
and High-Grade/Low-Grade. In particular, the highest performances were obtained for
discriminating HER2+/HER2− (90.87%), ER+/ER− (83.79%), and Ki67+/Ki67− (84.80%).

In a retrospective study, Marino et al. [46] examined the potential of radiomics analysis
using features from both CEM and MRI. In particular, they assessed the tumor invasive-
ness, the hormone receptor status, and the tumor grade in patients with primary breast
cancer through common radiomics parameters. In their results, they showed remarkable
accuracies when performing CEM radiomics analysis for discriminating HR+ versus HR−
breast cancers (95.6%) and invasive versus non-invasive breast cancers (92.0%); slightly
lower results were obtained, instead, in the classification of G1 + G2 versus G3 invasive
cancers (77.8%).

The results of the univariate analysis of the present study show that the classification
of malignant versus benign lesions achieved the best performance when considering the
original_gldm_DependenceNonUniformity feature extracted on CC view (accuracy of
88.98%). The features extracted on CC view appeared to perform better, as the results in the
classification of both grading and HR suggest. In fact, an accuracy of 83.65% was reached in
the classification of grading, whereas a slightly lower value of accuracy (81.65%) was found
in the classification of HR+; the features extracted were the original_glrlm_RunEntropy and
the original_gldm_DependenceNonUniformity, respectively. In the identification of HER2+,
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the best performance, however low (accuracy of 69.63%), was reached when considering
the wavelet_HLH_gldm_LargeDependenceHighGrayLevelEmphasis feature, extracted on
MLO view images.

The results of multivariate analysis showed that better performances could be achieved
when using two or more features as predictors for the classification of malignant and benign
lesions and for the prediction of HR positive status. The best performance was achieved
when predicting the tumor nature from the CC images through a logistic regression model,
where the test accuracy reached a value of 95.83% without LASSO regulation. Nevertheless,
the LASSO regularization selected 12 out of 27 predictors, significantly reducing the model
complexity, at the price of an imperceptible reduction in performance (91.67%).

The same performance of logistic regression was not observed when predicting the
same outcome (malignant versus benign classification) using MLO images, confirming the
tendency of results in the univariate analysis context.

Features extracted from MLO images were shown to be useful in the prediction of
grading with a CART algorithm. However, the results obtained with a logistic regression
approach using only two predictors (minimum test accuracy of 90.00%, maximum test
accuracy of 95.83%) suggest that simpler models are preferred, with the only exception of
the HER2 outcome, where the best performance (test accuracy of 89.29%) was obtained
with the RF algorithm.

Remarkable results were also obtained in the prediction of both the grading and the
HR+, from both CC and MLO views; however, the performance of logistic regression
(regularized or not) and of tree-based algorithms is surpassed by the accuracies obtained
when using only two predictive features. Therefore, it can be stated that the prediction of
all the outcomes is preferable with less complex models (that is, logistic regression with
only two predictors or with a regularized approach). It is furthermore useful to note that
the results of univariate analysis are less performant of those of the multivariate approach,
suggesting that artificial intelligence can be powerfully used to extract insights from CEM
images analysis.

The main limitation of this study is the need for manual segmentation of the images,
which is time consuming and operator dependent. The problem of biased results due to
this weakness was addressed by having two radiologists perform the segmentation. A
foreseeable solution may be the use of automatic or semi-automatic segmentation; however,
this may be difficult to implement, especially in the cases of multicentric lesions or back-
ground parenchymal enhancement. A further limit is that the interpretation of machine
learning algorithm results is not always intuitive and may require specific expertise from
the clinician.

5. Conclusions

The results of this study confirm that radiomics textural features extracted from CEM
images can be highly informative about both the tumor nature and grading, and some
molecular subtypes of tumors. Therefore, the results suggest that the combination of artifi-
cial intelligence algorithms with the concept of radiomics analysis can be successfully used
to create a tool for supporting the physician’s decision-making process in the classification
of breast cancer. In particular, the identification of malignant breast lesions and HR positive
status can be performed with a high predictive power, even using simpler models.
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