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Acute myeloid leukemia (AML) arises from a complex sequence of biological

and finely orchestrated events that are still poorly understood. Increasingly,

epigenetic studies are providing exciting findings that may be exploited in

promising and personalized cutting-edge therapies. A more appropriate and

broader screening of possible players in cancer could identify a master molec-

ular mechanism in AML. Here, we build on our previously published study

by evaluating a histone deacetylase (HDAC)2-mediated miRNA regulatory

network in U937 leukemic cells. Following a comparative miRNA profiling

analysis in genetically and enzymatically HDAC2-downregulated AML cells,

we identified miR-96-5p and miR-92a-3p as potential regulators in AML

etiopathology by targeting defined genes. Our findings support the potentially

beneficial role of alternative physiopathological interventions.
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Acute myeloid leukemia (AML) is a multifactorial and

highly heterogeneous malignancy, whose incidence rises

with age [1]. The evolution of the disease is characterized

by uncontrolled progenitor cell proliferation and block

of differentiation. To date, although many genetic muta-

tions in AML have been identified, prognosis has mark-

edly improved in recent years but still remains poor [2].

It is well known that epigenetic mechanisms regulate

gene expression and consequently define pathways

involved in the physiopathogenesis of AML. Among the

many epigenetic regulators, histone deacetylases

(HDACs) are tightly involved in AML etiology [3].

Notably, HDAC2 is highly overexpressed in solid and

hematological cancers, including AML [4–9]. HDAC2

silencing by enzymatic inhibition has a substantial

impact on leukemia cell proliferation and immune regu-

lation, as described in our previous work [10], where we

established an HDAC2-knockdown AML clone to bet-

ter understand the role of cancer cell proliferation

dynamics with and without treatment with the well-

studied HDAC inhibitors (HDACi) suberanilohydrox-

amic acid (SAHA) and entinostat (also known as

MS-275). Several epigenetic drugs, including HDACi,

are in fact actively undergoing clinical investigation as

single agents or mainly in combination with consoli-

dated chemotherapeutics [11]. Similarly, miRNAs are

now recognized as epigenetic regulators of transcripts in

nearly all physiological processes and human cancers,
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including AML [12]. The key involvement of miRNAs

in crucial biological pathways hints at their functional

role in complex molecular gene networks in cancer.

Recently, the potential use of cellular and circulating

miRNAs as biomarkers for AML diagnosis/prognosis,

and as therapeutic targets has been widely explored, and

many miRNAs were found to be associated with

HDAC2 dysfunction in leukemia [13].

Here, we identified a cluster of common up- and

downregulated miRNAs in both SAHA-treated and

HDAC2-downregulated cells. By miRNA target net-

work computational analysis, we defined an HDAC2-

mediated miRNA signatures in AML by genetic and

enzymatic HDAC2 deficiency in a U937 leukemic cell

line. We propose a crucial role of miR-96-5p and miR-

92a-3p and related target genes and their relationship

with HDAC2 in AML. Here, we corroborated our

previous findings and strongly suggested an HDAC2-

mediated regulation of the immune system in AML,

involving major histocompatibility complex (MHC)

class II genes and specific miRNAs, via finely tuned

molecular mechanisms.

Materials and methods

Cell culture and treatment

U937 leukemic cells were kept in RPMI-1640 medium (Euro-

Clone, Pero, Milan, Italy) supplemented with 10% heat-inac-

tivated FBS (Gibco, Monza and Brianza, Italy),

100 units�mL�1 penicillin G (EuroClone), 100 lg�mL�1

streptomycin (EuroClone), 2 mM L-glutamine (EuroClone),

250 mg�mL�1 amphotericin B (EuroClone) and 50 mg�mL�1

G-418 sulfate (Sigma-Aldrich, Milan, Italy). The cells were

incubated at 37 °C at a fixed concentration of CO2 (5%). The

HDACi SAHA (Merck, Rome, Italy) was dissolved in

dimethyl sulfoxide (Sigma-Aldrich) and used at a final con-

centration of 5 lM for 6 h of treatment.

Stable transfection of sh2 vector

Silencing of HDAC2 in U937 cells was performed as previ-

ously described [10].

RNA isolation and miRNA expression analysis

Total miRNA-enriched RNA was isolated and miRNA

expression levels were analyzed by real-time PCR as previ-

ously reported [14].

Quantitative real-time PCR

Real-time PCR was performed using the VILO cDNA Syn-

thesis Kit (Invitrogen, Monza and Brianza, Italy) to

convert RNA into cDNA. 1X SYBR Green PCR Master

Mix (BioRad, Segrate, Milan, Italy) was used according to

the manufacturer’s instructions, using 50 ng of cDNA.

Primers used for qRT-PCR were: TRIB3 Fw: 50-CCAGC

TCCTCTACGCCTTTT-30 and TRIB3 Rev: 50-CGACACA

GCTTGAGATCACG-30; SLC37A3 Fw: 50-TGTCCCAGT

TCAGCCATCAT-30 and SLC37A3 Rev: 50-GAGTCGC

TTTCTCTGCACTG-30; TBC1D8 Fw: 50-TACTCCTGCTG

CTGTTGGAA-30 and TBC1D8 Rev: 50-GCTCCTTCTTCT

GCGTGGTG-30; FAM49A Fw: 50-GATGGCCAATCG AA

TGTCCC-30 and FAM49A Rev: 50-ACCATCACCCTCAT

GCAGAA-30. Data were normalized with GAPDH Fw:

50-GGAGTCAACGGATTTGGTCGT-30 and GAPDH Rev:

50-GCTTCCCGTTCTCAGCCTTGA-30.

miRNA microarray profiling and data analysis

miRNAomes of U937 scramble vector (scr) and HDAC2

knockdown (shHDAC2) cells were analyzed. Each sample

was prepared according to Agilent’s miRNA Microarray

System protocol. Total RNA (100 ng) was dephosphory-

lated with calf intestine alkaline phosphatase (GE Health-

care Europe, Rome, Italy), denatured with DMSO (Sigma-

Aldrich), and labeled with Cyanin 3-pCp by T4 RNA ligase

(GE Healthcare Europe). The labeled RNA was purified

and then hybridized to Human miRNA Microarray (v1)

8x15K (G4470B; Agilent, Cernusco sul Naviglio, Milan,

Italy) for 20 h at 55 °C with rotation. After hybridization

and washing, the arrays were acquired with an Agilent

Scanner and data extracted using AGILENT FEATURE EXTRAC-

TION software (Cernusco sul Naviglio, Milan, Italy), as

specified by the manufacturer. Microarray quality control

reports generated by the AGILENT FEATURE EXTRACTION soft-

ware. Using R/BioConductor [15] and limma package,

probe level raw intensity was processed. The ‘normexp’

limma method was used for background correction and

data normalization was carried out. Differential expression

was performed by Student’s t-test. The selected miRNA list

was obtained by applying a false discovery rate

(FDR) < 0.05; each value was converted to log2.

Microarray data are available in the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)

under the accession number GSE129154.

Computational prediction of miRNA target genes

Target gene prediction of differentially expressed miRNAs

was performed using the miRNet database. All miRNA

entries are annotated according to the latest miRBase (re-

lease 22) (http://mirbase.org/) [16]. Target genes were then

selected. miRNA target interaction data were downloaded

from 11 well-annotated databases, miRTarBase, TarBase,

miRecords, SM2miR, Pharmaco-miR, miR2Disease, Phe-

nomiR, StarBase, EpimiR, miRDB, and miRanda, selecting

the Homo sapiens species.
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Gene set enrichment and functional annotation

analysis

The relative abundance of ‘Biological Process’ (BP), Path-

ways (by KEGG), oncogenic and immunologic signatures

Gene Ontology terms in each of the selected lists was ana-

lyzed using the Molecular Signatures Database v6.2

(MSigDB) in Gene Set Enrichment Analysis (GSEA) soft-

ware (http://software.broadinstitute.org/gsea/msigdb) for

Annotation, Visualization and Integrated Discovery.

Gene expression microarray profiling and data

analysis using the Agilent platform

Gene expression profiles of U937 scramble vector (scr) and

HDAC2 knockdown (shHDAC2) cells were analyzed by

Whole Human Genome Two-Color Microarray (G4112F;

Agilent), following the manufacturer’s protocol. Microarray

data are available in the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/gds) under the

accession number GSE37529 [10]. Probe-level raw intensity

was processed using R/BioConductor and limma package.

Background correction was performed using ‘normexp’

limma method and data normalization was carried out in

two steps: LOWESS normalization within array to correct

systematic dye bias and quantile normalization between

arrays to detect systematic nonbiological bias. Ratios repre-

senting the relative target mRNA intensities compared to

control RNA probe signals were derived from normalized

data. For each P-value, the Benjamini–Hochberg procedure

was used to calculate the FDR in order to avoid the prob-

lem of multiple testing.

Results

Differentially expressed miRNA profiling in

HDAC2-defective AML

We built on our previous epigenetic study [10] by eval-

uating the impact of HDAC2 deficiency on miRNA

expression in AML. miRNome analysis was performed

in HDAC2-silenced (shHDAC2) and relative scramble

control (scr) U937 stable clones, previously obtained

and retested for mRNA and HDAC2 protein expres-

sion levels (Fig. 1A,B). In addition, we treated scr cells

with the well-known HDACi SAHA for 6 h (scrSA-

HA6h) to enzymatically mimic HDAC2 silencing. Vol-

cano plots display differentially expressed miRNAs in

shHDAC2 and scrSAHA6h compared to scr cells

(Fig. 1C,D). Student’s t-test analysis revealed the pres-

ence of 29 and 14 differentially expressed miRNAs in

shHDAC2/scr and scrSAHA6h/scr cells, respectively,

by applying an FDR significance threshold < 0.05

(Tables 1 and 2). Comparative analysis showed that 11

miRNAs are commonly regulated both when HDAC2

is genetically silenced and enzymatically inhibited

(Fig. 2A). Among these, miR-801 and miR-923 were
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Fig. 1. Differentially expressed miRNAs in

a validated HDAC2-defective AML clone.

(A) qRT-PCR validation in shHDAC2 clone

compared to scr control. Data represent

mean values from three parallel

experiments with error bars showing

standard deviations above each column.

(B) Western blot analysis of HDAC2 in

shHDAC2 and scr clones. Normalization

was performed with ERK1/2. (C) Volcano

plot showing differentially expressed

miRNAs in shHDAC2 compared to scr

cells. Student’s t-test analysis identified 29

differentially expressed miRNAs by

applying an FDR significance threshold

< 0.05. (D) Volcano plot showing

differentially expressed miRNAs in

scrSAHA6h compared to scr cells.

Student’s t-test analysis identified 14

differentially expressed miRNAs by

applying an FDR significance threshold

< 0.05.
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excluded because they were removed from the miR-

Base (v22) [16]; miR-801 appears to be a fragment of

U11 spliceosomal RNA, while miR-923 seems to be a

fragment of the 28S rRNA. The nine miRNAs altered

(three downregulated and six upregulated) in each

HDAC2-defective condition are shown in Fig. 2B. We

speculate that this cluster of miRNAs may suggest an

HDAC2-dependent miRNA signature.

miRNA target networks and enrichment analysis

To predict miRNA targets, we interrogated miRNet

(https://www.mirnet.ca/) [17] and identified 1711 pre-

dicted targets of the three downregulated miRNAs

(Table S1), and 1418 predicted targets of the six upreg-

ulated miRNAs (Table S2). To investigate the biological

functions, regulatory mechanisms, and disease relevance

of differentially expressed HDAC2-dependent miRNAs

and their relative target genes, we used MSigDB (v6.2)

software applying an FDR q-value significance thresh-

old < 0.001. Figure 3A,B shows the biological processes

of predicted target genes of the three downregulated

and six upregulated miRNAs in shHDAC2/scr and

scrSAHA6h/scr cells, respectively. HDAC2 dysfunction

in AML cells after both genetic and enzymatic down-

regulation is in line with the biological processes in

terms of cell cycle regulation, cell and protein localiza-

tion, and response to organic substance (i.e., the

HDACi SAHA). We also looked for the immunologic

signature, consisting of gene sets representing cell types,

conditions and alterations within the immune system, in

predicted target genes of the three downregulated miR-

NAs (Table 3) and six upregulated miRNAs (Table 4).

As shown in Tables 3 and 4, many genes involved in

immunoregulatory mechanisms are perturbed, further

confirming our previous finding that the immune system

is affected in an HDAC2-defective AML clone (in both

genetic and enzymatic conditions).

Identification of HDAC2-dependent miRNA

targets

To validate target prediction analysis, we performed a

very stringent intersection analysis between the com-

monly altered genes in shHDAC2/scr and scrSA-

HA6h/scr cells (GSE37529) [10] (Table 5) and the

predicted miRNA hits. Among the targets of the six

upregulated miRNAs, we identified five predicted gene

targets (TRIB3, SLC37A3, EMP1, SCD, IL1B) also

regulated in gene expression profiles of shHDAC2/scr

and scrSAHA6h/scr cells (Fig. 4A). Only one down-

regulated hit corresponding to TRIB3 gene displayed

an according trend compared to the related regulating

miRNA, mir-96-5p. Figure 4B shows TRIB3 microar-

ray expression fold change (FC) in log2 in shHDAC2

and scrSAHA6h compared to scr cells. In contrast,

Table 1. Twenty-nine differentially expressed miRNAs in shHDAC2

vs scr AML cells identified by applying an FDR significance threshold

< 0.05.

miRNA shHDAC2 vs scr FDR Fold_Change

hsa-miR-801_v10.1 1.19E-09 �2.543737874

hsa-miR-923_v12.0 2.60E-09 �1.933159241

hsa-miR-23a 0.000143328 �0.739889068

hsa-miR-455-3p 0.002630851 �0.713125392

hsa-miR-494 0.000185858 �0.666803687

hsa-miR-221 0.000303258 �0.598941562

hsa-miR-378 0.001634909 �0.568655832

hsa-miR-92a 0.000922419 �0.52700539

hsa-miR-362-5p 0.002131758 �0.495345929

hsa-miR-30d 0.004568985 �0.438824481

hsa-miR-155 0.035382109 �0.381530837

hsa-miR-140-3p 0.049756326 �0.354392812

hsa-miR-130b 0.041388762 �0.321803064

hsa-miR-25 0.042613013 �0.320835912

hsa-miR-101 0.041951895 0.435021196

hsa-miR-21* 0.021548756 0.448826916

hsa-miR-27b 0.002648152 0.456534869

hsa-let-7i 0.001031153 0.479164548

hsa-miR-22 0.002282868 0.480444244

hsa-miR-324-5p 0.013534385 0.491241024

hsa-miR-142-3p 0.044475072 0.50184352

hsa-miR-30e 0.000884468 0.58335757

hsa-miR-142-5p 0.002423095 0.611920185

hsa-miR-340 0.009075971 0.61480908

hsa-miR-590-5p 0.000446421 0.654156226

hsa-miR-21 7.14E-05 0.733582232

hsa-miR-96 0.00038477 0.737484019

hsa-miR-29c 9.38E-06 1.032982453

hsa-miR-29b 3.58E-06 1.094410243

Table 2. Fourteen differentially expressed miRNAs in scrSAHA6h

vs scr AML cells identified by applying an FDR significance

threshold < 0.05.

miRNA scrSAHA6h vs scr FDR Fold_Change

hsa-miR-801_v10.1 1.53E-07 �2.8559

hsa-miR-923_v12.0 1.42E-07 �1.46423

hsa-miR-19b-1* 0.005977 �0.86651

hsa-miR-494 0.00074 �0.71079

hsa-miR-92a 0.007581 �0.50668

hsa-miR-23a 0.034233 �0.38589

hsa-miR-148a 0.008932 0.489832

hsa-miR-142-3p 0.046551 0.532725

hsa-miR-29c 0.04658 0.576009

hsa-miR-29b 0.001918 0.664701

hsa-miR-590-5p 0.024333 0.665683

hsa-miR-96 0.021213 0.694239

hsa-miR-21 0.000133 0.733582

hsa-miR-210 0.037251 0.835821
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distinguishing between the targets of the three down-

regulated miRNAs, we identified four predicted gene

targets (SLC37A3, TBC1D8, SCD, FAM49A)

regulated in gene expression profiles of shHDAC2/scr

and scrSAHA6h/scr cells (Fig. 5A). SLC37A3,

TBC1D8, and FAM49A are upregulated hits targeted
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Fig. 2. Comparative analysis of commonly

regulated miRNAs. (A) Venn diagram

showing the intersection of differentially

expressed miRNAs in shHDAC2/scr and

scrSAHA6h/scr cells. Comparative analysis

showed that 11 miRNAs are commonly

regulated both when HDAC2 is genetically

silenced and enzymatically inhibited. (B)

Microarray expression FC in log2 of nine

miRNAs altered in scrSAHA6h/scr and

shHDAC2/scr cells. Data show three

downregulated and six upregulated

miRNAs in both conditions.
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Fig. 3. Gene Ontology Enrichment of

HDAC2-dependent miRNA target genes.

(A) Functional annotation chart (BP-GO

biological process) of predicted target

genes of three downregulated miRNAs in

shHDAC2/scr and scrSAHA6h/scr cells

obtained from MSigDB using GSEA

software. (B) Functional annotation chart

(BP-GO biological process) of predicted

target genes of six upregulated miRNAs in

shHDAC2/scr and scrSAHA6h/scr cells

obtained from MSigDB using GSEA

software.
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by miR-92a-3p. Figure 5B shows the microarray

expression FC in log2 of three upregulated target

genes in both shHDAC2 and scrSAHA6h compared to

scr cells. SCD was excluded as it showed a different

trend in the two conditions (FC = �1.03 in scrSA-

HA6h/scr; FC = 1.46 in shHDAC2/scr). These data

are in line with trends in mRNA regulation, target pre-

diction, and miRNA expression levels.

Validation of miRNAs and target genes in

HDAC2-defective U937 cells

Following miRNA microarray profiling and computa-

tional prediction of miRNA target genes, we investi-

gated the expression levels of miRNAs and their

corresponding target genes. We analyzed miR-92a-3p

and miR-96-5p expression levels by real-time PCR

(Fig. 6A). Gene expression levels of TRIB3, a target of

miR-96-5p, were analyzed in scr and shHDAC2 cells as

well as in scr cells untreated or treated with SAHA for

6 h. TRIB3 relative expression was downregulated in

both HDAC2-deficient and scr U937 cells treated with

SAHA, suggesting a correlated response due to HDAC2

enzymatic inhibition and genetic silencing (Fig. 6B). The

expression levels of SLC37A3, FAM49A, and TBC1D8,

target genes of hsa-miR-92a-3p, were also analyzed

(Fig. 6C). According to miRNA expression, all target

genes were upregulated in shHDAC2 as well as in

scrSAHA treated cells, related to scr. Notably, miRNA-

mRNA regulation in HDAC2-downregulated cells was

comparable after both enzymatic and pharmacological

inhibition by SAHA, supporting the hypothesis that

upregulated expression levels of HDAC2 indicate dys-

function of these regulators in AML.

Table 3. Immunologic signatures of predicted target genes of three downregulated miRNAs identified by applying an FDR q-value

significance threshold ≤ 0.001.

Gene set name

No. of genes

in gene set (K)

No. of genes

in overlap (k) k/K P-value

FDR

q-value

GSE2405_0H_VS_9H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHIL_DN 200 59 0.295 1.42E-37 6.93E-34

GSE9006_HEALTHY_VS_TYPE_1_DIABETES_PBMC_1MONTH_POST_DX_UP 200 56 0.28 2.18E-34 5.31E-31

GSE2405_0H_VS_24H_A_PHAGOCYTOPHILUM_STIM_NEUTROPHIL_UP 200 51 0.255 2.68E-29 4.35E-26

GSE39820_TGFBETA1_VS_TGFBETA3_IN_IL6_TREATED_CD4_TCELL_UP 200 48 0.24 2.21E-26 2.15E-23

GSE9006_HEALTHY_VS_TYPE_1_DIABETES_PBMC_4MONTH_POST_DX_UP 200 48 0.24 2.21E-26 2.15E-23

GSE27241_WT_VS_RORGT_KO_TH17_POLARIZED_CD4_

TCELL_TREATED_WITH_DIGOXIN_UP

170 44 0.2588 9.27E-26 7.53E-23

GSE17721_CTRL_VS_POLYIC_4H_BMDC_UP 200 46 0.23 1.69E-24 1.17E-21

GSE1460_DP_THYMOCYTE_VS_NAIVE_CD4_TCELL_CORD_BLOOD_UP 200 45 0.225 1.41E-23 6.27E-21

GSE2770_IL4_ACT_VS_ACT_CD4_TCELL_2H_UP 200 45 0.225 1.41E-23 6.27E-21

GSE41978_ID2_KO_VS_ID2_KO_AND_BIM_KO_KLRG1_

LOW_EFFECTOR_CD8_TCELL_DN

200 45 0.225 1.41E-23 6.27E-21

Table 4. Immunologic signatures of predicted target genes of six upregulated miRNAs in AML cells identified by applying an FDR q-value

significance threshold ≤ 0.001.

Gene set name

No. of genes

in gene set (K)

No. of genes

in overlap (k) k/K P-value

FDR

q-value

GSE42021_TREG_PLN_VS_CD24INT_TREG_THYMUS_UP 200 50 0.25 5.54E-32 2.70E-28

GSE27434_WT_VS_DNMT1_KO_TREG_DN 200 47 0.235 7.55E-29 1.84E-25

GSE22025_PROGESTERONE_VS_TGFB1_AND_PROGESTERONE_

TREATED_CD4_TCELL_UP

199 43 0.2161 6.19E-25 1.01E-21

GSE14769_UNSTIM_VS_60MIN_LPS_BMDM_DN 200 42 0.21 7.15E-24 5.81E-21

GSE20500_RETINOIC_ACID_VS_RARA_ANTAGONIST_

TREATED_CD4_TCELL_DN

200 42 0.21 7.15E-24 5.81E-21

GSE39820_TGFBETA3_IL6_VS_TGFBETA3_IL6_IL23A_

TREATED_CD4_TCELL_UP

200 42 0.21 7.15E-24 5.81E-21

GSE3920_IFNA_VS_IFNG_TREATED_ENDOTHELIAL_CELL_UP 166 38 0.2289 3.76E-23 2.61E-20

GSE13411_SWITCHED_MEMORY_BCELL_VS_PLASMA_CELL_UP 200 41 0.205 6.47E-23 3.50E-20

GSE4748_CTRL_VS_LPS_STIM_DC_3H_UP 200 41 0.205 6.47E-23 3.50E-20

GSE12003_MIR223_KO_VS_WT_BM_PROGENITOR_4D_CULTURE_UP 200 40 0.2 5.68E-22 1.97E-19
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Discussion

miRNAs are known to play a critical and functional

role in a broad range of key molecular processes via

sophisticated regulation of distinct targets, orchestrat-

ing a molecular intracellular balance of gene expres-

sion. miRNA activity and expression are affected in

cancer. Altered miRNAs in AML are involved in a

variety of biological pathways [18], and a better under-

standing of their signatures might help unravel the

complexity associated with the emergence of this dis-

ease. Since HDAC2 deregulation affects cell prolifera-

tion, apoptosis, and immune system in AML, focusing

on specific miRNAs altered by this epigenetic regulator

may identify potential markers for determining the

best strategies in AML treatment. To date, many miR-

NAs were found directly targeted by HDAC2 in sev-

eral cancers such as colorectal cancer [19],

hepatocellular carcinoma [20], breast cancer [21], and

AML [22]. In AML, differentially expressed miRNAs

have a prognostic and functional role associated with

cytogenetics, molecular features, molecular markers,

morphology, and clinical outcome [23]. In a previous

study, we found that HDAC2 gene is considerably

upregulated in AML ex vivo patient samples and cell

lines. Following HDAC2 silencing and enzymatic inhi-

bition using the epigenetic-based drug SAHA, we

observed a pivotal HDAC2-dependent modulation of

chromatin architecture leading to transcriptional

changes promoting mainly activation of an immune

response. Specifically, HDAC2 acts directly at epige-

netic level by regulating the promoter regions of speci-

fic allelic forms of MHC class II genes (HLA-DRA

and HLA-DPA1). Here, based also on our previous

findings, we elucidated miRNA-HDAC2 crosstalk and

its involvement in AML state. Interestingly, a stringent

computational analysis between the transcriptome and

miRNome profiles in shHDAC2/scr and scrSAHA6h/

scr cells identified a crucial role for miR-96-5p and

miR-92a-3p, and defined their target gene regulation

enclosing convergent pathways already identified in

our previous work. We investigated upregulated miR-

96-5p, which has an oncogenic role in several cancer

types [24–26]. Low expression levels of miR-96-5p were

found in a specific cohort of AML patients, suggesting

that this epigenetic marker could be considered a prog-

nostic factor for AML at diagnosis [27]. miR-96-5p

upregulation acts as an antiapoptotic factor in bladder

cells, as it negatively regulates specific targets such as

CDKN1A, which is involved in cell cycle regulation

and DNA damage pathway in bladder cancer [28].

Our data show that TRIB3 is targeted by miR-96-5p.

The protein encoded by TRIB3 gene is a potential

kinase that negatively regulates NF-kB and Akt1 path-

ways, affecting cell proliferation and apoptosis, and

promoting ubiquitination-dependent degradation of

several key proteins. TRIB3 is strongly expressed in

AML with t(8;21) and t(15;17) translocations, as well

as in M2/M3 AML subtypes [29], although its specific

role in leukemogenesis is still elusive. However, evi-

dence suggests that TRIB3 contributes to acute

promyelocytic leukemia progression by PML-RARa
stabilization via specific binding to SUMOylation

motifs, thereby acting on PML-RARa degradation

and differentiation [30]. In addition, we found and

subsequently investigated the downregulation of miR-

92a-3p targeting SLC37A3, TBC1D, and FAM49A

genes. High expression levels of miR-92a-3p are associ-

ated with acute megakaryoblastic leukemia and affect

genes controlling apoptosis and cell proliferation [31].

High expression levels of this miRNA were also found

in both AML and acute lymphoblastic leukemia cells

compared to normal blasts [32]. We identified

SLC37A3 as one of the targets of miR-92a-3p. This

transmembrane protein is localized in the endoplas-

matic reticulum and is involved in sugar transport.

The SLC37A3 gene is one of the four sugar-phosphate

Table 5. Genes commonly altered in shHDAC2/scr and scrSAHA6h/

scr AML cells identified by applying an FDR significance threshold

< 0.05.

Gene symbol

ANXA1

ARHGEF3

BMF

CX3CR1

EMP1

EPAS1

FAM117A

FAM49A

FPR1

GRB10

H1F0

HLA-DMB

IL1B

IL4I1

LOH11CR2A

LPAAT-THETA

MAFB

MMP1

RNF149

SCD

SLC37A3

SYTL3

TBC1D8

TMEM118

TRIB3
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exchanger family members, but its functional activity

is not yet clear. Evidence suggests that SLC37A3

might be involved in physiopathological regulation in

pancreatic but also in immune system [33]. The methy-

lation levels of this gene affect glucose blood degree,

suggesting its potential role in epigenetic modifications

via a mechanism that still requires further investiga-

tion, and its involvement in obesity-related metabo-

lism. We also identified FAM49A as a miR-92a-3p-

target by computational analysis. This target gene was

detected as a downregulated protein in bladder cancer

cells [34]. FAM49A is a consensus PU.1-activated tar-

get gene. PU.1 is an E26 transformation-specific family

transcription factor widely involved in hematopoiesis.

FAM49A is a direct functional regulator of myeloid,

dendritic cell, B cell and a differentiation factor of ear-

liest stages of T-cell and terminal erythroid cell [35].

The third hsa-miR-92a-3p target which we investigated

is TBC1D8. This gene is a member of the Tre2/Bub2/

Cdc16 (TBC) domain protein family, characterized by

highly conserved TBC domains [36]. TBC1D8 was

found among differentially expressed genes in pre-B

acute lymphocytic leukemia samples with ALL1/AF4,

E2A/PBX1, and BCR/ABL molecular rearrangements,

and positively controls cell proliferation [37]. Other

studies identified TBC1D8 as a target of IL4 in chronic

lymphocytic leukemia and normal B cells [38]. In this

work, we propose the existence of a mechanistic cross-

talk between miRNAs and HDAC2 in an epigenetic

superstructure regulating pathogenesis and progression

of AML. All our findings converge in identifying

HDAC2 and miRNA interplay in specific biological

processes (Fig. 6), which potentially affects regulation

of gene expression, cell cycle, apoptosis, response to

stress and response to organic substance. These mecha-

nisms are robustly altered in leukemogenesis, further

confirming our previous findings. We mostly speculate

on the immunologic signature of predicted target genes

of both downregulated and upregulated miRNAs

(Tables 4 and 5) identifies immune cells such as CD4

and CD8T in a specific gene set. It is not surprising

that some hits were also associated with type I dia-

betes, as MHC class II genes are related to this disease

[39]. Since MHC class II genes regulate initiation of

immune response, our data characterize a specific sig-

nature also involving endothelial, thymic, epithelial,

and B cells in gene sets. The epigenetic drug SAHA

was used as a therapeutic agent in this and in our pre-

vious study. This drug plays a critical role as an

immunomodulating agent by enhancing cancer cell
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Fig. 6. Analysis of expression levels of

miRNAs and corresponding target genes

in U937 HDAC2-defective clone. (A) qRT-

PCR of miR-92a-3p and miR-96-5p.

Expression levels were evaluated in U937

shHDAC2, scr, and scrSAHA6h cells. Data

represent mean values from three parallel

experiments with error bars showing

standard deviations above each column.

(B) qRT-PCR of TRIB3 miR-96-5p-target

gene. Expression levels were evaluated in

U937 shHDAC2, scr, and scrSAHA6h

cells. Data represent mean values from

three parallel experiments with error bars

showing standard deviations above each

column. (C) qRT-PCR of SLC37A3,

FAM49A, and TBC1D8 miR-92a-3p-target

genes. Expression levels were evaluated
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cells. Data represent mean values from
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immunogenicity. We and other authors reported that

HDACi make cancer cells more responsive to

immunotherapy by increasing the expression levels of

tumor antigens, and drive gene expression toward a

proapoptotic mechanism in cancer [40,41]. Finally,

taken together, our findings identified miR-96-5p and

miR-92a-3p as prospective epi-regulators in AML.

This HDAC2-dependent miRNA signature in AML

highlights the potentially beneficial effects of treatment

with epigenetic drugs alone or in combination with

other therapies (including immunotherapy) acting via a

targeted mechanism involving the perturbation of

genes affecting cell cycle, proliferation, apoptosis, and

immune system. To date, achieving greater insights

into leukemogenesis has allowed us to make progress

toward the prevention and treatment of this devastat-

ing disease. Given that many disease agents including

those that are not strictly biological (such as smoking,

obesity, exposure to certain types of radiation or other

substances) are not always controllable and vary con-

tinuously throughout a person’s lifetime, the need for

multifaceted therapeutic approaches is imperative.
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