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Abstract

Lung cancer is one of the most leading causes of death throughout the world, and there is an urgent require-
ment for the precision medical management of it. Artificial intelligence (AI) consisting of numerous advanced
techniques has been widely applied in the field of medical care. Meanwhile, radiomics based on traditional
machine learning also does a great job in mining information through medical images. With the integration of
AI and radiomics, great progress has been made in the early diagnosis, specific characterization, and prognosis
of lung cancer, which has aroused attention all over the world. In this study, we give a brief review of the current
application of AI and radiomics for precision medical management in lung cancer.
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Background

Lung cancer is one of the most common types of cancer
in the world.1,2 However, most patients with lung cancer
do not feel the existence of a tumor until severe clini-
cal symptoms appear, which in part leads to poor clini-
cal outcomes. As a result, early detection in the high-risk
population for pulmonary cancer is important. Mean-
while, different types of therapy have brought challenges
in selecting eligible patients for proper treatment strate-
gies. A great deal of research has been conducted in solv-
ing the practical problems in lung cancer management.

According to universal clinical guidelines, computed
tomography (CT) is highly recommended in lung can-
cer screening, which could help in various steps such
as patients’ follow-up, early detection, and prognosis.3,4

The frequent usage of imaging machines produces large
amounts of imaging data. The traditional way to illus-
trate these raw data largely depends on human inter-
vention. Visible features such as tumor density, the com-
position of tumor (including the presence of blood ves-
sel, the existence of necrosis, and mineralization), reg-
ularity of tumor margins, anatomic relationship to the
surrounding tissues (such as pleura and mediastinum),
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Figure 1. The workflow of AI and radiomics in lung cancer.

and whether these structures are being invaded5 are con-
sidered priorities for evaluating the property of the tumor
and then influence the clinical decision. However, this
conventional time-consuming practice of reading images
is not enough in modern medical systems because it
not only includes inter- and intra-observer variabilities,
but also leaves lots of hidden information undiscovered.
Due to the limitations mentioned before, artificial intelli-
gence (AI) and radiomics have been trusted by scientists
to further dig out the potentially valuable data under all
these images.6−10 Figure 1 shows the main workflow of
AI and radiomics for lung cancer.

AI is considered to be a system’s ability to extract
information through outside data and arrive at solutions
for specific goals based on learning.11 Machine learning
is a way to achieve AI. The basic theory of machine learn-
ing is that a computer generates a mathematical model
by learning lots of training data to make decisions and
predictions in the real world.12 Deep learning is a branch
of machine learning that is formed based on an artifi-
cial neural network with many levels of algorithms, each
level providing a different interpretation of the data it
conveys.13,14

Deep learning

Deep learning is fed with raw images and extracts
higher-level features through multiple layers

progressively. Humans are freed from the time-
consuming work through transferring traditional
human-aided steps, such as feature extraction and
selection, to the neural network.

Deep neural network

A deep neural network (DNN) with more than one hid-
den layer mimics the way that the human brain works.
One layer means a collection of several neurons and
each layer has its own activation function. The associ-
ated neuron in the brain is a mathematical operator that
applies a specific function on input.15 A DNN has one
input layer and one output layer as usual, and the design
of hidden layers changes depending on the behavior the
designers want.

When medical images are fed to a DNN, the ques-
tion may arise as to whether these images show
the existence of lung cancer. Through the process
of multiple layers, the primary question can be bro-
ken down into whether these images show the same
shapes in a specific direction and, finally, questions
are simple and answerable at the level of a single
pixel.

For better understanding, the introduction of a con-
volutional neural network (CNN), one of the most used
variants of deep learning architectures is presented as
follows.
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Table 1. The summary of several CNN models.

CNN architecture Year
Test top 5

error rate (%) Main improvement Examples of exploit in lung cancer (ref.)

AlexNet 2012 15.32 A “template” for CNN models by 5 conv, 5
pooling, and 3 fc with the first use of ReLU
as activation function

Detecting potential malignant lung
nodules26,27

Inception-V1 2014 6.67 A wider network by introducing inception
block with different size filters in same
layer

Detecting potential malignant lung
nodules26,28,33

Discriminating the histological subtypes29

VGG 2014 7.32 A deeper network by increasing conv layers
with small size (3∗3) filters

Segmenting lung cancer image30

ResNet 2015 3.57 An even deeper network trying to solve the
vanishing gradient problem by residual
blocks with skip connections

Predicting malignancy of lung nodules26,32

DenseNet-264 2016 5.17 A logic extension of ResNet by making
every layer densely connected to the
previous layers

Classifying benign and malignant
pulmonary nodules34

SeNet 2017 2.25 Proposing the novel
“Squeeze-and-Excitation” (SE) block to
improve the interdependencies of channels

Detecting pulmonary nodules31

The top 5 error rate was reported with test data in ILSVRC. Abbreviations: conv, convolutional layers; fc, fully connected layers; ReLU, rectified linear unit.

Convolutional neural network

As for the typical structure of the DNN, the CNN also has
input and output layers, and the hidden layer of CNN
typically consists of convolutional layers, pooling lay-
ers, fully connected layers, and normalization layers. The
localized features are filtered by the learnable kernels of
convolutional layers. The pooling layers are employed to
efficiently reduce the data dimensions and hence control
overfitting for models. Finally, neurons of fully connected
layers connect to all activation neurons of the former
layer for integration and high-level reasoning. Mostly,
deep CNN is recommended in image processing.

Since 2010, a competition called ”The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC)” has been
held annually, which aims to discover better algo-
rithms to detect objects and classify images.16 Dur-
ing this competition, CNN models have made great
progress and aroused attention throughout the world.
For instance, in 2012, AlexNet achieved a top 5 error
rate of 15.3% that consisted of five convolutional layers,
some of them followed by max-pooling layers and three
fully connected layers.17 Furthermore, CNN-based mod-
els such as GoogLeNet/Inception,18 ResNet,19 VGGNet,20

and DenseNet21 also have also functioned well in the
competition. The application of these CNN models and
their derivatives in lung imaging is prevalent today.22−34

Table 1 presents the features of some popular models
and their applications in lung cancer imaging.

Conventional machine learning and deep learning
algorithms mostly serve one specific goal, which leads
to a heavy demand for data. It is time- and energy-
consuming to label medical images that require profes-
sional knowledge for detecting specific structures. To
solve this question, transfer learning is widely used in
model construction, which gains knowledge from solv-
ing one problem and utilizes what it learned to resolve

another different but related problem. For example,
ImageNet is a useful resource with thousands of nat-
ural images, which could be a valuable dataset for the
CNN medical image processing training dataset with the
help of transfer learning. As we mentioned, participants
involved in ILSVRC developed models for this compe-
tition and often release their final model under a per-
missive license for reuse.16 These initial deep learning
models are built and trained on more than 1 million
pictures in the ImageNet dataset first. And then the
model can be fully or partially reused and fine-tuned
for the new task regarding lung cancer.35 Moreover, a
medical-to-medical transfer is also available with the
model pretrained in a medical image dataset.22,36 How-
ever, in the application of transfer learning, Raghu et
al. pointed out that pretrained CNN models with trans-
fer learning under ImageNet dataset did not outper-
form small conventional architecture significantly. They
explored further and found that most meaningful fea-
tures were concentrated in the lowest layers, which gave
a hint that hybrid approaches could be generated accord-
ing to transfer learning, such as reusing the lower stages
and redesigning the top layers of the existing CNN model
to establish a more efficient one.37 Overall, transfer learn-
ing enables researchers to build more robust models for a
wide variety of tasks of interest efficiently without estab-
lishing a specific dataset for training and further improve
the reproducibility of the models.

Radiomics

Radiomics is a method extracting useful features to
uncover potential information about diseases through
medical images.38−40 In contrast to the deep learn-
ing mentioned before, radiomics belongs to traditional
machine learning algorithms depending on feature
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engineering. The overview of radiomics workflow is illus-
trated as follows.

Image acquisition

Depending on the disease type, raw image data is
generated with specific radiological machines such as
CT, magnetic resonance imaging, and positron emis-
sion tomography (PET). Taking CT images as an exam-
ple, CT acquisition parameters such as peak kilovoltage
(kVp), milliampere-second (mAs), reconstruction kernel,
and reconstruction slice thickness could vary in differ-
ent institutions.41,42 Previous studies showed that stan-
dardization of reconstruction methodology, especially
reconstruction kernel and reconstructed slice thickness,
was necessary for generating reproducible radiomic fea-
tures.43,44 Li et al. found that thin slice thickness (1 mm)
with a smooth convolutional kernel (B30f/B31f/B31s) con-
structing a better model for prediction of epidermal
growth factor receptor (EGFR) status in nonsmall cell lung
cancer.45 Unifying reconstruction outcomes for various
radiological parameters is still a challenge for the gener-
alization of models in clinical work. Furthermore, due to
the different CT parameters, image preprocessing prior
to segmentation is required to increase the quality of
images, and enhance the accuracy and interpretability of
features. For instance, smoothing, voxel size resampling,
and gray-level normalization were applied to initial CT
images produced by different scans.46−49

Image segmentation

Images are segmented and reduced to the volume of
interest (VOI, tumor with or without peri-tumor environ-
ment) in this step. During this process, different studies
opt for different ways, such as inspection by experts, and
automated and semi-automated algorithms.50 For lung
cancer segmentation, the difficulty depends highly on
the density of the tumor and the anatomic relationship
with surrounding structures. Compared with the clear
boundary of solid nodules, pure ground-glass nodules
(pGGNs) and mixed ground-glass nodules (mGGNs) have
an obscure margin that is hard to define. Meanwhile,
manual segmentation costs lots of time and human
resources in extracting the VOI by human inspection
when the tumor is surrounded by mediastinum or con-
nects with pleura or blood vessels, which also obviously
increase intra- and inter-operator variability.51,52 Thus,
semi- or fully automated methods are selected for reduc-
ing inter-operator variability. There are lots of segmen-
tation tools available now such as 3DSlicer (www.slicer
.org),53 itk-SNAP (www.itksnap.org),54,55 and MIM soft-
ware (www.mimsoftware.com).56 Most of these applica-
tions offer some manual or semi-automated segmenta-
tion choices. It depends on researchers to select the soft-
ware that is most suitable for their studies. However,
visual inspection is still required after software process-
ing because experience has told us that sometimes the
software can fail.

Feature extraction

Many radiomic features can be extracted from VOI with
high-throughput computing. Those features are gener-
ally classified into two types. The ones that directly
explain radiographic images such as shape, size, calci-
fication, vascularity, necrosis, and so on are character-
ized as semantic features, while the quantitative fea-
tures derived mathematically are defined as agnostic
features.38 Moreover, agnostic features can be graded
as first-, second-, and higher-order statistic features.
First-order statistics, such as energy, mean, and vari-
ance, describe the gray-level intensity distribution based
on a single voxel or pixel, and second-order features
concerning the spatial patterns of gray-level intensi-
ties of a region of interest.57 Higher-order features are
derived from the computational process of adding filters
or mathematical transformations to the images.58

Feature selection and data analysis

Different from the aim of feature extraction to find as
many features as possible, feature selection is performed
to avoid overfitting and to find reproducible and repeat-
able features.7,59 Feature selection can be classified into
three main schemes.

The first is the filter method where features are
removed with low variance under univariate analysis.60

It calculates a certain statistical index of each feature
that informs their correlation to the outcome variable,
and then selects those with high ranks. Because this
method does not consider the relationship among vari-
ables, it could include irrelevant features.

The second is the wrapper method, which repeatedly
evaluates the importance of one subset of features. A
machine learning algorithm architecture is built to eval-
uate the subset with a chosen metric each time, and
finally a model with the best performance is selected.61

One example of the wrapper method is recursive fea-
ture elimination. It recursively removes the weakest fea-
tures per loop, and finally reachs the specified number of
features. Obviously, due to repeated learning steps and
cross-validation, this type of method increases compu-
tational time and has a high overfitting risk when the
number of observations is insufficient.

The third is the embedded method, which is simi-
lar to the wrapper method in finding a suitable subset
of features.61 The difference is that the embedded tech-
nique trains one machine learning model and selects the
optimal features automatically during learning, which
reduces the computational complexity compared with
the wrapper technique. One popular embedded method
is LASSO (least absolute shrinkage and selection oper-
ator) regression or L1 regularization.62−64 In the linear
model, regularization adds a penalty to the coefficient
of each feature and for LASSO, some of the coefficients
shrunk to zero, which means the correlated features can
be removed for the final model. This method has often
been used in lung cancer radiomic study. For example,

http://www.slicer.org
http://www.itksnap.org
http://www.mimsoftware.com
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Huang et al. performed the LASSO Cox regression model
to select the most valuable features for the prediction
of prognosis of early-stage nonsmall cell lung cancer.64

Five features with nonzero coefficient were included:
CE kurtosis 0, CE uniformity 0 0, CE homogeneity 45 0,
UE uniformity 45 1.0, and CE uniformity 0 1.5. The fol-
lowing constructed radiomic signature could success-
fully give an estimation of a patient’s prognosis.

Studies have been carried out to evaluate which fea-
ture selection method is suitable for different aims.65,66

Parmar et al. compared 14 different radiomic feature
selection methods with a dataset of 464 images from
patients with lung cancer for survival prediction to inves-
tigate their capability in dealing with high-throughput
data mining problems. Through assessment by using
the area under receiver operator characteristic curve
(AUROC), the Wilcoxon test-based feature selection
method outperformed others with the highest median
AUROC.66

Meanwhile, the radiomics quality score (RQS) was first
mentioned by Lambin et al. for the evaluation of fea-
ture reproducibility, and now the compliance of RQS is
required in radiomic studies to achieve high scientific
quality.7

Once the radiomics features have been selected, they
are analyzed to build a model for achieving specific goals
in clinical work. Therefore, the analysis method varies
according to the different goals and clinical outcomes
of the studies, which ranges from statistical methods
to AI or machine learning algorithms such as the sup-
port vector machine (SVM),67 random forests,68 and neu-
ral networks.22 However, the choice of modeling methods
affects the prediction ability of radiomics66 and inherent
shortcomings such as individual assumption in logistic
regression7 followed with different models. To test the
reliability of the model, validation is required after con-
structing the model and receiver-operator-characteristic
(ROC) curves are most frequently chosen for assessment
of prediction accuracy.69

Integration of deep learning and
radiomics

As mentioned, radiomics and deep learning share a dif-
ferent path for medical image processing. Since tra-
ditional radiomics requires a lot of anticipation from
human users, questions that whether deep learning
could be applied in the workflow of radiomics to smooth
the process of radiomics have been explored widely.

During the preprocessing of images in radiomics, dif-
ferent reconstruction kernels could affect the follow-
ing feature selection. In one retrospective study, images
scanned for one patient underwent two different recon-
structing kernels: soft kernel (B30f) and sharp kernel
(B50f) reconstruction with or without contrast-enhanced
by one CT scanner.70 And the CNN model formed by
residual learning with an end-to-end way was con-
structed to convert kernels in the image preprocessing

step of traditional radiomic workflow.70 The results
showed that CNN reduced the effect of different recon-
struction kernels with the CCC (concordance correla-
tion coefficient) between two readers improved to 0.84
compared with the CCC of 0.38 without CNN conver-
sion.70 Meanwhile, Park et al. proposed a deep learn-
ing algorithm based on CNN model for converting 3-
or 5-mm-thick CT images into 1-mm slices, which sig-
nificantly improved reproducibility with mean CCCs
increasing from 0.27–0.65 to 0.45–0.72 (P < 0.001) for
all comparisons in three pairings (slice thicknesses of
1- and 3-mm, 1- and 5-mm, and 3- and 5-mm).71

These articles showed that the combination of deep
learning and radiomics could diminish the influence of
disunified reconstruction parameters in clinical work
for models and, in the future, more studies focused
on this may improve the reproducibility of models
built.

In the part of feature extraction, deep features were
fused with quantitative radiomic features in some tri-
als.72,73 In one study predicting the malignancy of lung
nodules, with the combination of traditional radiomic
features and deep features extracted through the last
fully connected layer of pretrained CNN models by trans-
fer learning, AUC increased for predicting malignant
nodules compared with the results from the traditional
radiomic model. In this study, the authors found that the
correlation between deep and radiomic features was low
(in [0.5, −0.5]), which gave hope for the future improve-
ment of image analysis.72 Thus, the feature extracted
through DL and radiomics could be integrated to form
a more detailed and multi-level model to illustrate the
medical images better.

However, compared with traditional radiomics, deep
learning depends on larger training data and substan-
tial computer power such as high-performance GPUs for
accuracy, and correspondingly more cost is inevitable.
Thus, which algorithms are suitable for the aim of
research should be evaluated carefully, and the integra-
tion of deep learning and radiomics is deserved for more
explorations.

Clinical use of AI and radiomics for lung
cancer

The techniques mentioned before are now prevalent in
the field of lung cancer management. Taking the PubMed
dataset as an example, we searched studies concern-
ing AI and radiomics in lung cancer, and the overall
trend of this topic has been on the rise over the last
10 years (Fig. 2). Studies of AI in lung cancer manage-
ment started relatively later than those of radiomics
but have attracted great attention recently. Both topics
share quicker development trajectories, especially since
2017, which may result from the promotion of interdis-
ciplinary study, the increasing awareness of precision
medical care, and improvements in technical and com-
putational facilities. Table 2 gives a summary of several
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Figure 2. Number of published papers by year.

Table 2. Examples of applications of AI and radiomics in lung cancer.

Clinical application Author and year Tumor type
Image

modality Algorithm Outcome

Early detection
Classify cancerous
nodules

Hawkins 201668 Benign and
malignant nodules

CT Random forest classifier AUC: 0.83

Ardila D 201982 Benign and
malignant nodules

CT Three-dimensional CNN
model

AUC: 0.944

Baldwin 202025 Benign and
malignant nodules
in 5 to 15 mm

CT CNN model AUC: 0.896

Characterization of lung cancer
Classify histology
subtype

Linning 201892 AD, SCLC, SCC CT SVM AUC: 0.741 and 0.822 for
SCLC and NSCLC, AD and
SCLC etc.

Wu 201693 AD, SCC CT Naive Bayes’ classifier AUC: 0.72
Wang 202094 AD CT CNN model combined

with radiomic features
AUC: 0.861

Classify somatic
mutations

Velazquez 201796 NSCLC CT Random forest classifier AUC: 0.80 and 0.69 for
EGFR+ and KRAS+, and
EGFR+ and EGFR− etc.

Wang 201997 AD CT CNN model derived from
DenseNet

AUC: 0.81 for EGFR− and
EGFR+

Prognosis prediction
Predict outcomes after
surgery or radiation
therapy

Wu 2016107 NSCLC PET/CT LASSO with Cox survival
model

Prognostic CI: 0.71

Hosny 201822 NSCLC CT 3D CNN model AUC: 0.70 and 0.71 for
surgery and radiotherapy

Predict response to
chemotherapy

Wei 2019108 SCLC CT Regression AUC: 0.797

Predict response to
targeted therapy

Song 2018112 NSCLC CT Cox regression AUC: 0.71

Predict response to
immunotherapy

Sun 2018120 Advanced solid
malignant tumor

CT Regression AUC: 0.67 (95% CI:
0.57–0.77)

He 2020121 Advanced NSCLC CT 3D DenseNet for feature
extraction and fully
connected network as
classifier

OS: HR: 0.54, 95% CI:
0.31–0.95

Abbreviations: CT, computed tomography; AUC, area under curve; CNN, convolutional neural network; AD, adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small

cell lung cancer; NSCLC, nonsmall cell lung cancer; EGFR−/EGFR+ , epidermal growth factor receptor negative/positive; PET/CT, positron emission tomography/computed

tomography; LASSO, least absolute shrinkage and selection operator.
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examples focusing on solving clinical problems in lung
cancer with AI and radiomics in different ways.

Early detection of lung cancer

Since 2002, the National Lung Screening Trial (NLST)
has included participants with a high risk of lung can-
cer. Low-dose helical CT compared with traditional chest
radiography was applied for their lung cancer screen-
ing. The results showed that lose-dose helical CT outper-
formed chest radiography in terms of sensitivity (93.8%
versus 73.5%, respectively).74 Therefore, regular lung can-
cer screening is recommended for the high-risk popu-
lation for early diagnosis of lung cancer.75 However, as
mentioned in the NLST, only 3.6% of the nodules detected
were cancerous.74 The overdiagnosis of nodules in the
clinical practice may lead to extra treatment for non-
cancerous nodules, which would have a negative influ-
ence on the cost-effectiveness of a lung cancer screening
program.76−78

Accordingly, improving the present methods to detect
nodules and discriminate lung cancer from benign nod-
ules is now urgent. In 2014, Lung CT Screening Reporting
& Data System (Lung-RADS) was first proposed as a tool
for standardizing lung cancer screening CT reporting and
management based on the traditional radiologist’s lexi-
con such as size, calcification, and tumor density. How-
ever, when implemented in clinical work, controversies
appeared79 such as decreased sensitivity80 and increased
inter-observer variability.

As a result of interdisciplinary efforts, radiomics and
further AI are chosen for compensation. For example,
in the LUNA16 challenge, participants developed sev-
eral ways to automatically detect pulmonary nodules in
CT scans with high accuracy.81 In the aspect of recog-
nizing the nature of nodules, one study included the
NLST population and predicted the tendency of nodules
detected at baseline with radiomics.68 The population
included patients showing nodules not being diagnosed
as cancer at baseline, and after one- or two-time follow-
up screenings, patients were divided based on two out-
comes (nodule positive with cancer negative and nodule
positive with cancer positive). Through radiomic work-
flow, 219 features were extracted. After two feature selec-
tion algorithms (relief-f and correlation-based feature
subset selection) were performed, the random tree clas-
sifier with 23 features had the best performance, with an
overall accuracy of 80% to predict the outcome of nodules
(cancer or noncancer) at baseline.68 In 2019, Google AI
and collaborators built an end-to-end approach by using
three-dimensional deep learning convolutional neural
networks, with the functions of both detecting and char-
acterizing lung cancer risk by using the input CT data
only.82 Similarly, a risk prediction model called the Lung
Cancer Prediction CNN (LCP-CNN) was constructed to
estimate the malignancy risk of lung nodules and it
reached an AUC of 89.6%.25 According to the phenomena
where different resolution CTs could be applied to one
patient, Xu et al. produced an AI-based system called the

DeepLN, which detected lung nodules in both low- and
high-resolution CT screening images in order to solve the
problem of multiple resolution of CT images in the real
world.83,84

Great achievements have been made in the field of
the early detection of lung cancer, however, limitations
and challenges remain in clinical work.85,86 As men-
tioned before, different models and algorithms have
been selected for developing the final decision-making
approach, and the training sample was recruited from a
population of specific nationalities being scanned with
various CT scanning parameters, which induces low
reproducibility and marketability. Future research with
larger samples and protocols for comparing different
models is expected.

Characterizing lung cancer

Before choosing the optimal treatment for a lung cancer
patient, various invasive tools are suggested for uncover-
ing the characterizations of lung cancer, such as histol-
ogy and genetic mutation.

Lung cancer is classified into two major histological
types: small cell lung carcinoma (SCLC, around 15% of all
lung cancers) and non-SCLC (NSCLC, around 85% of all
lung cancers). NSCLC can be further divided into several
subtypes such as adenocarcinoma, squamous cell carci-
noma, and large cell carcinoma.87−89 Radiomics gives a
noninvasive way to identify lung cancer histological sub-
types on images.90,91 Linning et al. established a model
for the classification of SCLC and NSCLC with an AUC of
0.741. Two features included in the model (Law-15 and
Contrast) had higher values in NSCLC than those in SCLC,
whereas the value of “Uniformity” in NSCLC was lower
than that in SCLC, which further indicates the higher
heterogeneity of NSCLC than SCLC.92 In another study,
440 features were extracted, and multivariate machine
learning models were trained for classification of NSCLC,
which shows the strong power of radiomics and AI in
precision medicine.93 Furthermore, in a study classify-
ing subtypes of lung ADC, the proposed model combing
both deep learning and radiomic features outperformed
other pure radiomic and deep learning models with an
accuracy of 0.966.94 Classifying histology with medical
images before surgery could help doctors choose neoad-
juvant therapy efficiently and improve the life quality of
patients by avoiding invasive procedures such as biopsy.
And depending on the previous studies, the combination
of deep learning and radiomics deserves further explo-
ration.

Precision medicine also emphasizes the involvement
of genetic changes in patients, and lung cancer is one of
the few cancers with high genetic alteration;95 thus the
combination of genomic and radiomic biomarkers has
the potential to enhance the management of lung can-
cer. With an integrated analysis between somatic muta-
tion testing for EGFR and KRAS mutations and radiomic
features of CT images, Velazquez et al. developed three
radiomic signatures predictive of mutational status for
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classifying: (i) between EGFR+ and EGFR−, (ii) between
KRAS+ and KRAS−, and (iii) between EGFR+ and KRAS+.96

The 3D Slicer was chosen for feature extraction fol-
lowed by minimum redundancy maximum relevance
(MRMR) algorithm for feature selection, and the top 20
MRMR ranked features were selected to train the ran-
dom forest classifier.96 With all the efforts, the radiomic
signature distinguishing between EGFR mutated and
KRAS mutated tumors showed a great performance with
an AUC of 0.80. Meanwhile, signature discriminated
between EGFR+ and EGFR− cases with an AUC of 0.69,
and with the integration of clinical information such
as age and smoking status, the combined signature
increased accuracy with an AUC of 0.75. Similar out-
comes showed in KRAD+/KRAS− radiomic signature and
clinical-combined one (AUC = 0.63 versus 0.75, respec-
tively).96 Deep learning models are also employed in this
area. Wang et al. pretrained the first 20 convolutional lay-
ers by transfer learning through the natural images from
ImageNet database, and the last four convolutional lay-
ers were trained by CT images of lung adenocarcinoma.97

Their results showed a significant difference between
the deep learning scores of EGFR-mutant and EGFR-wild
groups in both training and validation cohorts.97 Such
results were displayed in recent studies with different AI-
based techniques for predicting the different gene muta-
tions.98,99 However, due to the lack of a unified valida-
tion dataset, it is hard to compare the outcomes shown
in these articles. Therefore, the models are still in exper-
imental stages instead of being applied immediately in
the real clinical world.

Predicting clinical outcomes after
treatment for lung cancer

Prognosis is an important part of precision medical care
for lung cancer because even patients sharing the same
TNM staging with similar therapies exhibited various
outcomes. To standardize the measurement of tumor
response, the Response Evaluation Criteria in Solid
Tumors (RECIST) guideline was introduced in 2000.100

With the popularization of this criteria, vast quantities
of images were produced, which allows AI to facilitate in
predicting prognosis through mining data of images dur-
ing follow-up.22, 101−103

Surgeries for resection and radiotherapy are pre-
ferred for lots of NSCLC patients. In one proposed study,
CT radiomic signature of tumor and peritumoral lung
parenchyma was applied for risk stratification of post-
surgery relapse or death, which successfully stratified
patients into two groups with significant differences in
the 3-year disease-free survival.104 Similarly, a radiomic
signature was constructed for the estimation of prog-
nosis in patients with early-stage NSCLC.64 Depending
on the image biomarker, low- and high-risk groups were
set with significant differences in the 3-year disease-free
survival and independent of clinical-pathologic risk fac-
tors.64 Another study focused on predicting the 2-year

overall survival of patients undergoing either surgery
or radiotherapy by using AI-based deep learning net-
works.22 The CNN model was first constructed for pre-
dicting 2-year overall survival of patients receiving radio-
therapy, and subsequently, transfer learning was applied
to achieve the same goal for patients undergoing surgery,
and the CNN models presented significant prognostic
performance for radiotherapy [(AUC) = 0.70 (95% CI 0.63–
0.78), P < 0.001] and surgery [AUC = 0.71 (95% CI 0.60–
0.82), P < 0.001] patients, respectively.22 Based on PET/CT,
CT density measurements of LNs may serve as an avail-
able radiomic feature for differentiating between malig-
nant and benign LNs for N status.105 In terms of metas-
tasis of lung cancer, PET radiomics features were able
to differentiate between primary and metastatic lung
lesions.106 Moreover, a proposed study found that by
combing the quantitative radiomic approach with his-
tology information, PET radiomic signature showed the
ability of prediction of the risk of distant metastasis.107

Different image modalities are available in lung can-
cer management, while under the processing of AI and
radiomics, they show the similar outcomes. Therefore,
some of the medical examination items could be reduced
and the medical fees for patients could be lowered with
the application of AI in clinical work.

Chemotherapy regimens such as Cisplatin and Pacli-
taxel are also prescribed in the management of lung
cancer. A radiomic signature formed by 21 features was
established to predict the response of chemotherapy for
SCLC patients.108 However, negative results also existed.
In one study, a radiomic method was employed in the
prediction prognosis of patients with advanced lung can-
cer receiving Cisplatin-based chemotherapy, and no fea-
tures were significantly associated with survival in both
training and validation groups.109 As mentioned before,
different training data could influence the capability of
models, thus the need for a unified training dataset is
urgent.

Based on the mutational status of the pulmonary
tumor, targeted drugs are ordered accordingly, however,
patients with the same genetic mutation do not have
the same extent of sensitivity to drugs mostly due to
drug resistance.110,111 Therefore, AI and radiomics are
also expected to predict the prognosis for patients tak-
ing target therapy. One radiomic signature consisting of
12 CT features showed the capability for discriminat-
ing patients with rapid and slow progression to EGFR-
TKI therapy.112 The combination of genetic study and
radiomics is now popular and the coined term “radio-
genomics” is becoming highly frequent.

Currently, immune checkpoints such as programmed
cell death protein 1 (PD-1) and programmed death-ligand
1 (PD-L1) have been explored in lung cancer treatment
that revolutionized the therapeutic options for patients
with lung cancer.113,114 Until now, the PD-L1 expres-
sion level on tumor cells is treated as the best avail-
able biomarker for choosing patients who will benefit
from receiving anti-PD-1/PD-L1-based therapies.115 How-
ever, some studies showed that some patients with
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Figure 3. The workflow of the pulmonary nodule/lung cancer comprehensive management mode.

PD-L1 negativity also benefited from the anti-PD-1/PD-
L1-based therapies, thus the predictive value of PD-L1
expression may be limited.116,117 Moreover, the value
of other biomarkers such as tumor-infiltrating CD8
cells and tumor mutation burden were excavated in
accumulating articles, while no standardized criteria
were launched for selecting eligible cancer patients to
receive immunotherapy.115,118,119 Imaging features were
exploited to serve as the biomarker for predicting prog-
nosis with immunotherapy in several studies as well. In
one study, the abundance of CD8 cells in the training
samples were aligned with the images to build a radio-
genomic signature by elastic-net regularized regression
method.120 And this signature successfully predicted the
clinical outcomes for validation groups consisting of
patients with cancer who had been treated with anti-
PD-1 and PD-L1.120 Similarly, He et al. constructed one
deep learning model depending on the level of tumor
mutation burden to predict the clinical outcomes of
advanced NSCLC patients receiving anti-PD1/PD-L1 ther-
apies.121 Instead of invasive examination, imaging could
serve as the biomarkers for selecting eligible patients for
immunotherapy in the future.

Our research team designed the pulmonary nod-
ule/lung cancer comprehensive management mode,
which combined the AI techniques not only in radiology

for lung cancer screening but also in managing a biomed-
ical information big data platform and follow-up system
(Fig. 3). Low-dose computed tomography was detected
and evaluated by our multi-disciplinary team with the
combination of biomedical examinations to explore the
risk of modules. Then patients with no nodules or low- or
intermediate-risk nodules were included in the follow-
up system and doctors were systemically allocated for
each time follow-up, while patients with high-risk nod-
ules would undergo interventions such as micro-invasive
surgery and further standard treatment for lung can-
cer. All the clinical examination and Health-Related
Quality-of-Life questionnaire results were updated for
our big data platform. A combined system like this helps
us improve the management of lung nodules and fur-
ther enhance the efficiency and precision of clinical
work.

Challenge

In these days, AI has improved clinical work with its huge
potential. However, challenges still exist.

First of all, without the uniform data, the outcomes
could be different for various types of AI algorithm and
radiomics, even with a similar aim. Therefore, to com-
pare the efficiency of AI and radiomic models fairly, a
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unified measurement and public validation dataset is
needed.

Second, a huge amount of data are required for train-
ing to establish a more stable and accurate model. How-
ever, it is not always possible for one single clinical center
to collect all the data they want, especially in collecting
standardized data with regular follow-up (e.g. for treat-
ment evaluation or prognostic analysis), for data-hungry
methods such as deep neural networks. In terms of
AI model constructing, semisupervised learning, which
mines features from large amounts of unlabeled data,
is preferred and has already showed success in natural
image analysis, so it deserves our attention in the appli-
cation of lung cancer. Another solution is to encourage
the intellectual collaboration that institutions, regions,
and even countries all agree to share their data for AI
algorithm setup and improvement. However, this kind of
collaboration remains problematic. One is the legality of
sharing the protected health information for everyone.
The other is that data from different races and countries
may lead to bad generalization of trained AI algorithms.
And different institutions may choose various radiologi-
cal machines with different parameters.

Moreover, the interpretability, reproducibility, and
generalization of AI algorithms in clinical work is now
being discovered. For AI systems to get wider accep-
tance and commercial usage, it is imperative to provide
transparent explanations of the hidden black box of AI,
because the model is generated with a multilayer non-
linear structure without specific medical knowledge.122

Meanwhile, a deep learning algorithm constructed with
many parameters and weights made it hard to reproduce.

Prospect

The field of precision medical care in lung cancer shows
a remarkable growth with the progress in techniques. In
the aspect of radiology, AI and radiomics have a mutual
influence on each other. Radiomic approach bridges the
gap between images and other available data and thus
generates AI systems, which aims for improving the pro-
cess of medical management of lung cancer.

In addition, imaging is not only one measurement for
diseases. As AI has a broad definition, the usage of AI in
lung cancer is not only restricted in radiology for diag-
nosis and prognosis but also in other applications such
as wearables, testing tools,123 and so on.124,125 For exam-
ple, swarm-intelligence was applied to efficiently select
RNA biomarker panels from platelet RNA-sequencing
libraries, which discriminated patients with NSCLC from
noncancerous patients.126 Another study used AI sen-
sor for measuring the nonlinear heart rate variability in
patients with lung cancer for uncovering their perfor-
mance status, which may assist in detecting and prog-
nosis for lung cancer.127

In prospect, AI could be the detector by integrat-
ing the information of health records with data of
physiological status, economic status, and even social
networks through digging information from wearables,

social media, or other devices of digital applications,
and finds the individuals who have a high risk of dis-
ease. Before the arrival of patients, AI could make the
appointments with doctors and organize the daily sched-
ule. Once patients have undergone a radiological scan, AI
could help in processing and analyzing the raw images
combined with other relevant reports, which assists in
decision-making for doctors. For follow-up patients, AI
has the potential to detect micro-changes that may be
neglected by human eyes, and this ability gives the
chance for early intervention, which leads to a better
prognosis further on. The integration of AI in medicine
will reduce time-consuming and repetitive work, which
could enhance the efficiency and accuracy of daily clin-
ical work, accomplish the goal of precision medicine to
improve the life quality of patients, and finally save social
resources and improve life expectancy.

Conclusion

In this article, we gave a brief introduction of AI and
radiomics, as well as their latest and meaningful imple-
mentation in the field of lung cancer imaging. In the
future, more studies utilizing the updated AI-based tech-
nique are expected to improve the management of lung
cancer; meanwhile, standardization for those trials also
calls for better promotion of AI systems to different pop-
ulations and clinical centers.
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