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Cécilia Tremblay a,*, Jie Mei a, Johannes Frasnelli a,b 
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A B S T R A C T   

Background: The olfactory bulb is one of the first regions of insult in Parkinson’s disease (PD), consistent with the 
early onset of olfactory dysfunction. Investigations of the olfactory bulb may, therefore, help early pre-motor 
diagnosis. We aimed to investigate olfactory bulb and its surrounding regions in PD-related olfactory dysfunc-
tion when specifically compared to other forms of non-parkinsonian olfactory dysfunction (NPOD) and healthy 
controls. 
Methods: We carried out MRI-based olfactory bulb volume measurements from T2-weighted imaging in scans 
from 15 patients diagnosed with PD, 15 patients with either post-viral or sinonasal NPOD and 15 control par-
ticipants. Further, we applied a deep learning model (convolutional neural network; CNN) to scans of the ol-
factory bulb and its surrounding area to classify PD-related scans from NPOD-related scans. 
Results: Compared to controls, both PD and NPOD patients had smaller olfactory bulbs, when measured manually 
(both p < .001) whereas no difference was found between PD and NPOD patients. In contrast, when a CNN was 
used to differentiate between PD patients and NPOD patients, an accuracy of 88.3% was achieved. The cortical 
area above the olfactory bulb which stretches around and into the olfactory sulcus appears to be a region of 
interest in the differentiation between PD and NPOD patients. 
Conclusion: Measures from and around the olfactory bulb in combination with the use of a deep learning model 
may help differentiate PD patients from patients with NPOD, which may be used to develop early diagnostic tools 
based on olfactory dysfunction.   

1. Introduction 

Olfactory dysfunction (OD) is a highly prevalent symptom of Par-
kinson’s disease (PD) affecting over than 90% of PD patients (Doty, 
2012; Haehner et al., 2009). OD appears well before the onset of motor 
symptoms and is therefore considered as an early marker of PD 
(Bowman, 2017; Ross et al., 2008). Even though the cause of OD in PD is 
still unknown, olfactory deficits have been associated with alterations of 
central olfactory relevant regions including the olfactory bulb, the first 
relay station of the olfactory system which is located under the orbito-
frontal cortex (Braak et al., 2003a; Hawkes et al., 2010). Consistent with 
the early onset of OD, accumulation of Lewy bodies, a pathological 
hallmark of PD, starts in the olfactory bulb (Beach et al., 2009a; Braak 
et al., 2003a; Hawkes et al., 2007). Accordingly, post-mortem studies 
revealed a significant loss of neurons in the olfactory bulb of PD patients 
(Pearce et al., 1995). The olfactory bulb is considered as a possible 

induction site for Lewy pathology (Beach et al., 2009a, 2009b), and it 
may serve as an entry point for pathogens to enter and spread 
throughout the brain via the olfactory pathways (Braak et al., 2003b; 
Doty, 2008; Rey et al., 2018). Furthermore, pathological changes are 
observed across different brain regions of the olfactory system, including 
the anterior olfactory nucleus, the amygdala, the piriform, the entorhi-
nal, and the orbitofrontal cortex (Harding et al., 2002; Silveira- 
Moriyama et al., 2009). Therefore, investigating olfactory structures, 
especially the olfactory bulb, may help early pre-motor diagnosis that 
might eventually contribute to halting or delaying disease progression 
(Berardelli et al., 2013; Fullard et al., 2017). 

Magnetic resonance imaging (MRI)-based measurements of the ol-
factory bulb are an established method commonly used to assess olfac-
tory bulb volume as an indicator of olfactory function (Burmeister et al., 
2011; Rombaux et al., 2009a; Yousem et al., 1997). Volumetric mea-
sures of the olfactory bulb as well as the olfactory sulcus, a cortical 

* Corresponding author. 
E-mail address: cecilia.tremblay@uqtr.ca (C. Tremblay).  

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

journal homepage: www.elsevier.com/locate/ynicl 

https://doi.org/10.1016/j.nicl.2020.102457 
Received 13 June 2020; Received in revised form 19 September 2020; Accepted 27 September 2020   

mailto:cecilia.tremblay@uqtr.ca
www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2020.102457
https://doi.org/10.1016/j.nicl.2020.102457
https://doi.org/10.1016/j.nicl.2020.102457
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2020.102457&domain=pdf
http://creativecommons.org/licenses/by/4.0/


NeuroImage: Clinical 28 (2020) 102457

2

structure of the orbitofrontal cortex just above the olfactory bulb, are 
positively correlated with psychophysical measurements of olfactory 
function in health (Buschhuter et al., 2008; Hummel et al., 2003; Mazal 
et al., 2016) and disease (Haehner et al., 2008; Hummel et al., 2015). 
Olfactory bulb volume decreases with aging (Buschhuter et al., 2008; 
Yousem et al., 1998) and in patients with OD (Hummel et al., 2015), but 
increases during recovery from OD (Gudziol et al., 2009; Rombaux et al., 
2012) or following olfactory training (Negoias et al., 2017), on account 
of its high plasticity (Huart et al., 2019; Lötsch et al., 2014). The ol-
factory bulb receives bottom-up projections from the nasal mucosa as 
the olfactory receptor neuron directly project to the olfactory bulb, and 
forwards information to various parts of the primary olfactory cortex 
including the anterior olfactory nucleus, the olfactory tubercle, the 
piriform cortex, the amygdala and the entorhinal cortex (Smith and 
Bhatnagar, 2019), that in turn project principally to the orbitofrontal 
cortex and other structures of the secondary olfactory cortex (Lundstrom 
et al., 2011). Here, the area around the olfactory sulcus equally exhibits 
correlations between anatomical measures (cortical thickness, depth) 
and olfactory function (Delon-Martin et al., 2013; Frasnelli et al., 2010; 
Hummel et al., 2003). In addition, the olfactory bulb can also be affected 
by top-down modulation due to projections from higher olfactory and 
non-olfactory cortical structures as different neuromodulatory fibers 
enter the olfactory bulb to inhibit or facilitate its activity and plays a role 
in olfactory learning and habituation (Cleland and Linster, 2019; Linster 
and Cleland, 2002; Rothermel and Wachowiak, 2014). 

Measurements of the olfactory bulb volume of PD patients have led 
to mixed results. Some studies reported reduced olfactory bulb volume 
in PD as opposed to controls (Brodoehl et al., 2012; Chen et al., 2014; 
Hang et al., 2015; Tanik et al., 2016; Wang et al., 2011), whereas other 
found no significant group differences (Altinayar et al., 2014; Hakyemez 
et al., 2013; Hummel et al., 2010; Mueller et al., 2005a; Paschen et al., 
2015). This may be related to low sample size, selected populations, and 
other factors, as a meta-analysis comprising 216 PD patients and 175 
controls revealed a reduced olfactory bulb volume in PD patients 
compared with healthy controls, though putting forward the need for 
further investigations (Li et al., 2016). In analogy, the olfactory sulcus is 
also reduced in PD patients (Tanik et al., 2016; Wang et al., 2011), 
although there are important inconstancies across studies and others did 
not report any differences (Hang et al., 2015). Pathophysiology of PD is 
still poorly understood and several hypotheses might explain the 
reduced olfactory bulb volume in PD, including (a) mechanisms 
affecting bottom-up transfer of information by potential alterations of 
the olfactory epithelium, and (b) top-down mechanisms through alter-
ations of the central nervous system or (c) direct affection of the olfac-
tory bulb (Mazal et al., 2016). 

OD is not specific to PD as there are several conditions that can affect 
olfactory function (Landis et al., 2004), and only a small proportion of 
patients with idiopathic OD will convert to PD (Haehner et al., 2019). 
Therefore, a step towards using OD as an early diagnostic tool in PD 
patients is to differentiate PD-related OD from other forms of acquired 
non-parkinsonian OD (NPOD), such as post-viral OD (i.e., following a 
viral infection of the upper respiratory tract), sinonasal OD (i.e., in the 
context of sinonasal disease), or post-traumatic OD (i.e., as a conse-
quence of a traumatic brain injury). Olfactory bulb volume and olfactory 
sulcus depth have been extensively studied in different conditions 
affecting olfaction (Hummel et al., 2015) and a reduced olfactory bulb 
volume was reported in patients with post-viral OD (Mueller et al., 
2005b; Rombaux et al., 2006a, 2009b; Yao et al., 2018), post-traumatic 
OD (Han et al., 2018; Mueller et al., 2005b; Rombaux et al., 2006b; 
Yousem et al., 1999), sinonasal OD (Rombaux et al., 2008; Shehata et al., 
2018), idiopathic OD (Rombaux et al., 2010) and in OD related to nasal 
obstruction (Altundag et al., 2014; Askar et al., 2015). However, no 
studies have specifically compared the olfactory bulb structure of PD 
patients to that of patients with NPOD. While NPOD affects the olfactory 
bulb mainly by alterations of the olfactory epithelium or by direct 
damage to the olfactory bulb, PD may also influence the olfactory bulb 

via central alterations in a disease specific manner; we therefore hy-
pothesized that the olfactory bulb exhibits different structural features 
in PD patients and patients with NPOD. 

Although regarded as the current standard, manual measurement of 
the olfactory bulb from MR images is a technique that might present 
with some limitations when aiming at differentiating PD and NPOD 
patients as these measures (1) only take the olfactory bulb volume into 
account and do not consider its shape, or the surrounding area that 
might contain relevant information, (2) are largely dependent on 
experience and therefore are subject to variability and potential errors 
(Burmeister et al., 2011). Lately, alternative approaches such as deep 
learning models that can automatically and objectively extract infor-
mation and patterns from structural and functional neuroimaging data, 
have been introduced. Advancements in deep learning led to diverse 
applications to medical image segmentation and classification for 
diagnostic purposes (Razzak et al., 2018). Some of these algorithms 
yield high performance in the diagnosis of early PD, and are considered 
as a promising tool for the search of biomarkers for neurologic diseases 
(Hirschauer et al., 2015; Karapinar, 2020; Parisi et al., 2018; Shinde 
et al., 2019). More specifically, convolutional neural networks (CNN), a 
class of artificial neural networks frequently used in image processing 
and classification (Krizhevsky et al., 2012), perform very well in the 
extraction of higher level features from medical images (Yasaka et al., 
2018) and give rise to high accuracy in the detection and assessment of 
neurological conditions such as PD (Sivaranjini and Sujatha, 2019) or 
Alzheimer’s disease (Wang et al., 2018). Taken together, we hypothesize 
that the use of deep learning algorithms differentiates PD-related OD 
from NPOD based on structural characteristics of the olfactory bulb and/ 
or its surrounding regions. 

We therefore designed and conducted this study to specifically 
investigate olfactory bulb structural differences between PD patients in 
comparison to patients with other forms of NPOD. More specifically, we 
first aimed to assess MRI-based olfactory bulb volume manual mea-
surements in PD patients when compared to NPOD patients and healthy 

Table 1 
Participants’ characteristics.  

Variable Controls 
(n = 15) 

PD 
patients 
(n = 15) 

NPOD 
patients 
(n = 15) 

P values from 
between group 
analysis 

Sex (F/M) 7;8 7;8 6;9 NA 
Age 66.3 ±

6.3 
66.8 ± 7.3 62.8 ± 9.2 p = .31 

Female 65.8 ±
7.3 

64.5 ± 6.5 60.7 ± 8.7 NA 

Male 66.8 ±
5.6 

68.9 ± 7.8 66.0 ± 3.0 NA 

Age at onset (yrs) NA 60.5 ± 7.8 NA NA 
Disease duration 

(yrs) 
NA 6.3 ± 2.8 NA NA 

H&Y disease 
stage 

NA 1.6 ± 0.6 
(1–3) 

NA NA 

LEDD (mg) NA 527.0 ±
211.5 

NA NA 

MoCA 27.4 ±
2.5 

27.0 ± 2.8 27.2 ± 2.3 p = .96 

BDI 1.2 ± 1.6 6.1 ± 3.4 2.3 ± 2.9 p < .001 
TDI score 38.0 ±

3.0 
17.5 ± 6.9 17.3 ± 7.7 p < .001 

Threshold 10.4 ±
2.4 

2.2 ± 1.5 3.0 ± 3.1 p < .001 

Discrimination 12.6 ±
1.6 

8.5 ± 2.7 7.2 ± 3.4 p < .001 

Identification 13.5 ±
1.1 

7.5 ± 3.5 7.5 ± 2.4 p < .001 

Data are presented as means and standard deviation of the mean. Abbreviations: 
H&Y = Hoehn & Yahr Stage, LEDD = Levodopa equivalent daily dose, MoCA =
Montreal Cognitive Assessment, BDI = Beck Depression Inventory, TDI = sum-
mation of scores of the 3 olfactory subtests (threshold, discrimination and 
identification). 
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matched controls. Secondly, we applied a deep learning model to MRI 
images of the olfactory bulb and its surrounding regions to assess its 
ability to differentiate PD-related OD from NPOD. 

2. Methods 

2.1. Participants 

All aspects of the study were performed in accordance with the 
Declaration of Helsinki on biomedical research involving human sub-
jects. The study protocol was approved by the local ethics committees 
(Research Center of the Institut Universitaire de Gériatrie de Montréal at 
University of Montreal and at the University of Quebec at Trois-Riv-
ières). After being thoroughly informed about the study protocol, par-
ticipants provided written consent prior to their inclusion in the study. 

From the 48 participants initially enrolled, 45 participants 
completed the study, 2 participants were claustrophobic, one had a se-
vere tremor and could not complete the scanning session. We included 
15 PD patients that were recruited through the Quebec Parkinson 
Network, and were diagnosed with PD according to the UK PD Society 
Brain Bank diagnostic criteria (Litvan et al., 2012). Diagnosis ascer-
tainment and clinical data were provided by the Quebec Parkinson 
Network (Gan-Or et al., 2020). All patients were on stable anti- 
parkinsonian medication. Hoehn and Yahr stage, age at onset, disease 
duration and calculated Levodopa equivalent daily doses (Tomlinson 
et al., 2010) are presented in Table 1. Participants with unclear diag-
nosis and/or symptoms of atypical parkinsonian syndrome were 
excluded, as were participants with nasal pathology that might have 

caused concurrent OD non-related to the disease (Hummel et al., 2017). 
Furthermore, we included 15 patients with NPOD that were 

recruited through the lab’s database. The probable cause of OD was 
subjectively evaluated in an interview with the patient using a ques-
tionnaire adapted from Hummel et al. (2017). Included patients had 
either post-viral (n = 10) or sinonasal OD (n = 5). We specifically 
excluded (a) participants with neurological conditions or signs of motor 
dysfunction, (b) patients with idiopathic OD as they may have an 
elevated risk of developing PD (Haehner et al., 2019), (c) post-traumatic 
OD as the condition may be associated with neural damages unrelated to 
the OD (Lotsch et al., 2016), and (d) congenital anosmia as the condition 
is associated with altered neuronal processing (Frasnelli et al., 2013). 

Finally, we enrolled 15 control participants, in good general health 
with a normal olfactory function, from the community. Participants with 
neurological conditions or signs of motor dysfunction, cognitive decline 
or olfactory pathology were specifically excluded. Control participants 
were matched in terms of age and sex with PD patients. We confirmed 
that there was no age differences across the three groups [one-way 
ANOVA: F(2, 42) = 1.18; p = .31]. Further, cognitive function was 
assessed using the Montreal Cognitive Assessment (MoCA) (Nasreddine 
et al., 2005) and symptoms of depression were assessed using the Beck 
Depression Inventory (BDI) questionnaire (Beck et al., 1961) in all 
participants. Report to Table 1 for participant’s clinical data. 

2.2. Olfactory testing 

All participants underwent olfactory testing using standardized 
“Sniffin Sticks” test (Burghart, Wedel, Germany), including olfactory 

Fig. 1. A) Example of the olfactory bulb manual measurement and region selected for the CNN (as measured in yellow) on T2-weighted scans. B) Preprocessing steps 
applied on the original scans C) Example of data augmentation. D) Architecture of the convolutional neural network. OB = olfactory bulb, PD = Parkinson’s disease, 
NPOD = Non-parkinsonian olfactory dysfunction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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threshold, discrimination and identification tasks (Hummel et al., 1997, 
2007), for which we presented odorants in pen-like dispensing devices. 
Specifically, we assessed odor threshold with rose odor (phenyl ethyl 
alcohol) using a single staircase, in which the experimenter presented 3 
pens to the participant (1 with a dilution of the odorant and 2 with the 
solvent). Using a forced choice design, we then instructed the partici-
pant to identify the odor-containing pen. We increased concentrations of 
the odorant when the odor was not correctly identified and decreased 
when the odor was correctly identified twice in a row. We defined the 
threshold as the mean of the 4 last reversals points (out of 7) of the 
staircase, leading to a score range from 1 to 16. For the discrimination 
task, we presented 3 odor-containing pens to the participant, with 2 pens 
containing the same odorant and a third pen containing a different 
odorant. Using a forced-choice design, we then asked participants to 
identify which of the three smelled different. We added up the number of 
correct identifications, leading to a score range from 0 to 16. For odor 
identification, the experimenter presented 16 common odorants to the 
participant and asked him/her to choose from a list of 4 descriptors. 
Again, we added up the number of correct identifications leading to a 
score range from 0 to 16. As a standard procedure, we obtained a global 
olfactory score by calculating the sum of scores of the three subtests (i.e., 
Threshold, Discrimination and Identification, TDI score; range: 1–48), 
for which normative values are available to classify participants in terms 
of functional anosmia (TDI < 16), hyposmia (between 16 and 30.3) and 
normosmia (Hummel et al., 2007). 

2.3. MRI data acquisition 

We acquired MRI data on a 3.0 Tesla Prisma Fit MRI scanner 
(Siemens Magnetom) using a 32-channel head coil, at the Functional 
Neuroimaging Unit of the research center at the Institut Universitaire de 
Gériatrie de Montréal (IUGM). Specifically, we acquired T2-weighted 
images in Turbo Spin Echo mode and 29 coronal slices of 2 mm were 
acquired with the following parameters: voxel size: 0.2 * 0.2 * 2.0 mm, 
repetition time: 6100.0 ms, echo time: 83 ms, field of view: 140 mm, flip 
angle: 150 deg., as previously described for olfactory bulb volumetry 
(Huart et al., 2013; Seubert et al., 2013). Total scanning session lasted 
one hour and included both structural and functional scans, results on 
functional connectivity within the chemosensory system are published 
elsewhere (Tremblay et al., 2020). 

2.4. Olfactory bulb volume 

We measured olfactory bulb volumes as previously described 
(Hummel et al., 2015; Rombaux et al., 2009a; Yousem et al., 1997) using 
MIPAV 9.0 (Medical Image Processing, Analysis, and Visualization) 
software package (Center for Information Technology, National In-
stitutes of Health). We carried out planimetric contouring and drew 
boundaries of the left and right olfactory bulbs manually on each cor-
onal slice. We considered the first anterior slice in which the olfactory 
bulb becomes visible as the first slice, and the sudden decrease in ol-
factory bulb diameter that marks the beginning of the olfactory tract as 
the last slice. We then added all drawn surfaces of each slice and 
multiplied them by the slice thickness (2 mm) to obtain a volume in mm3 

(Fig. 1A). 
Information on the subjects’ group and olfactory score was concealed 

from the experimenter who measured the olfactory bulb volume. All 
volumes were measured at least twice by the same experimenter. When 
the difference between the two measurements was less than 10% of their 
average, we calculated the mean of both measurements which we then 
used in statistical analysis. If the difference was more than 10%, we 
carried out a third measurement, which was the case for 10 participants 
including 4 controls, 4 patients with NPOD and 2 PD patients, and used 
the two closest measures. 

2.5. Statistical analysis 

We performed statistical analysis of behavioral data and olfactory 
bulb volume using SPSS software (IBM SPSS Statistics 23.0). To compare 
the olfactory bulb volume between groups, we computed repeated 
measures ANOVA with group (3 levels: PD, NPOD, controls) as between 
subject factor and side (2 levels: right olfactory bulb volume, left olfac-
tory bulb volume) as within subject variable. Then, we calculated uni-
variate ANOVA analyses for each variable. Finally, we calculated 
Pearson correlation coefficients between volumetric measures of the 
olfactory bulb, olfactory function, and PD patients’ clinical data. For all 
multiple comparisons we applied Bonferroni corrections. We set the 
level of significance at p < 0.05. 

2.6. Machine learning 

2.6.1. Image pre-processing and augmentation 
All T2-weighted MRI scans from PD and NPOD patients (n = 197; 

105 PD, 92 NPOD) that were used for the olfactory bulb measurements 
(6.6 ± 1.1 scans per patient; range: 5–9) were converted from DICOM 
format to PNG format using the Pydicom package (https://pypi.org/pro 
ject/pydicom/; Mason, 2011), prior to further processing. We cropped 
scans of an original size of 672 × 896 pixels to a size of 150 × 150 pixels, 
so that the scans included the olfactory bulb and its surrounding area 
(Fig. 1A). Given the variance in the relative position of the olfactory bulb 
across subjects, we grouped scans based on the position of the olfactory 
bulb, and automatically processed and cropped these scans. See Fig. 1B 
for an example of the pre-processing steps and anatomically relevant 
regions selected. 

To increase the number of scans, we applied image augmentation 
techniques including random rotation (angle = 5 deg.), width shifting 
(upper bound = 5%), height shifting (upper bound = 5%), rescaling, 
shear transformation (shear intensity = 0.05) and horizontal flipping to 
all scans (Nalepa et al., 2019) (Fig. 1C). Upon augmentation, we 
generated a total of 25 images from each original scan for a final number 
of 4925 scans (PD: 2625, 53.3%; NPOD: 2300, 46.7%). Augmented scans 
were split at the subject-level into training, validation and test sets so 
that all scans of one subject only appear in one set. Scans of 18 (9 PD, 9 
NPOD), 6 (3 PD, 3 NPOD) and 6 subjects (3 PD, 3 NPOD) were randomly 
assigned to the training, validation and test sets, respectively. 

2.6.2. Convolutional neural network 
We used a CNN to classify scans as either being from a PD or a NPOD 

patient. The CNN comprised 7 layers including 2 convolutional layers, 2 
subsampling layers, 1 flatten layer and 2 fully connected layers. The 
number of trainable parameters of the CNN was 5,318,946. Both con-
volutional layers had 32 convolution kernels and used a kernel size of 3 
× 3 pixels. We set stride to 1 along both height and width, and padding 
was not used. The subsampling layers performed 2 × 2 max pooling 
operations with a stride of 2 to reduce the dimension of the feature 
maps. We applied dropout after each subsampling layer with a proba-
bility of 50% (Srivastava et al., 2014). We used a fully connected layer of 
128 units, followed by dropout regularization of 50% probability and 
then a final output layer (Fig. 1D). 

We used the Python programming language (version 3.7.5) and the 
Keras library (version 2.2.4) for the implementation and validation of 
the CNN. The CNN was trained with a batch size of 32 for a total of 100 
epochs, using a stochastic gradient descent optimizer (learning rate =
0.0003, momentum = 0.0). We monitored the accuracy and loss 
incurred during the training of CNN over time across epochs (Supple-
mentary Fig. 1). For visualizing and highlighting the relevant regions 
associated with the model’s output, we used Gradient-weighted Class 
Activation Mapping (Grad-CAM), a generalized form of Class Activation 
Mapping (CAM) based on the calculation of gradients from neurons of 
the last convolution layer of the neural network (Selvaraju et al., 2017). 
We superimposed all correctly identified scans and their corresponding 
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Grad-CAM activation map, and we normalized them so that the position 
of the olfactory bulb would be at the same position for all these scans. 
We then extracted the class discriminative regions and presented them 
on a white background to highlight the regions associated with the 
CNN’s output (Fig. 5). 

2.6.3. Performance metrics 
We used multiple performance metrices including accuracy, preci-

sion (i.e., positive predictive value, PPV), recall (i.e., sensitivity or true 
positive rate, TPR), specificity (i.e., true negative rate, TNR) and F1 
score to systematically assess the performance of the CNN in differen-
tiating PD and NPOD (Table 2). We further computed confusion matrices 
depicting true positive (TP), true negative (TN), false negative (FN) and 
false positive (FP) in the classification of PD and NPOD patients, for 
training and test sets. 

Accuracy is defined as the ratio of total number of predictions that 
are correct, and calculated using the proportion of the true positive and 
true negative values: 

accuracy =
TP + TN

TP + TN + FP + FN 

Precision is the proportion of true positive values among all the 
values predicted to be positive, it represents how many of the selected 
items are relevant: 

precision = PPV =
TP

TP + FP 

Recall is the proportion of trues positive values that are correctly 
identified as such, it represents how many of the relevant items are 
selected: 

recall = sensitivity = TPR =
TP

TP + FN 

Specificity measures the proportion of the true negatives that are 
correctly identified as such: 

specificity = TNR =
TN

TN + FP 

The F1 score is the harmonic mean of the precision and recall: 

F1 score = 2 ×
precision × recall
precision + recall  

3. Results 

3.1. Behavioral results 

Olfactory performance, as measured by the TDI score, revealed a 
significant effect of group [F(2,42) = 44.51; p < .001, ηp

2 = 0.68]. Same 

Table 2 
Scan-level performance of the CNN when classifying the training, and test samples.   

Accuracy Loss Precision (PPV) Recall (Sensitivity) Specificity F1 score 

Training  86.3%  0.4127  89.4%  85.4%  87.5%  87.4% 
Test  88.3%  0.3365  88.2%  88.4%  88.2%  88.3% 

PPV: positive predictive value. 

Fig. 2. A) Inter-group comparison of average volumes of the left and right olfactory bulb respectively. Each dot represents one subject. B) Correlation between the 
average left–right olfactory bulb volume and olfactory performance as measured by the TDI score (Threshold, Discrimination, and Identification tests) of the 3 
groups, and separately for C) threshold, D) discrimination and E) identification score. OB = olfactory bulb, PD = Parkinson’s disease, NPOD = Non-parkinsonian 
olfactory dysfunction. 
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results were obtained for each sub-test separately as an effect of group 
was found for threshold [F(2,42) = 51.30; p < .001, ηp

2 = 0.71], 
discrimination [F(2,42) = 16.76; p < .001, ηp

2 = 0.44] and identification 
[F(2,42) = 29.37; p < .001, ηp

2 = 0.58] Post hoc comparisons confirmed 
significantly decreased olfactory function (TDI, Threshold, Discrimina-
tion and Identification) in both PD patients and patients with NPOD 
when compared to control participants (both p < .001), while no sig-
nificant differences between PD and NPOD patients were observed. 

Next, no group differences were found for cognitive function (MoCA) 
[F(2, 42) = 0.04; p = .96]. However, there were a significant group 
difference with respect to depressive symptoms (BDI) [F(2, 42) = 11.32; 
p < .001, ηp

2 = 0.35], with PD patients being significantly more 
depressed than both controls (p < .001) and NPOD patients (p = .003) 

3.2. Olfactory bulb volume 

For the olfactory bulb volume analysis, ANOVA revealed a main ef-
fect of group [F(2,42) = 18.49; p < .001, ηp

2 = 0.47], but we did not find 

an effect of left/right side [F(1,42) = 2.39; p = .13] nor an interaction 
between side and group [F(2,42) = 1.06; p = .36]. Separate univariate 
ANOVA confirmed an effect of group for both the right [F(2,42) = 14.09; 
p < .001, ηp

2 = 0.40] and the left olfactory bulb [F(2,42) = 15.98; p <
.001, ηp

2 = 0.43]. Post hoc test confirmed a significantly smaller bulb 
volume in both PD patients (right: p < .001; left: p < .001) and NPOD 
patients (right: p = .003; left: p < .001) when compared to controls. 
Again, we did not find any differences between PD patients and NPOD 
patients (Fig. 2A). 

Further, when analyzing all participants together we found a sig-
nificant correlation between olfactory bulb volume and global olfactory 
score (right: r = 0.492, p = .015; left: r = 0.517, p < .001, mean right-left 
volume: r = 0.538, p < .001), as well as for all the subtests, namely 
threshold (right: r = 0.473, p = .015; left: r = 0.474, p = .015, mean 
right-left volume: r = .506p < .001), discrimination (right: r = 0.466, p 
= .015; left: r = 0.531, p < .001, mean right-left volume: r = 0.530, p <
.001), but for identification we found only a correlation for the left side 
and the mean olfactory bulb volume (right: r = 0.387, p = .135; left: r =

Fig. 3. Example of scan-level classification of the test set. The 20 scans shown were not seen by the CNN previously. Green: correctly predicted, red: incorrectly 
predicted. PD = Parkinson’s disease, NPOD = Non-parkinsonian olfactory dysfunction. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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0.444, p = .03, mean right-left volume: r = 0.442, p = .03) (Fig. 2). 
When we analyzed the PD patients’ group on its own, we found no 

correlation between olfactory bulb volume (right, left or mean right-left 
volume) and disease duration, medication (LEDD), cognitive MoCA 
score, BDI score, disease stage (H&Y), or asymmetry of symptoms 
(right/left). 

3.3. Results of CNN in the classification of PD and NPOD patients 

We observed a training accuracy of 86.3% and a test accuracy of 
88.3% when classifying PD patients from NPOD patients. Precision, 
recall, specificity and F1 score are presented in Table 2. An example of 
scan-level classification is shown in Fig. 3. Confusion matrices illus-
trating the predicted label and true label of the CNN for the binary 
classification task are presented in Fig. 4. According to the confusion 
matrices, the CNN model led to (a) a correct diagnosis of 2612 scans 
(86.3%) and a misdiagnosis of 413 scans (244 PD and 169 NPOD) out of 
3025 scans of the training set, and (b) a correct diagnosis of 795 (88.3%) 

scans and a misdiagnosis of 105 scans (52 PD, 53 NPOD) out of 900 scans 
of the test set (Fig. 4) 

The average of the correctly identified scans and the corresponding 
Grad-CAM depicting the class-discriminative regions (Fig. 5) shows that 
the olfactory bulb and its surrounding areas, especially the region above 
the olfactory bulb that extend into the olfactory sulcus are more looked 
at by the CNN to discriminate between groups. 

3.4. Data availability statement 

Data will be made available on the database of the University of 
Quebec at Trois-Rivières upon publication. 

4. Discussion 

In the present study, we report the results of an investigation of ol-
factory bulb structure and surrounding areas in PD patients when spe-
cifically compared to patients with non-parkinsonian olfactory 
dysfunctions (NPOD) and healthy control participants. Our results 
confirm the presence of a reduced olfactory bulb volume in both PD 
patients and NPOD patients when compared to control participants. 
While manual measures from olfactory bulb were not able to differen-
tiate PD patients from NPOD patients, a CNN applied to scans of the 
olfactory bulb and its surroundings yielded a training accuracy of 86.3% 
and a test accuracy of 88.3% in the discrimination between PD and 
NPOD patients. 

The result of a reduced olfactory bulb volume in PD patients is 
concordant with previous studies (Brodoehl et al., 2012; Chen et al., 
2014; Hang et al., 2015; Li et al., 2016; Tanik et al., 2016; Wang et al., 
2011) and in line with various alterations of the olfactory bulb including 
neuronal loss (Pearce et al., 1995). Even though there are some in-
constancies as several studies did not show significant decrease in ol-
factory bulb volume in PD patients when compared to control 
participants (Altinayar et al., 2014; Hakyemez et al., 2013; Hummel 
et al., 2010; Mueller et al., 2005a; Paschen et al., 2015), our results 
confirmed that the olfactory bulb volume is indeed reduced in PD pa-
tients, in line with a meta-analysis (Li et al., 2016). Similarly, NPOD 
patients, including post-viral OD and sinonasal OD, exhibited reduced 
olfactory bulb volume when compared to controls, which is also 
consistent with published literature (Gudziol et al., 2009; Han et al., 
2017; Mueller et al., 2005b; Rombaux et al., 2006a, 2008). Nevertheless, 
we did not identify any differences between olfactory bulb volumes of 
PD and NPOD patients, when using manual volumetric measurements. 
In fact, although the underlying pathomechanisms of reduced olfactory 
bulb volume in PD and NPOD are different, both groups showed a 
similar degree of olfactory loss, as found in our participants and reported 
by other studies (Tremblay et al., 2017; Whitcroft et al., 2017). Further, 
we found no correlation between olfactory bulb volume and disease 
stage or severity which is in line with previous reports that did not show 
any correlation with either disease stage, disease duration, age of disease 
onset, lateralization of initial motor symptoms, left–right limb motion 
function score or cognitive status in PD (Altinayar et al., 2014; Brodoehl 
et al., 2012; Chen et al., 2014; Mueller et al., 2005a; Paschen et al., 
2015). Our results are in line with the notion of olfactory bulb volume to 
be a neuroanatomical correlate of olfactory function (Buschhuter et al., 
2008; Hummel et al., 2015), independently of any underlying condition 
that may affect its volume. Interestingly, a recent study however sug-
gests that overall chemosensory function such as flavor perception may 
be one method to behaviorally distinguish between PD and NPOD pa-
tients (Aubry-Lafontaine et al., 2020). 

In contrast to manual measurements, when applying deep learning 
models to the same scans, our model was able to correctly discriminate 
between PD patients and NPOD patients with an accuracy of 88.3%, a 
recall of 88.4% and a precision of 88.2%, when MR images of the test set 
were classified by the CNN. Taken together, these results may comprise a 
crucial step towards the development of early diagnostic tools of PD 

Fig. 4. Confusion matrices of the CNN representing the number of correctly 
and incorrectly predicted scans in the classification of patients with Parkinson’s 
disease (PD) and patients with non-parkinsonian olfactory dysfunction (NPOD) 
in the training and test sets. 
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based on OD and they emphasize the potential of such algorithms to 
extract information from medical images of patients with OD. Future 
studies should investigate if similar techniques can be used in outcome 
prediction of subjects with a high risk to develop PD, such as patients 
suffering from rapid eye movement (REM) sleep behavioral disorder 
(RBD), characterized by loss of normal atonia of REM sleep, in which up 
to 90% of patients will develop PD (Postuma et al., 2015). Other non- 
motor symptoms of PD should also be taken into consideration 
because of their association with OD and their potential in predicting the 
development of PD (Masala et al., 2018). 

With the aim of trying to better understand which features of the 
scans the CNN were using to differentiate between groups, we averaged 
the Grad-CAM activation maps of the correctly classified scans of the test 
set (Fig. 5). Even though these images are blurry as a result of averaging 
across multiple scans, and therefore must be interpreted carefully, it still 
gives us information regarding the features that are the most looked at 
by the CNN in the classification. These regions include the olfactory bulb 
and its boundary, and more importantly, the area right above the ol-
factory bulb that extends into the olfactory sulcus. Therefore, we hy-
pothesize the CNN to also rely on additional adjacent orbitofrontal 
cerebral structures such as (a) the olfactory sulcus, (b) the gyrus rectus, 
and (c) and the medial orbitofrontal cortex (OFC). All these structures 
are known to be involved in olfactory processing (Lundstrom et al., 
2011) and the size of these structures reflects olfactory function, in 
analogy to the olfactory bulb. In fact, a correlation between olfactory 
function and the depth of the right olfactory sulcus (Hummel et al., 
2003), the thickness and volume the medial OFC and the area around 
the olfactory sulcus (Frasnelli et al., 2010) as well as the of the gyrus 
rectus (Delon-Martin et al., 2013) were reported. Further, two studies 
reported significantly swallower olfactory sulci in PD patients when 

compared to healthy controls (Tanik et al., 2016; Wang et al., 2011), 
even though another study reported no difference (Hang et al., 2015), 
and no correlations between the olfactory sulcus depth and olfactory 
function (Hang et al., 2015; Wang et al., 2011). Nevertheless, these are 
comparisons between PD patients and healthy control participants, and 
thus not with participants showing similar olfactory function as PD 
patients. Reduced olfactory sulcus along with frontal cortical atrophy as 
reported in PD (Lee et al., 2014) might lead to a greater space between 
the olfactory bulb and the frontal cortex. However, cortical atrophy was 
also reported in patients with anosmia and hyposmia from various eti-
ology when compared to controls (Bitter et al., 2010a, 2010b). To date, 
no direct comparison in cortical volume or density was made between 
PD patients and patients with NPOD. Olfactory bulb related measure-
ment is of interest in PD patients and may give more information on the 
underlying pathology as the olfactory bulb volume was found to be 
correlated with the putamen volume and the olfactory sulcus correlated 
to the hippocampal volume (Tanik et al., 2016). Further investigating 
the olfactory bulb and sulcus and most importantly the space between 
the olfactory bulb and the above cortex, by developing an approach to 
measure this specific region, might bring further insight into the study of 
PD-related olfactory loss and may help to differentiate PD-related OD 
from other forms of OD in early stages of the disease. 

We acknowledge that we tested a limited number of participants and 
these results must be interpreted with care. The total number of scans 
used in the present study is small for deep learning techniques and the 
model may not generalize well to additional clinical data. Thus, the 
model should be trained and validated with more data to be potentially 
used as an assistive diagnostic tool in the future. Further, all scans used 
in the manual measurement of the olfactory bulb volume were used to 
train or test the CNN to maximize the number of scans, therefore some 

Fig. 5. A) Average of correctly classified scans of the test set (left) with superimposition of the Grad-CAM activation maps (middle) and the class-discriminative 
regions on a white background (right). Grad-CAM activation map shows the class-discriminative regions and the red color corresponds to higher relevance to the 
CNN’s output. The approximate position of the olfactory bulb is indicated by the white ovals. B) Individual example of one scan and the corresponding Grad-CAM 
activation map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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scans in which the visualization of olfactory bulb was not optimal (for 
instance, scans depicting more distal or proximal parts of the olfactory 
bulb) may have confounded the results, leading to compromised accu-
racy. In addition, we did not have access to the participants’ UPDRS 
scores which would have been interesting to better characterize the 
included PD population and to further assess potential correlation with 
disease severity, even though we found no correlation with other clinical 
data. Future studies should be conducted to validate these results in 
larger sample sizes and in better characterized cohorts including pa-
tients with prodromal PD. To do so, T2-weighted scans of the olfactory 
bulb should be included in existing research and clinical protocols. 

In conclusion, olfactory bulb volume was found to be reduced in both 
PD-related OD and NPOD when compared to control participants, but 
was not different between PD and NPOD patients. In the meantime, 
considerable accuracy was achieved when a CNN was used to differen-
tiate olfactory bulb scans from PD and NPOD patients, and therefore 
may lead to refined early diagnosis, although this approach still requires 
further validation. 
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