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Background: Hematoma enlargement (HE) is a common complication following acute intracerebral hemorrhage (ICH) and is
associated with early deterioration and unfavorable clinical outcomes. This study aimed to evaluate the predictive performance of
a computed tomography (CT) based model that utilizes deep learning features in identifying HE.

Methods: A total of 408 patients were retrospectively enrolled between January 2015 and December 2020 from our institution. We
designed an automatic model that could mask the hematoma area and fusion features of radiomics, clinical data, and convolutional
neural network (CNN) in a hybrid model. We assessed the model’s performance by using confusion matrix metrics (CM), the area
under the receiver operating characteristics curve (AUC), and other statistical indicators.

Results: After automated masking, 408 patients were randomly divided into two cohorts with 204 patients in the training set and 204
patients in the validation set. The first cohort trained the CNN model, from which we then extracted radiomics, clinical data, and CNN
features for the second validation cohort. After feature selection by K-highest score, a support vector machines (SVM) model
classification was used to predict HE. Our hybrid model exhibited a high AUC of 0.949, and 0.95 of precision, 0.83 of recall, and
0.94 of average precision (AP). The CM found that only 5 cases were misidentified by the model.

Conclusion: The automatic hybrid model we developed is an end-to-end method and can assist in clinical decision-making, thereby
facilitating personalized treatment for patients with ICH.
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Introduction

Non-traumatic intracerebral hemorrhage (ICH) caused by rupture of arteries, veins, and capillaries, is becoming one of the
main neurological diseases leading to death and disability in adults.! It has been demonstrated that patients diagnosed with
ICH, despite being conscious in their initial presentation, may experience a poor outcome or even fatality in their
subsequent stages.” Surgical intervention is usually required for critically ill patients. However, various complications
may arise after craniotomy, such as infection, epilepsy, peptic ulcer, deep vein thrombosis et al. These complications may in
turn accelerate the deterioration of patients’ health, ultimately leading to death, primarily among elderly patients.>* Prior
research has identified a group of independent risk factors that can predict a poor prognosis of ICH, such as the patient’s age,
Glasgow coma scale score, hematoma volume, hematoma enlargement (HE), and ventricular penetration.’ ® Among these

10,11

factors, HE, which mainly occurs within 24 hours after the initial hemorrhage, is the only factor that can be prevented

after the patient is admitted to the hospital. Accordingly, exploring radiological signs for HE has become a research focus in

: : 12-16
recent years for radiologists.
International Journal of General Medicine 2023:16 3393-3402 3393
Received: 22 February 2023 © 2023 Bo et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
AT 2nd incorporate the Creative Commons Attribution — Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

Accepted: 24 July 2023
Published: 9 August 2023

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).


http://orcid.org/0009-0006-3698-1359
http://www.dovepress.com/permissions.php
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
https://www.dovepress.com

Bo et al Dove

In 2006, Wada et al discovered the “spot sign”, which is a computed tomographic angiography (CTA) sign for
identifying HE and has been further confirmed in SCOREIT and PREDICT research, but the sensitivity is only about
50%.'*'® Orito et al later identified another radiological sign in the arterial and the delayed phase of CTA called the
“leak sign” with a higher sensitivity of 93.3% in predicting HE.'” However, these two signs rely on CTA examination,
which exposes the patient to the risk of iodine allergy and radiation. In addition, many medical institutions, especially
community hospitals, lack CTA inspection protocols in emergency departments. Conversely, several non-contrast
computed tomography (NCCT) signs, such as “vortex sign”, “black hole sign”, “mixed density sign”, and “low density
sign” were also used for predicting HE,?>** but the sensitivity of these signs is still relatively low and lack objective
diagnostic criteria as well.** Convolution neural network (CNN) is a new deep learning (DL) method and has been
recently used in radiology image classification. With raw data, DL can supervise learning tasks to determine classification
features with ideal area under the curve (AUC) in both the training and verification cohorts,>° but several challenging
issues still exist, such as inaccurate segmentation resulting from the irregular shape and blurred boundary of hemorrhage
in CT scanning, time-consuming and laborious in practical operation owning to hemorrhage labeled by manual work.

In order to provide an automatic prediction method more objectivity and sensitivity for clinical practice by
incorporating other clinical databases, we proposed to build a hybrid model to automatically segment hemorrhage and
predict HE risk using NCCT image to address the challenges mentioned above. In our proposed framework, we first
employed a precise and reliable model to segment the intracerebral hematoma and quantify its volume. Subsequently, we
developed a CNN model that took the representative patches extracted from the segmented region to learn rich features.
We further stacked an additional fully connected layer above the concatenation of the learned features from the DL
models for classification. By combining the features of the CNN model and other clinical data learning, the proposed
model generated the final prediction of HE.

Materials and Methods
Ethical Approval

The General Hospital of Ningxia Medical University institutional review board granted has approval for this observa-
tional, retrospective study (Registration number: 2022—58). Informed written consent was waived due to the retrospective
nature and use of de-identified data. Our study protocol complied with the Declaration of Helsinki.

Patients and Data Acquisition

We first retrospectively collected 771 medical records of adult patients who were clinically diagnosed ICH in our hospital
from Jan 2015 to Dec 2020. All patients underwent baseline NCCT scans within 6 hours of symptom onset and were re-
examined within 72 hours of onset. The exclusion criteria were as follows: secondary hemorrhage caused by trauma,
tumor, aneurysm, arteriovenous malformation, cerebral infarction, transformation, surgical intervention before re-
examination of CT, severe artifacts. Finally, a total of 408 patients were included in this study.

All CT examinations were performed using a LightSpeed 64-slice CT scanner manufactured by GE Healthcare. The
scanning range extended from the lower edge of the anterior arch of the atlas to the top of the skull with a thickness and
spacing of 5 mm. The tube voltage was 120 kVp and the current was 80 mA, while the image matrix size was 512x512.
All scans are reconstructed with the Healthcare’s standard and bone reconstruction kernels with the slice thickness of less
than 1 mm. Additionally, some parts of the patient’s history, clinical, and laboratory data were recorded from the health
information system (HIS) including the patient’s gender and age, blood pressure on admission, activity of daily living
scale index (ADL Index), history of hypertension, heart disease, diabetes, platelet count, neutrophil count, percentage of
neutrophils, D-dimer, fibrinogen, prothrombin time.

Automated Segmentation of Hemorrhage

We employed the open-source program “ichseg” to preprocess the CT scans, which including skull stripping, computing
predictors of ICH. The program utilized these predictors to predict a binary hemorrhage mask from the NCCT scan.*”
This R language-based program has been tested and verified on the Minimally Invasive Surgery plus rt-PA in ICH
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Evacuation (MISTIE) dataset. The authors evaluated the performance of the automatic segmentation model and expert
radiologists by using the Pearson correlation and the Dice Similarity Index (DSI) to measure the test data. The DSI value
was found to be 0.899, while the correlation between the manually delineated hemorrhage volume and the predicted
volume was 0.93. This result indicated that the model showed good agreement with the gold standard of manually
delineated hemorrhages.

This program was licensed under GPL-2 (GNU General Public License, version 2), which authorizes users to freely
modify the code without permission. We partially modified the code to suit our research and added an interface for
automatically calculating the hematoma volume. Next, we exported the relevant CT images from Picture Archiving and
Communication Systems (PACS) in DICOM format and converted them to Neuroimaging Informatics Technology
Initiative (NIfTI) format. Our modified software automatically segments hemorrhage from NCCT image and output
them as a NIfIT format file, the hematoma volume is calculated automatically by counting the number of segment voxels
multiplying them by the voxel size (provided in mL). We reconstructed all the original NCCT images and segmentation
images with the same pixel matrix size (299 x 299 voxels) as the input layer of the pre-trained Inception v3 model by
matching the original residual network.

Feature Extraction

We labeled the supervised data set with a binary label (negative HE or positive HE) by comparing the hematoma volume
between the baseline NCCT scan and the re-examination scan. Previous research has defined HE as a volumetric increase
of more than 6 mL or 33% from the initial CT scan to the re-examination CT scan within 72 hours of onset.’'

We utilized the “pyradiomics” package in Python to extract high-throughput image features from the hemorrhage
images for radiomics feature extraction. The selected features were chosen according to the definitions provided by the
Image Biomarker Standardization initiative (IBSI) reporting guidelines, which has been presented a description
previously.*?

Inception_V3 were used as the basic model for extracting characterization features. This module has been pre trained on
a large-scale, well annotated ImageNet database. To extract a representative 2-dimensional (2D) images.*® We automati-
cally selected the axial slice maximum hematoma area image and 3 upper and 3 lower slices beside the maximum hematoma
area image from the NCCT image in per patient. Based on the selected comprehensive 2D image, a data augmentation effect
beyond artificial data augmentation such as flipping or rotation, and a robust prediction by combining probabilities from
multiple slices to reduce the risk of overfitting and might help to boost the performance of a classifier. In the training
process, the convolutional residual network was trained with image inputs as a “warm-up training”, to learn the relevant
imaging features. The network was optimized using Adam optimizer (betal = 0.9, beta2 = 0.999, initial learning rate = le-
04), with L2 penalty of 1e-02, the batch size was set to 128. The convolutional kernels were convolved over the image to
obtain the local features and global features of the images at the same time. The weights of the convolutional kernels were
adapted by back-propagation in every training process. Therefore, the networks were adjusted to the characteristics of the
input data of first cohort. The maximum training epoch was set to 100, and the model was saved when the maximum
validation accuracy was achieved from the testing set. This CNN was taken as an image filter, and the features of the regions
were generated from the feature maps from the last fully connected layer as CNN features.

Hematoma Expansion Prediction

To improve diagnostic accuracy, we use fusion approaches for fusion of features with the aim of collecting complemen-
tary information from radiomics, clinical data, and CNN features with the aim of improving diagnostic accuracy, as
shown in Figure 1.

Following the fusion pipeline, we chose K-highest score (K Best) for the feature selection. This alternative could
select a subset of features that is most relevant to the problem automatically. The grid search (GS-K_Best) parameters
comprehended many values for the complexity parameter and the kernel type for the separability. Then we used support
vector machines (SVM) as the classifier to predict HE.
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Figure | Fully automated hybrid model for HE prediction. In Model 2, we use feature-level fusion approaches for fusion of features with the AIM of collecting
complementary information from radiomics, clinical data.

Dividing Training Data and Test Data

We randomly select half of the cases as the first cohort for training CNN, using the default ratio set that 80% of the
training set as training data and 20% as test data. The other half of the cases were in the second cohort as the validation
cohort, with 100 randomly selected cases as test data and the rest as train data. We used the “sklearn. model.selection.
train_test split” function to randomly separate the training set and test the set.

Statistical Analysis and Metrics

A statistical analysis was conducted to compare the characteristics of the patients. Continuous data that followed
a normal distribution were expressed in mean + standard deviation, while others used the median value. For categorical
variables, differences were assessed using the chi-square test or Fisher’s exact test. The Student’s t-test or Mann—
Whitney’s U-test was used to determine differences among continuous variables. A significance level of p < 0.05 was
adopted for all analyses.

Next, the model’s performance was evaluated using metrics. The ability of the classifier to distinguish between
classes was measured using the area under the receiver operating characteristic curve (AUC-ROC). The confusion matrix
was used to determine instances in a predicted class while each column indicated instances in an actual class. Precision
indicated the ability of the classifier to avoid labeling a negative sample as positive while recall reflected the ability of the
classifier to locate all positive samples. The F1-score was calculated using the harmonic mean of precision and recall
through the formula F1-score = 2 x (precision x recall) / (precision + recall). The average precision (AP), which is the
area under the precision-recall curve, was also used to compare the performance of computational object detection
methods regardless of their underlying algorithm.** To evaluate the contributions of different features to the classifica-
tion, we examined the top 15 features with high importance in the SVM-based classifier. Statistical analyses were
conducted using the Python software (version 3.7.11) with the “scipy” and “Scikit Learn (version 0.24.2)” packages.
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Results

Characteristics of the Study

Figure 2 depicts the patient enrollment process. Among 771 patients who met the inclusion criteria, 363 patients were
excluded due to the following reasons: (1) trauma, aneurysm, vascular malformation, venous sinus embolism, tumor-induced
cerebral hemorrhage (n=137); (2) emergency surgery before CT review (n=83); (3) surgical intervention performed during the
72-hour observation period, regardless of hematoma expansion (n=136); (4) CT images with artifacts (n=7). A total of 408
patients were finally enrolled for analysis. The CNN was trained using the first cohort, consisting of images from 204 case with
163 cases as training data while 41 cases as test data. The second cohort with the remaining 204 cases with 104 cases as the
training data and 100 cases as the test data for validation. Table 1 provides detailed clinical characteristics of the patients, and
the ADL Index was identified as the only significant difference between the two cohorts.

Model Performance
Hematomas were automatically labeled and their volumes calculated in all cases. Figure 3 illustrates an image showing
the accurate masking of the hematoma. Table 1 shows the basic characteristics of all the cases included in the study.
We then applied fusion methods to combine clinical data, radiomic features, and CNN features and used SVM as
a classifier to predict hemorrhage expansion. In each case, a total of 6266 features were extracted, comprising 107 radiomics
features, 15 clinical features, and 6144 CNN module features. The performance of the hybrid model on the test set of
the second cohort is presented in Table 2 and Figure 4. Our experiments yielded a best accuracy of 0.95, an AUC of 0.949,
a precision of 0.95, a recall of 0.83, and an averaged precision (AP) value of 0.94. Notably, NEG-HE achieved a precision of
0.95, recall of 0.99, and fl1-score of 0.97, while POS-HE attained a precision of 0.95, recall of 0.83, and f1-score of 0.89. We
included the macro-average and weighted average indices in Table 2 to present the precision/recall/fl-score values more
clearly for unbalanced data.

. . Records screened (n = 771)
Records 'dem'I'e.d from PACS system: | Reason 1 diagnose spontaneous intracerebral
Records (n =771)

haemorrhage
Reason 2 follow-up CT scan less 72h
Reason 3 symptom onset in 6h

Records excluded:

Reason 1 Trauma, macrovascular ruptured or

o malignancy, (n = 137)

Reason 2 Emergency surgery has been performed
before the CT review (n=83)

Reason 3 Severe artefacts (n = 7)

Records masked by model 1
(n = 544)

Records excluded surgical intervention in NEG-ICH
(n=136)

. . hematoma expansion cases (POS-ICH) (n=98)
Records analysised by model 2 : ,
. i P hematoma not expansion cases (NEG-ICH)
(n = 408) o
(n=310)
Frist cohort: Training CNN cohort (204 cases)
(49 POS-ICH cases and 155 NEG-ICH cases) Second cohort: validation cohort (204 cases)
80% cases as train set and 20% case as test set for & | (49 POS-ICH cases and 155 NEG-ICH cases)
CNN model 104 cases as train set and 100 cases as test set for SVM model
Figure 2 The patient enrollment process.
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Table | The Characteristics of All Inclusion Participants

Variables NEG-HE POS-HE P value
Gender (M/F) 220/90 68/30 0.739
Age (yearxSD) 59.4%11.17 59.53+13.67 0.945
SBP (mmHg+SD) 170.69+27.94 172.16£30.80 0.767
DBP (mmHg+SD) 97.53+27.94 98.61+20.79 0.739
ADL Index (median) 35 5 0.0004
History of hypertension (Y/N, n) 204/106 58/40 0.109
History of heart disease (Y/N, n) 16/294 4/94 0.674
History of diabetes (Y/N, n) 18/292 6/92 1.000
Platelet count (% 10%/L, median) 179 193 0.243
Neutrophil count (x10/L, median) 6.84 779 0.288
Percentage of neutrophils (median, %) 78.7 78.1 0.788
D-dimer (mg/L, median) 0.29 0.29 0.644
Fibrinogen (g/L, median) 2.46 2.35 0.712
Prothrombin time (INR, median) 1.5 1.7 0.135
Hematoma volume (mL, median) 11.13 17.74 0.008

Abbreviations: NEG-HE, negative-hematoma enlargement; POS-HE, positive-hematoma enlargement; SBP, systolic
blood pressure; DBP, diastolic blood pressure; ADL, activity of daily living scale index; Y/N, yes/no.

To investigate the contribution of different features to the classification process, the top 15 features with the highest
importance for classification are displayed in Figure 4D. The feature with the highest coefficient is imagenet 2377, and
both imagenet 2377 and image 1 are the top specific features in the Inception V3 pretrained model, indicating
a significant role of this convolutional neural network in the prediction of the hybrid model. Three radiomic shape-
based measures were also among the top features, illustrating a high correlation between hematoma outcome and their
morphological properties. The remaining 9 were radiomic texture features, indicating that the texture features were more
discriminative and could provide complementary information to the shape-based features. Besides, the D-Dimer was the
only clinical feature that might have some influenced outcome of hematoma.

Discussion

In this study, we first employed an automated model to segment ICH in NCCT images. We then developed a hybrid model that
fused radiomics, CNN features, and clinical risk features to predict early HE in patients. Our results demonstrated that our model
exhibited advantages in automatic segmentation hemorrhage and prediction HE risk with high sensitivity and accuracy rate.

Figure 3 Representative image of hematoma by automatically labeled. The effect of the automatic hematoma labeling tool on a certain patient. The red color in the above
picture shows the range of the labeled hematoma, and the picture below shows the original axial image of the brain.
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Table 2 Results of Hybrid Module Receiver Operating Characteristic,

Precision-Recall

Precision Recall fl-Score Support
NEG-HE 0.95 0.99 0.97 76
POS-HE 0.95 0.83 0.89 24
Accuracy NA NA 0.95 100
Macro average 0.95 091 0.93 100
Weighted average 0.95 0.95 0.95 100

Abbreviations: NEG-HE, negative-hematoma enlargement;
hematoma enlargement; NA, not available.

POS-HE, positive-

In recent years, several morphological imaging features on NCCT images that predict early hematoma outcome have
been identified. Meta-analyses conducted by Du et al and Dowlatshahi et al investigated the diagnostic performance of
the “spot sign” in ICH patients and found that as onset-to-CTA time increased, there was a significant decrease in
hematoma expansion in spot-positive patients, with decreasing positive predictive values.*>*® Some researchers have
also proposed using clinical scores or laboratory tests to predict the outcome of hematoma. Morotti et al, for instance,
developed a BAT score that can rapidly identify ICH patients at high risk for HE. The BAT score only contained three
variables, namely “Blend sign”, “intrahematoma hypodensities”, and baseline NCCT timing.'®**
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Figure 4 Performance of the hybrid model in the prediction of HE status. (A) The confusion matrix shows how well the model predicts the test set. (B) ROC curve of the
model. (C) The precision-recall curve of the model. (D) Top |5 features with high importance in the SVM based classifier.
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Recent advances in artificial intelligence (Al) have shown its potential in clinical applications. Liu et al proposed an
SVM model with an AUC of 0.85 to predict HE, but only relied on a bundle of clinical data.*” Similarly, Zhu et al used
handcrafted radiomics features and an SVM model to predict HE through manual 2D image segmentation, achieving
a maximum AUC of 0.787 in the testing cohort.*® In our study, we used an automated segmentation model to achieve the
hemorrhage in NCCT, which helped avoid subjective errors resulting from manual labeling and saved significant time.
The model’s output 3D segmentation mask objectively described the hematoma’s morphological characteristics. To
enhance our classification accuracy, we concatenated the CNNs connected layer, enabling the model to combine clinical
data, radiomics, and convolutional neural network features, thereby providing more meaningful features to the input
layer. Our hybrid model had an excellent AUC of 0.949 with high precision, recall, and AP value in both cohorts,
outperforming conventional NCCT markers and the BAT score. Moreover, our automated end-to-end model can help
clinicians in emergencies by simplifying their decision-making process.

When constructing the hybrid model, we identified 15 most predictive features from the 6266 initially extracted
features. The coefficient feature is an inception feature, but its meaning has not been explicitly cleared. Most of the
remaining 12 features were radiomics features, with three shape features reflecting the three-dimensional shape hetero-
geneity of the hematoma. This finding was consistent with the results reported by Barras et al’s morphology classification
model, which predicted early hematoma expansion and poor clinical prognosis in ICH patients. These findings indirectly
confirmed the reliability of previous studies on the predictive value of irregular hematoma morphology in predicting the
risk of hematoma expansion.*® Additionally, five of the top 15 features were gray level co-occurrence matrix (GLCM)
features, which were used to measure the statistical relationship between two neighboring voxels.”® This feature
quantitatively described the unevenness of density within the hematoma, as reflected in some published subjective
signs such as the “black hole sign”, “blend sign”, and “satellite sign”.***!

Our study has several limitations. Firstly, the data was collected from a single center. The total number of cases included in
this article, especially the number of positive cases, was limited. Secondly, we observed that some patients’ hematomas did not
appear to expand within a short period, but surgical intervention was still performed within 72 hours. Although this kind of
situation is not uncommon in clinical practice, it was not included in the study. Furthermore, hematoma expansion is not the
gold standard for surgical intervention, and current DL models cannot provide a complete guide to clinical practice. Thirdly, in
this retrospectively study, we were unable to fully capture all clinical information for our analysis. For example, the blood
pressure control data, showing the reduction of increased ABP within first 6 hours after the onset of symptoms, were missed in
some medical records. This may affect our analyzed quality.

Conclusions

Our study developed an automatic hybrid model with high sensitivity and accuracy rate using DL to detect early
hematoma expansion in ICH patients. This model is an end-to-end method and can supplement clinical decision-making,
thereby facilitating personalized treatment for patients with ICH.
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