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Abstract: This study evaluated an experimental two-step self-etch adhesive (BZF-29, BZF) by com-
paring it with a reference two-step self-etch adhesive (Clearfil Megabond 2, MB) and a universal
adhesive (G-Premio Bond, GP) for microtensile bond strength (uWTBS) and resin-dentin interfacial
characteristics. Twenty-four human third molars were used for the uTBS test. Bonded peripheral
dentin slices were separated to observe the resin-dentin interface and measure the adhesive layer
thickness with SEM. uTBS data of the central beams were obtained after 24 h and 6 months of water
storage. Fracture modes were determined using a stereomicroscope and SEM. Nine additional third
molars were used to determine the elastic modulus (E) employing an ultra microhardness tester.
Water storage did not affect uTBS of the tested adhesives (p > 0.05). uTBS of BZF and MB were similar
but significantly higher than GP (p < 0.05). BZF achieved the highest adhesive layer thickness, while
GP the lowest. E of BZF and MB were comparable but significantly lower than GP (p < 0.05). Except
for GP, the predominant fracture mode was nonadhesive. The superior bonding performance of BZF
and MB could be attributed to their better mechanical property and increased adhesive thickness
imparting better stress relief at the interface.

Keywords: dentin bonding; two-step self-etch adhesive; universal adhesive; microtensile bond
strength; resin-dentin interface; scanning electron microscopy; ultra microhardness tester; elas-
tic modulus

1. Introduction

Since their inception [1], one-step self-etching adhesives have been increasingly valued
owing to their simplicity of application, reduced clinical application time, and ability to
bond to various substrates. Incorporating the essential constituents with differing chemical
properties in a single bottle, nevertheless, results in reduced shelf life, water sorption, phase
separation, increased nano-leakage, and limited bond durability [2]. Consequently, the
reported short-term [3,4] and long-term [5,6] laboratory and clinical performances [7,8] of
two-step self-etch and three-step etch-and-rinse adhesives were found to be better than
their one-step counterparts. The exception being the mildly acidic one-step self-etching
adhesives, the annual failure rate of which is similar to that of two and three-step self-etch
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adhesives [9]. Based on the 2-hydroxyethylmethacrylate-free (HEMA) one-step self-tech
adhesive technology developed by GC Corporation, a new two-step self-etch system has
been proposed to improve adhesive-substrate interfaces’ longevity. Avoiding the use of
HEMA would partially decrease the deleterious effect of materials hydrophilicity.

As a result of the constant and rapid development of adhesives, laboratory screening
has become a crucial step to predict their clinical performance [10], constructed on the
principle that the stronger the bond, the better it will withstand functional stress [11]. In this
perspective, due to its excellent discriminative capability, standard operating procedure,
profound use, and versatility, the microtensile bond strength (LTBS) test is considered the
most suitable laboratory testing tool [12]. Moreover, the pTBS test has been recommended
as the most stand-in in vitro assessment of composite resin restoration retention, particu-
larly after subjecting the bonded specimens to a longevity test [13]. Besides the quantitative
assessment of adhesion, valuation of the bonded interface’s morphologic characteristics
achieved with electron microscopic observations adds additional qualitative insights to
tooth-biomaterial interaction [14].

When applied to dentin, each adhesive creates a hybrid layer [15] that provides a
stress-breaking effect when a load is applied [16]. A gradual transition of the structures’
mechanical properties across the resin-dentin interface influences the bond strength by
relieving the stresses between the shrinking composite resin and the rigid dentin [17,18].
Therefore, an appreciation of the interfacial structures’ elastic modulus is crucial, commonly
gained through the indentation method employing an ultra microhardness tester [17-20].

Analysis of the factors that simultaneously affect the bonding of adhesives to dentin
is challenging. Different experimental approaches have been engaged to assess as many
properties as possible. Still, most strategies fail to correlate the results as some of them
are destructive, or the substrate originates from different teeth. This study used a same-
tooth model to compare the 24 h and 6 months bond strength results and determine the
adhesive-dentin interfacial characteristics aiming to exclude the confounding effects of
teeth variability.

The purpose of this study was to evaluate the dentin bonding performance of an
experimental two-step self-etch adhesive by comparing its pITBS to that of a reference
two-step self-etch adhesive and a universal adhesive after 24 h and 6 months of water
storage. In addition, the elastic modulus across the resin-dentin interfaces was evaluated
using the indentation method, and micromorphology was characterized using scanning
electron microscopy (SEM). The tested null hypotheses were (1) dentin bond strengths will
not differ due to the adhesive, and (2) duration of water-storage, (3) elastic modulus of the
structures across the resin-dentin interface, and (4) their micromorphological characteristics
will not be different.

2. Materials and Methods

This investigation was conducted following the Declaration of Helsinki of 1975, revised
in 2013. The Research Ethics Committee of Hokkaido University Graduate School of Dental
Medicine approved the study (approval number 2018-7; approval date 1 February 2018).

All the human teeth used in this study were collected after the patients” informed
consent, stored in an aqueous solution of 0.5% Chloramine-T at 4 °C, and employed within
six months of extraction. The whole study design is schematically presented in Figure 1.

2.1. Teeth Selection, Preparation, and Bonding Procedures

Twenty-four extracted sound human molars free of any signs of caries, cracks, or
fractures were used for the uTBS test [21]. Flat, occlusal dentin surfaces were exposed
using a gypsum model trimmer under water coolant and subsequently checked with
a light-magnifier to confirm that no enamel remained on the surface. Exposed dentin
surfaces were then prepared manually with 180-grit SiC paper (Sankyo-Rikagaku; Saitama,
Japan) under running water for 60 s to produce clinically relevant smear layers [22].
The teeth were then randomly allocated to 3 groups (n = 8) for bonding with G-Premio
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Bond (GP; GC Corporation, Tokyo, Japan), Clearfil Megabond 2 (MB; Kuraray Noritake
Dental Corporation, Nigata, Japan), and an experimental two-step self-etch adhesive, BZF-
29 (BZF; GC Corporation, Tokyo, Japan). Each adhesive was applied according to the
manufacturers’ instruction (Table 1) and light-cured at >1200 mW/ cm? (G-Light Prima-II
plus, GC Corporation, Tokyo, Japan). After the application of adhesives, approximately
4 mm thick layers of composite resin (Clearfil AP-X, Kuraray Noritake Dental Inc., Niigata,

Japan) were built up.
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Figure 1. Schematic of specimen preparation and test set-ups for determining puTBS, fracture mode,
and interface characterization. * GP, G-Premio Bond; MB, Clearfil Megabond 2; BZF, BZF-29.

Table 1. Adhesive systems (Lot number), composition, and application procedures.

Adhesives
(Lot No.)

Composition

Application Procedures as per
Manufacturers’ Instructions

€ G-Premio Bond
(1807031)

10-MDP, 4-META, 10-MDTP,
methacrylate acid ester, distilled
water, acetone, photoinitiators, fine powdered silica

1. Apply using a micro brush.
2. Leave undisturbed for 10 s.
3. Dry thoroughly with air under maximum
air pressure.
4. Light cure for 10 s.

d Clearfil Megabond 2
(000095)

Primer: 10-MDP, HEMA, hydrophilic aliphatic
dimethacrylate, d1I-CQ, water
Bond: 10-MDP, Bis-GMA, HEMA, dI-CQ,
hydrophobic aliphatic
dimethacrylate, initiators, accelerators,
silanated colloidal silica

1. Apply the primer and leave for 20 s.
2. Gentle air-blowing for >5s.
3. Apply the bond.
4. Gentle air-blowing to make the
film uniform.
5. Light-cure for 10 s.

® BZF-29
(1907201G-primer)
(1907172-bond)

Primer: 4-META, MDP, dimethacrylate, photoinitiator,
water, acetone, silica, MDTP
Bond: Dimethacrylate, photoinitiator, silica

1. Apply the primer and leave for 10 s.
2. Dry with moderate air-blow for 5 s.
3. Apply the bond.

4. Gentle air-blowing to make the
film uniform.

5. Light-cure for 5 s.

€ Composition as reported by Saikaew et al. [23]; d Composition as reported by Sato et al. [24]; ® Information as provided by the
manufacturer; 10-MDP, 10-methacryloyloxydecyl dihydrogen phosphate; 4-META, 4-methacryloxyethyl trimellitic anhydride; 10-MDTP,
10-methacryloxydecyl dihydrogen thiophosphate; HEMA, 2-hydroxyethylmethacrylate; CQ, camphorquinone; Bis-GMA, bisphenol-A-

diglycidyl methacrylate.
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2.2. uTBS Test

After storage in distilled water at 37 °C for 24 h, each bonded tooth was sectioned into
resin/dentin slices using a low-speed diamond saw (Isomet 1000, Buehler, Lake Bluff, IL,
USA). Three central slices were selected and further cut into resin/dentin beams (cross-
sectional area: 1 mm?) according to the non-trimming technique [21]. Bonded peripheral
slices were separated to observe the resin/dentin interface with SEM. [25] Resin/dentin
beams were then subjected to a microtensile bond strength (WTBS) test immediately (24 h)
or after 6 months (6 m) of water storage. During the 6 months of storage time, the distilled
water was changed weekly [26,27]. Twenty-four randomly selected beams originated from
eight teeth were tested per group [21,23,28].

Each bonded beam was fixed to a Ciucchi’s jig with a cyanoacrylate adhesive (Model
Repair II Blue, Dentsply-Sankin, Tokyo, Japan). They were then subjected to tensile force
employing a 500-N load cell at a crosshead speed of 1 mm/min in a desktop testing
apparatus (EZ-S, Shimadzu Co., Kyoto, Japan) until they were fractured. Each beam
was tested within 5 min after removal from water storage to prevent sample drying [29].
The tensile load causing fracture of each beam was recorded and divided with the cross-
sectional area to achieve the pTBS in megaPascals (MPa). The mean bond strength of three
beams derived from each tooth represented the pTBS of that tooth, generating 8 values for
each tested group.

2.3. Fracture Mode Analysis

After the uTBS test, the two ends of the fractured specimens were examined with
10x magnification using a stereomicroscope. Fracture modes at the dentin sides of the
specimens were taken into consideration and classified into the following categories:
adhesive failure, cohesive failure in dentin, cohesive failure in composite resin, and mixed
failure [30]. In order to simplify the explanation of the results, the fractured beams showing
cohesive and mixed failures were further combined into a nonadhesive failure category [31].

Selected representative fractured cases were further confirmed using a field emission
scanning electron microscope (SEM; S-4800, Hitachi, Tokyo, Japan) at an accelerating
voltage of 10 kV. The fractured specimens were carefully removed from the jig and mounted
on an aluminum stub. They were coated with Pt-Pd using an ion sputtering device (E-1030,
Hitachi, Tokyo, Japan) for 150 s and then observed with SEM. The fracture modes were
determined with low magnification (80 ). The specific features of fractured surfaces were
further observed at higher magnification (3000 x).

2.4. Interface Observation through SEM

Three bonded peripheral dentin slices (1 slice/adhesive) were employed for interface
observation using SEM at an accelerating voltage of 10 kV. The specimens were prepared
following a protocol described by Ting et al. [32]. The slices” internal surfaces were sequen-
tially polished with the waterproof SiC papers (600-, 800-, and 1000-grit) under running
water and then with 6-, 3-, and 1-um diamond pastes (DP-Paste; Struers, Denmark). After
polishing, the specimens were cleaned with an ultrasonic device. They were then treated
sequentially with 1 M hydrochloric acid for 30 s and 5% sodium hypochlorite solution
for 5 min, followed by rinsing with water. The specimens were then room dried for 24 h.
Finally, the samples were coated with Pt-Pd for 150 s and then observed with SEM at
1000 x magnification. For the purpose of standardization, the adhesive layer thickness
was measured at three spots of each bonded dentin slice: left lateral, central, and right
lateral. The left and right lateral spots were determined at 500 pm mesially from each
bonded slice’s left and right margins, respectively. At least 3 measurements were taken
from each spot, and the mean of those values was considered the adhesive layer’s thickness
for that slice.
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2.5. Specimen Preparation for Elastic Modulus Test

Nine additional bonded dentin slices (1 slice/tooth) were used for the elastic modulus
(E) test employing indentation procedures. Nine additional molars were prepared and
bonded with the tested adhesives (3 teeth /adhesive) in the same manner as mentioned
above. After water storage (37 °C for 24 h), the bonded teeth were cut with a low-speed
diamond saw (IsoMet 1000, Buehler) perpendicular to the bonded surface to obtain resin-
dentin slices.

As shown in Figure 2, one central slice from each tooth was selected, prepared, and
tested for E following a protocol described by Chowdhury et al. [33]. Each bonded dentin
slice was sequentially finished with 1000-, 1200-, and 2000-grit waterproof SiC paper under
running water and polished with 6-, 3-, and 1-um diamond pastes for 1 min each. The
specimens were cleaned with an ultrasonic unit with distilled water for 3 min after each
finishing and polishing step.

R1
R2
R3

Bonded human 1.5 mm-thick Polishing with SiC Polished
third molar resin-dentin  (#1000-1200-2000-) and  resin-dentin
(n=3) slices diamond paste (6-3-1um)  slices

Figure 2. Schematic explaining the specimen preparation methodology and test set-up for deter-
mining elastic modulus. The resin-dentin interface was microscopically divided into three target
regions—the adhesive layer (R1), adhesive-dentin interface (R2), and sound dentin (R3).

2.6. Indentation Tests for Elastic Modulus (E)

E across the adhesive-dentin interface was measured with a dynamic ultra-micro-
hardness tester (DUH-211, Shimadzu; Figure 2). The device contained a triangular pyrami-
dal diamond indenter with a tip angle of 115° and a radius of 0.1 pm. All the specimens
were tested at ambient temperatures (22 °C-24 °C) with a maximum humidity of 30%.
Three regions—the adhesive layer, adhesive-dentin interface, and sound dentin—were
targeted. All indentations were performed at a constant speed of 0.2926 mN/s and held
for 10 s at peak load [33]. The maximum loads employed were 5.05 mN. E values were
obtained from the default software of the testing device. At least a 10 um distance between
adjacent indentations was maintained to avoid the influence of the residual stress from
adjacent indentations. Poisson’s ratio was 0.30.

2.7. Statistical Analysis

The normality and homogeneity of all data were checked using the Shapiro-Wilk test
and Levene’s test. Based on those test results, two-way ANOVA followed by Tukey’s test,
Welch ANOVA followed by the Games-Howell test, and Kruskal-Wallis followed by the
Dunn-Bonferroni test was employed to analyze the uTBS, adhesive thickness, and E data,
respectively (¢ = 0.05). All statistical analyses were done using SPSS 25.0 for Windows
(SPSS, Chicago, IL, USA).

3. Results
3.1. uTBS Test
No pretest bond failure was encountered in this study. The uTBS test results are sum-

marized in Table 2. Two-way ANOVA revealed significant effects of adhesives (F = 46.952,
p <0.001) on the uTBS, but the effects of water storage duration was not significant
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(F =2.807, p = 0.101). In addition, the two-way interaction between these variables was not
statistically significant (F = 0.373, p = 0.691).

Table 2. The mean values + standard deviations (SD) of adhesive layer thickness (in um) and uTBS
(in MPa; n = 8), and the percentage of fracture modes (A/CD/CC/M) *.

Adhesive
24 Hours (24 h h

Adhesives Ijayer ours (24 h) 6 Months (6 m)

Thickness

Mean+SD  uTBS+SD A/CD/CC/M uTBS +SD  A/CD/CC/M
GPremio ggi26A  390+£60A  100/0/0/0 37.6+£50A  63/29/0/8
Bond (GP) MALAM £7/9/%

Clearfil

Megabond 13.51+46B 55.6 4.6 B 21/75/0/4 51.2+39B 46/50/0/4
2 (MB)

BZF-29 (BZF) 184 +25C 553 +578B 21/29/0/50 535+62B 46/46/0/8
Values with different uppercase letters indicate statistically significant differences between tested groups. Tukey’s
HSD test made multiple comparisons for the yTBS and Games-Howell test for adhesive layer thickness (p < 0.05).
* A, adhesive failure; CD, cohesive failure in dentin; CC, cohesive failure in composite resin; M, mixed failure.
CD/CC/M, together, constituted the nonadhesive failure category [31].

3.2. Fracture Modes

The percentage of the fracture modes observed in this study is shown in Table 2.
For BZF and MB, the predominant failure mode in 24 h groups was nonadhesive (79%).
The percentage of adhesive failures increased in 6 m groups, showing adhesive failure in
almost half of the beams (46%). For GP, the failure mode was only adhesive (100%) in 24 h.
However, in the 6 m group, 37% of the beams showed nonadhesive failure. No cohesive
failure in composite resin was observed in this study.

Representative SEM images of the fracture modes of selected failed specimens are
shown in Figure 3.

Figure 3. Representative SEM images of the adhesives’” (GP—G-Premio Bond; MB—Clearfil
Megabond 2; BZF—BZF 29) fracture modes. The images under 3000 x columns demonstrate the
magnified specific features of the preceding 80x images. Row A is adhesive failure, row CD is
cohesive failure in dentin, and row M is the mixed type of failure involving adhesive and dentin.
The white arrows indicate a cohesive failure in the adhesive (ii,iv,vi); the white rectangle includes
bubbles (ii); white-bordered black arrows show darker adhesive areas indicating failure at the com-
posite resin-adhesive interface (ii,iv,xiv,xviii); transparent white arrows indicate the dentinal tubules’
openings (viii,x,xii,xiv,xvi,xviii). The mixed failure patterns (xiv,xvi,xviii) also show complete or
partially occluded dentinal tubules (white hands).
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When representative fractured specimens were examined through SEM at higher
magnifications (3000x), bubbles could be seen in the adhesive failure category of GP
(Figure 3ii). Similar specimens of MB (Figure 3iv) and BZF (Figure 3vi) were devoid of
such features.

3.3. Interface Observation

Representative SEM images of each resin-dentin interface captured at the left lateral,
central, and right lateral spots of each bonded dentin slice are demonstrated in Figure 4.

MB §

BZF

Figure 4. Representative SEM images of interfacial structures (1000 x) of the tested adhesives—GP (G-
Premio Bond), MB (Clearfil Megabond 2), and BZF (BZF-29). Double-ended white arrows represent
the extension of the adhesive layers measured at left lateral (i,iv,vii), central (ii,v,viii), and right
lateral (iii,vi,ix) spots of each bonded dentin slice. The electron-lucent area between the twin yellow
arrows demarcates the hybrid layer. Blue arrows indicate resin tags. The striped arrows show gap
formation at the resin-dentin interface (iii). CR—composite resin; Ad—adhesive layer; D—dentin.

Hybrid layers could be seen clearly in all the groups. The interfaces of MB showed
more extended resin tags compared to those of GP and BZF. The number of resin tags was
most in MB. In general, BZF showed more uniform adhesive layer thickness than the rest.
Interfacial gaps were observed between adhesive and dentin in some parts of GP. The mean
thicknesses of the adhesive layers of GP, MB, and BZF were 8.8 £ 2.6 um, 13.5 & 4.6 um,
and 18.4 £ 2.5 pm, respectively (Table 2). A Welch ANOVA demonstrated a significant
difference among the adhesive layers’ thickness values (F = 42.134, p < 0.001). Multiple
comparisons with a Games-Howell test revealed that the adhesive layer thicknesses of MB
and BZF were significantly higher than that of GP. At the same time, BZF was significantly
thicker than MB (p < 0.05).

3.4. Elastic Modulus (E)

The means and standard deviations of E across the adhesive-dentin interface of the
tested groups are shown in Table 3.



Polymers 2021, 13, 1009

8 of 13

Table 3. Mean elastic modulus + standard deviation measured in MPa for different locations (n = 9
indentations/location/group).

Adhesive-Dentin

Adhesives Adhesive Layer Interface Sound Dentin *
G-Premio Bond 7192.6 £ 133.8 B 12,314.4 £ 9752 B 19,975.6 + 900.4
Clearfil Megabond 2 57309 £ 186.1 A 7372.0 = 169.7 A 19,007.8 £ 922.8
BZF-29 5852.7 £ 97.1 A 8798.8 +1090.4 A 20,016.7 £ 1524.9

Values with different uppercase letters indicate statistically significant differences between groups within each
location (Dunn-Bonferroni test, p < 0.05). * No significant difference was observed between the groups.

Kruskal-Wallis tests revealed very strong evidence of differences (p < 0.001) be-
tween the mean ranks of at least one pair of tested groups within the adhesive layer
and adhesive-dentin interface. Within the adhesive layer, Dunn’s pairwise test demon-
strated that the mean elastic modulus of GP (7192.6 & 133.8 MPa) was significantly higher
(p < 0.05, adjusted using Bonferroni correction) than MB (5730.9 £ 186.1 MPa) and BZF
(5852.7 £ 97.1 MPa). There was no evidence of a difference between MB and BZF (p > 0.05).

Similarly, within the adhesive-dentin interface, Dunn’s pairwise test demonstrated
that the mean elastic modulus of the GP group (12,314.4 £ 975.2 MPa) was significantly
higher (p < 0.05, adjusted using Bonferroni correction) than MB (7372.0 £ 169.7 MPa) and
BZF groups (8798.8 & 1090.4 MPa). There was no evidence of a difference between MB
and BZF groups (p > 0.05). The adhesive brand did not influence the E values of sound
dentin. A gradual increase of E values was apparent in all the groups, starting with the
lowest values in the softer adhesive layer and rising through the harder adhesive-dentin
interface to end with the highest values in relatively stiff dentin (Figure 5).

Elastic modulus
25,000

20,000

15000

E +GP
10,000 =MB
*BZF

5000

Adhesive layer Adhesive-dentin  Sound dentin
interface

Figure 5. The graph shows a gradually increasing elastic modulus (E) across the adhesive-dentin
interface. G-Premio Bond (GP), Clearfil Megabond 2 (MB), and BZF-29 (BZF).

4. Discussion

Although most self-etch adhesive systems contain the same components, they can
differ profoundly regarding these components’ proportional amount [34,35]. Consequently,
specific variations related to the adhesive composition might be considered to justify their
bonding effectiveness. Previous in vitro studies have reported that two-step self-etch adhe-
sives show higher bond strengths to tooth tissues than one-step self-etch adhesives [36—40].
Two-step self-etch adhesives, which involve applying an additional layer of solvent-free
hydrophobic resin, create stronger adhesive layers than one-step self-etch adhesives, which
contain hydrophilic monomers, water, and volatile solvents [41]. Similarly, in the current
investigation, our results showed that the type of tested adhesives (one-step and two-step)
exerted significant effects on their microtensile bond strength (p < 0.001).

The one-step universal adhesive G-Premio Bond (GP) would contain more amount of
water for acidic functional monomers’ dissociation to be effective in the self-etch approach
than its two-step counterparts (MB and BZF) [42]. Moreover, it needs to be sufficiently hy-
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drophilic to properly bond with “wet” dentin, yet at the same time, become as hydrophobic
as possible once polymerized to prevent water sorption and hydrolysis over time. However,
GP contains highly volatile acetone. Within GP’s shorter application time (10 s), acetone
evaporates quickly, leaving water behind. Too much remaining water can contribute to
incomplete polymerization and HEMA's absence to phase separation, culminating in a
weak interface and premature bond failure [23,43,44].

Clearfil Megabond 2 (Japanese version of Clearfil SE 2) is the improved successor
of Clearfil SE Bond—the gold standard two-step self-etch adhesive [9]. Previous studies
have also reported its high and stable bonding performance with different dentin sub-
strates [22,24,33]. In the current investigation, besides due to its additional hydrophobic
resin layer, MB’s superior bonding performance than GP (p < 0.05) could also be attributed
to its new photoinitiator, which improves its degree of conversion, leading to enhanced
mechanical properties, lower water sorption levels, and higher bond strengths [24].

The bonding performance of the experimental two-step self-etch adhesive BZF-29
(BZF) was comparable to MB (p > 0.05) but significantly higher than GP (p < 0.05; Table 2).
The interfaces’” representative SEM images revealed that contrary to MB and BZF, GP
showed interfacial gaps, indicating a weaker resin-dentin interface (Figure 4iii).

Because of the ability to produce densely cross-linked polymers, bisphenol A-glycidyl
methacrylate (Bis-GMA), urethane dimethacrylate (UDMA), and triethylene glycol dimetha-
crylate (TEGDMA) are the three most frequently used hydrophobic dimethacrylates in
dental adhesives, which directly provide mechanical strength to a cured resin [45]. De-
spite being hydrophobic, due to the polar-ether linkage and the hydroxyl groups, water
sorption of these three dimethacrylate-containing adhesives is inevitable, where UDMA
shows the least and TEGDMA shows the highest water sorption [46]. This could prove
advantageous if TEGDMA were added to primer, where hydrophilicity is essential for resin
infiltration, and UDMA to the bonding resin, preventing hydrolytic degradation. Bis-GMA
is commonly used in dental adhesives and composite resins because of its higher molecular
weight, lower polymerization shrinkage, and fast hardening ability [46]. However, such
properties of Bis-GMA also lead to excessive viscosity, rigidity, and reduced conversion
rate [47]. Therefore, UDMA and/or TEGDMA are incorporated as the ‘diluents’, which
can reduce the viscosity and rigidity [45,46]. In addition, UDMA’s comparable molecu-
lar weight to Bis-GMA allows it to be used alone or in combination with TEGDMA in
some adhesives [48].

GC Corporation recently marketed a new adhesive named ‘G2-BOND Universal’.
Unlike their already existing popular universal adhesive G-Premio Bond (GP), G2-BOND
Universal adhesive is a two-bottle system but has a HEMA-free composition similar to
GP [49]. G2-BOND Universal has also been claimed to provide a more hydrophobic bond
layer thanks to its two-bottle strategy and UDMA in the bonding resin [49,50]. According
to the brochure, G2-BOND Universal can produce an optimally thick adhesive layer,
imparting a better shock-absorbing effect against shrinkage stress [51].

It is probably reasonable to assume that BZF might have employed those dimethacry-
lates or their combinations. Our results showed that BZF achieved a significantly thicker
adhesive layer than GP and MB (p < 0.05; Figure 4), which in turn improves fracture
toughness, preventing cohesive failure in the adhesive layer. The presence of interfacial
gaps in GP having a significantly thinner adhesive layer than MB and BZF supports this
speculation. Previous studies also reported superior bond strengths with thicker adhesive
layers, and the reason given was better stress distribution due to increased elasticity of the
adhesive layer [52,53]. Interestingly, SEM images revealed that the adhesive layer thickness
of BZF could get as high as 38 um (approx.), noticeably thicker than MB and GP, which
could be approximately 22 um and 14 um, respectively (Supplementary Figure S1). The
results of statistical comparison drawn between the adhesive layers followed the same
trend (Table 2). In this context, it is worth mentioning that the standardized thickness mea-
surement method employed in this investigation targeted the same spots for all adhesives,
not necessarily including the thickest spots.
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Van Meerbeek et al. reported a significantly lower elastic modulus of the adhesive-
dentin interface than that of unaltered dentin and a gradual increase, starting from a softer
adhesive layer, followed by a continued increase at the relatively harder adhesive-dentin
interface, ultimately reaching the highest values in the stiffer dentin [17]. The gradual
transition of the mechanical properties across the resin-dentin area contributes to bond
strength by relieving the stresses between the shrinking composite resin and the rigid
dentin. The E results and the gradient of values across the resin-dentin area demonstrated
in this study concur with this report (Table 3 and Figure 5) and further substantiate the bond
strength results. According to our findings, the E of the adhesive layer and adhesive-dentin
interface of MB and BZF was similar (p > 0.05) but significantly lower than those of GP
(p < 0.05), indicating an inverse relationship with their bond strength. Freitas et al. reported
similar observations with one-step and two-step self-etch adhesives and concluded that
lower E yielded higher bond strength, imparting adequate resistance of the adhesive to
elastic deformation under stress [54].

In the current study, water storage duration (24 h and 6 months) did not significantly
affect the adhesives’” dentin bond strength (p = 0.101; Table 2). Previous studies also
reported stable bond strength values after 6 months of water storage [54-56]. The high
permeability of hybridized dentin formed by simplified adhesives [57-62], the separation
of phases between hydrophilic and hydrophobic monomers [63], and the high quantities of
solvents [44,64,65] are factors that decrease the durability of adhesive restorations. It would
probably be reasonable to assume that the extent of water diffusion in the present study
was probably not enough to degrade the tested adhesive-dentin interfaces in 6 months.
More extended storage periods should be evaluated to confirm this speculation.

The 24 h and 6 months UTBS results of the adhesives tested in this study were further
supplemented by their failure patterns (Table 2). In our previous investigation [22,33], we
demonstrated that the improved interfacial mechanical property of the two-step self-etch
adhesive MB resulted in significantly higher bond strengths and increased nonadhesive
failure percentages compared to the one-step self-etch adhesive GP. The failure patterns of
the present investigation showed similar results. Both two-step adhesives MB and BZF
showed a predominance of nonadhesive failure (>54%) in all storage durations, implying
a stronger and more stable adhesive layer, leading to higher bond strengths. GP, having
the weakest bond among the three, showed predominantly adhesive failures (>63%).

According to the results of the present investigation, adhesive type influenced the
bond strength. However, the effect of water storage duration on bond strength was not
significant. Moreover, the adhesives’ elastic modulus and interfacial micromorphology
were found to be material dependent, exerting a substantial influence on the adhesive
performance. Therefore, except for the second, all null hypotheses had to be rejected. In
addition to the dimethacrylates, the degree of filler loading could also modify the adhesives’
rheological properties [66]. Transmission electron microscopic assay and energy dispersive
X-ray spectroscopy of the adhesive-dentin interface may add valuable insights in this
aspect. Future studies should be aimed at addressing these issues.

5. Conclusions

The results of this study revealed that the performance of two-step self-etch adhesives
BZF-29 and Clearfil Megabond 2 was comparable but superior to the tested one-step uni-
versal adhesive G-Premio Bond in terms of bond strength, interfacial mechanical property,
and morphological characteristics. The thicker dimension of the adhesive layer of BZF-29
might have contributed to its high bond strength. The 6 month water storage time did not
alter the tested adhesives’ bond strength.

Supplementary Materials: The supplementary figure is available online at https://www.mdpi.com/
2073-4360/13/7/1009/s1.
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