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Abstract

Theory recognizes that a treatment of the detection process is required to avoid

producing biased estimates of population rate of change. Still, one of three

monitoring programmes on animal or plant populations is focused on simply

counting individuals or other fixed visible structures, such as natal dens, nests,

tree cavities. This type of monitoring design poses concerns about the possibil-

ity to respect the assumption of constant detection, as the information acquired

in a given year about the spatial distribution of reproductive sites can provide a

higher chance to detect the species in subsequent years. We developed an indi-

vidual-based simulation model, which evaluates how the accumulation of

knowledge about the spatial distribution of a population process can affect the

accuracy of population growth rate estimates, when using simple count-based

indices. Then, we assessed the relative importance of each parameter in affect-

ing monitoring performance. We also present the case of wolverines (Gulo gulo)

in southern Scandinavia as an example of a monitoring system with an intrinsic

tendency to accumulate knowledge and increase detectability. When the occu-

pation of a nest or den is temporally autocorrelated, the monitoring system is

prone to increase its knowledge with time. This happens also when there is no

intensification in monitoring effort and no change in the monitoring condi-

tions. Such accumulated knowledge is likely to increase detection probability

with time and can produce severe bias in the estimation of the rate and direc-

tion of population change over time. We recommend that a systematic sam-

pling of the population process under study and an explicit treatment of the

underlying detection process should be implemented whenever economic and

logistical constraints permit, as failure to include detection probability in the

estimation of population growth rate can lead to serious bias and severe conse-

quences for management and conservation.

Introduction

In its essence, management and conservation of wildlife

populations are mostly aimed at affecting the rate and

direction of population change over time. In some cases,

the negative demographic trend of a threatened species

needs to be turned around, in order to prevent its extinc-

tion (Butchart et al. 2010). In other instances, such as for

the control of biological invasions, a strongly positive

growth rate of one or more undesired alien species needs

to be limited or reversed (Mack et al. 2000). Also, many

natural populations are exploited by humans through

harvest, or have the potential to affect other important

ecosystem services, such as food crops, timber extraction,

livestock, carbon sequestration, human security, etc.

(Mace et al. 2012). Therefore, managers often aim at reg-

ulating populations, to ensure that the provision of those

services can be sustained while balancing wildlife popula-

tion persistence and human well-being (Murdoch 1994).

In all these instances, an accurate and timely assessment

of population trends over time is of obvious importance

to any adaptive management system, as it provides crucial

information on the system’s response to human actions

(Keith et al. 2011; Bunnefeld et al. 2013).
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With respect to “how” the monitoring of population

trend is performed, substantial progress has been made

over the past decades in terms of sampling design and

analytical methodologies. In particular, it has been recog-

nized that a proper treatment of the detection process is

required to avoid producing biased estimates of popula-

tion rate of change (Yoccoz et al. 2001). Distance sam-

pling (Buckland et al. 1993) and capture–recapture (Otis

et al. 1978) are two classes of method that can be used to

estimate the detection probabilities associated with count

statistics, and to produce unbiased estimates of abun-

dance and population rate of change in the face of imper-

fect detection.

Despite such progress in design and analysis, one of three

monitoring programmes on animal or plant populations is

still focused on a continuous index (usually counts of indi-

viduals), which does not include any formal treatment of

the underlying detection process (Marsh and Trenham

2008). The main reported reason for this pattern is the lim-

itation imposed by time shortage or by the lack of eco-

nomic resources, which prevent the application of more

robust, but also data demanding techniques (Danielsen

et al. 2003; Marsh and Trenham 2008; Reynolds et al.

2011). This is particularly the case for elusive species, such

as terrestrial carnivores or nocturnal birds, whose sampling

is affected by a low effectiveness of survey methods and

high costs, as a consequence of the species’ behavior, activ-

ity, preferred habitats, and low overall densities (McDonald

2004). As a result, quick to obtain and cheaper indices of

population trend, derived from cumulative counts of indi-

viduals, are still widespread monitoring methods used to

inform the decision-making process for management and

conservation (Marsh and Trenham 2008), even though they

often provide low power in accurately estimating popula-

tion size and trend (Katzner et al. 2007).

The use of simple cumulative counts of individuals as a

tool to monitor population trend is based on the strong

assumption that detection probability stays constant over

time. If we define true population growth rate

kt ¼ Nt=Nt�1, and the estimated population growth rate

k̂t ¼ Ct=Ct�1, where Nt and Ct are the population size

and population count in year t, k̂t is an unbiased estimate

of kt only if Ct=Nt ffi Ct�1=Nt�1, that is, only if detection

probability does not change between years. If detection

increases with time, the estimator of population growth

rate will be positively biased, whereas a negative bias will

occur if detection probability decreases between years.

Archaux et al. (2012) have shown that even small (4–8%)

differences in detectability between two treatments can

lead to a 50–90% increase in the risk of erroneously

detecting a difference in abundance. Still, despite being a

crucial aspect in the application of this type of estimator,

the assumption of constant detection is rarely verified or

discussed, when reporting the results of monitoring pro-

grammes based on count indices. At the most, the state-

ment that sampling effort and monitoring scheme have

remained the same over time is used to reassure readers

that the ability to detect individuals of the study species

has not changed throughout the monitoring period (Yoc-

coz et al. 2001).

One particular case of count-based population indices

refers to the use of fixed visible structures, such as natal

dens, nests, tree cavities, etc., to detect the reproductive

portion of the population, which is then compared

between years to derive estimates of population growth

rate. Counts of natal dens, nests, and more generally of

reproductive units have been widely used to estimate

minimum abundance and population trend of mammals

(Wilson et al. 2003; Linnell et al. 2007; H�ajkov�a et al.

2008; Kindberg et al. 2009; Brøseth et al. 2010), birds

(Hatfield et al. 1996; Gilbert et al. 1998; Seamans et al.

2001; Hardey et al. 2006), amphibians (Schmidt 2003),

and reptiles (Madsen and Shine 1999).

The use of fixed structures to monitor populations of

rare or elusive species has some obvious advantages, as in

elusive species dens and nests are often easier to detect

than the individuals occupying them. Moreover, in most

of the above-cited species, the same denning or nesting

location may not only be used by the same individual for

several years, but also inherited by other individuals after

it has been abandoned. This means that the information

acquired after the first species detection at any of the

sampling locations increases the chances to detect the

same species at the same location in subsequent years,

even if sampling effort and design remain unchanged

throughout the monitoring period. While providing some

advantages, this type of monitoring design also poses

strong concerns about the possibility to respect the

assumption of constant detection. In fact, in all cases in

which any information acquired in a given year about the

spatial distribution of reproductive sites can provide a

higher chance to detect the species at the same or at a

near location in subsequent years, the system is intrinsi-

cally prone to a temporal increase in detection probabil-

ity. In more general terms, whenever the information

acquired in year t is retained, the population count in

year t + 1 is no longer a random independent sample of

true population size, but it will show a certain degree of

temporal correlation with the population counts obtained

in all previous years, even if the detection probability of

never identified reproductive units remains constant.

Also, such accumulation of knowledge about the demo-

graphic process under study is expected to be more rele-

vant during the first years of monitoring, during which

the negative effects of a trend in detection probability are

also expected to be more serious.
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The consequences of a temporal trend in detection

probability on the performance of count-based demo-

graphic monitoring have been extensively treated (Barker

and Sauer 1992; Yoccoz et al. 2001) and usually described

as an effect of unequal year-to-year sampling effort, habi-

tat characteristics, weather conditions, species behavior,

etc. Much less attention has been devoted to assess how a

more general accumulation of knowledge can generate an

intrinsic increase in the ability to detect a species, even

when all the above-described factors remain unchanged

through time.

To explore this subject, we developed an individual-

based simulation model and evaluated how the accu-

mulation of knowledge about the patterns of a popula-

tion process (in this case the use of reproduction sites)

can affect the accuracy of population growth rate esti-

mates, when using simple count-based indices. We

made the model flexible and general enough to apply it

to species with different life expectancy, and with a dif-

ferent year-to-year fidelity to reproduction sites, thus

mimicking a varying persistence of the information

acquired by the monitoring system through time. We

also present the case of wolverines (Gulo gulo) in

southern Scandinavia as an example of a monitoring

system with an intrinsic tendency to accumulate knowl-

edge and increase detectability. Finally, we discuss the

predictions of our model in terms of its potential con-

tributions to improve the monitoring and management

of rare and elusive species.

Methods

Simulation model

We built the individual-based model comprising three

successive processes as follows: (1) the demography of the

study population; (2) the yearly occupation of reproduc-

tion sites; and (3) the detection process.

Given the general scope of our study, the species

demography was described by a simple, density-indepen-

dent, exponential model.

Ntþ1 ¼ k � Nt :

The simulated population comprised only female indi-

viduals of reproductive age, that is only those individuals

potentially able to occupy a reproductive site. All the

individuals in the population at a given time step were

included as independent objects in the model, with a

binomial probability / to survive to the next time step,

whereas the number of recruits Rt (the number of new

females reaching reproductive age at a given time step)

was calculated as follows:

Rt ¼ Nt � ½Nt�1 � ð1� /Þ�
All the individuals alive in the population at a given

time step (new recruits + individuals surviving from the

previous time step) were assigned a further binomial

probability f of reproducing. In case of reproduction, each

individual was offered the possibility to select a reproduc-

tion site among a large number of potential sites (S), so

that the number of available sites was not a limiting fac-

tor in our model. If reproducing for the first time, an

individual had two possibilities as follows: (1) to choose a

new site; (2) to inherit a site previously occupied by

another individual. Such choice was controlled by the

probability h to inherit a reproduction site. If an individ-

ual had already reproduced in previous years, it was

bound to occupy the same site, until a maximum number

of years, set by the parameter p, after which a new site

had to be selected. In a biological sense, the parameter p
represents the maximum number of years a given site can

be potentially used for reproduction. It can be affected

not only by the physical degradation of the site, such as

in the case of a den or a hollow tree, but also by the

behavioral ecology of the study species (fidelity to repro-

duction sites, stability of territories, etc.). In the specific

context of our simulations, the parameter p represents

the number of years during which the information

acquired when detecting the study species for the first

time at a given site can enhance the ability to redetect the

same species in subsequent years. The parameter is here-

after referred to as site persistence. Overall, the probability

for a new site to be occupied in a given year was

described as follows:

wt;new ¼ Rt

S
� f � ð1� hÞ

whereas the probabilities for a site occupied in year t�1

to be reoccupied in year t were as follows:

wt;old ¼ /þ ð1� /Þ � Rt

S
� f � h if t �\p

wt;old ¼ 0 if t � � p

with t* being the number of years since the first time a

given site was used.

After simulating both the demographic and site occu-

pation processes in the population, we also included the

detection process into the model, which regarded sites

and not individuals. Conditional on being occupied,

each site was detected with a binomial probability P, with

the exception of those sites already detected at least

once. In that case, detection probability was fixed to one.

The complete list of parameters, used to build the
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individual-based model, is provided in Table 1, whereas

the logical structure of the model is shown in Fig. 1.

After completing the detection process, for each time

step, we produced estimates of population growth rate,

based on the observed count statistics:

k̂t ¼ Ct

Ct�1

We first ran the model under a set of fixed parameters,

to preliminarily assess the sensitivity of population growth

estimates to variation in model parameters. In particular,

we compared the performance of the model when applied

to an increasing vs. decreasing population, on short-lived

vs. long-lived species, using ephemeral vs. highly persis-

tent reproduction sites, and for different levels of detec-

tion probability. For each scenario, we ran 1000 iterations

over 20 time steps from an initial population size of 500

individuals and evaluated the performance of the simu-

lated monitoring system in terms of % relative bias of

lambda estimates, and calculating the number of years

necessary to stabilize bias to values <0.05, hereafter

referred to as the learning phase. As environmental sto-

chasticity in population growth rate can strongly affect

the ability to detect changes in population size and trend

(Lande et al. 2003), we also implemented a modified

version of the demographic model, by adding an

environmental stochasticity term e, which corresponded

to the coefficient of variation of population growth

rate. We then compared the performance of the

count-based index under the deterministic and stochastic

models.

After exploring the general characteristics of the model

with a scenario-based approach, we performed a more

comprehensive sensitivity analysis, allowing all parameters

to vary randomly and simultaneously. This allowed us to

assess the relative importance of each parameter in the

model, by estimating the expected variation in model out-

puts for a small change in each of the inputs (McCarthy

et al. 1995). For each iteration, we extracted parameter

values from a uniform distribution, whose range is pro-

vided in Table 1. After completing 1000 runs, we fitted a

generalized linear model using all the standardized input

parameters as predictors, to allow comparison among the

effects of each predictor, and chose the length of the

learning phase as response variable, using a Poisson distri-

bution. The standardized regression coefficients of each

input parameter were used to assess its relative impor-

tance in affecting the length of the learning phase. The

individual-based model is available through the R (R

Development Core Team 2008) function sim_count in

Appendix S1.

The wolverine study case

Today around one thousand wolverines live in Scandina-

via (Persson and Brøseth 2011), with a continuous distri-

bution which embraces Norway, Sweden, and Finland.

Since 1996, the southern portion of this population in

Norway and Sweden has been monitored through a sim-

ple cumulative count of reproductive units at natal dens.

Wolverines usually den in a system of snow tunnels, con-

sisting of a rock cavity or simply of a sheltered slope

where snow accumulates (May et al. 2012). The den itself

is just a temporary construction, but females tend to

reuse the same area in following years (Landa et al.

1998). Moreover, the same denning area can be inherited

for several generations, as wolverines are to a large extent

philopatric (Chapell et al. 2004).

Each winter and spring, wardens from the State Nature

Inspectorate in Norway and from the Environmental Pro-

tection Agency in Sweden, searched for natal dens in the

study population, to obtain a minimum count of the

number of reproductive females, which has been com-

pared between years to produce estimates of population

growth rate. Also, throughout the study period, each time

a wolverine den was found, its coordinates were included

in a national database (www.rovbase.no, www.rovbase.se),

and the site was checked for possible new reproductions

in subsequent years. Thus, the monitoring system has

been each year taking advantage of the information

acquired during previous winters, leading to a potential

increase ability to detect the study species. Between 1996

Table 1. Description of parameter symbols and values used in the

individual-based model of reproductive site occupation and detection.

Symbol Value/Range/Formula Description

N0 500 Initial number of females in

reproductive age in the

population

k 0.95–1.05 Population growth rate

e 0–1 Environmental stochasticity

(coefficient of variation of k)

Nt k � Nt�1 Number of females in

reproductive age in the

population at time t

/ 0.4 – 0.9 Survival probability

Rt Rt = Nt – [Nt�1 � (1�/)] Number of new recruits each

year

f 0.5–0.9 Reproduction probability

h 0–0.5 Probability to inherit a

reproduction site previously

occupied by another individual

p 0–10 Persistence of a reproduction site

(years)

P 0.1–0.9 Detection probability of each

reproduction site
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and 2013, the number of known denning sites has

increased from zero to 120.

We used data from the Scandinavian wolverine moni-

toring programme to parameterize our simulation model

and assess the effects of knowledge accumulation on the

performance of the monitoring system. As a parallel pro-

gramme of scat collection and DNA-based individual

identification had estimated population growth rate dur-

ing the study period to be 1.04 (Flagstad et al. 2013), we

used this value as simulated k in the model. Also, we set

the site persistency parameter p to 5, as den sites have

been reused for reproduction in average until 5 years

and up to 10 years after the first detection. Survival and

reproduction probabilities were set to 0.89 and 0.63, as

estimated in previous studies on the same wolverine

population (Brøseth et al. 2010; Brøseth and Tovmo

2013). We did not have empirical data on the probabil-

ity for a young female to inherit a den site from other

individuals, so we performed the simulations using a

range of values between 0.2 and 0.8 for the parameter h.

We also simulated a range of detection probabilities

between 0.1 and 0.9. After running simulations, we com-

pared the resulting estimates of population growth rate

with the actual values provided by the monitoring

system and assessed for which value of the detection

probability parameter the two sets of estimates were

more consistent.

Results

When simulating a declining population (k = 0.95), the

effect of the learning process on the accuracy of popula-

tion growth rate estimates was a high degree of overesti-

mation. Despite the strong population decline over time

(63% reduction in population size in 20 years), the simu-

lated monitoring system erroneously produced the image

of an increasing population size for several years after the

beginning of the monitoring process (Fig. 2), due to the

fact that the count process was influenced both by the

decreasing trend in population size and the increasing

trend in the ability to detect the study species. The length

of the learning phase, which in this case corresponded to

the time necessary to detect population decline, varied as

a function of detection probability, and ranged from six

(Fig. 2C) to 13 years (Fig. 2A).

We observed a similar, but less pronounced, degree of

overestimation in population growth rate when simulat-

ing an expanding population (k = 1.05, see Fig 2D–F). As

Figure 1. Conceptual diagram describing the structure of the individual-based model, used to explore the potential bias in estimating population

growth rate, when using a count-based index. Each individual enters the model when first recruited for reproduction in the population. Transition

probabilities are based on the following notation: t*, number of years since the first time a reproduction site has been used; p, persistence of a

reproduction site (years); / , survival probability; h, probability for a new individual to inherit a reproduction site; P, detection probability; f,

probability to reproduce.
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in the previous scenario, the bias in estimating k was

higher at the beginning of the monitoring period, when

the system was rapidly accumulating knowledge about the

spatial distribution of reproduction sites, but it performed

better and better with each time step. Also in this case,

the total bias in population growth rate over the 20 time

steps and the length of the learning phase were modu-

lated by detection probability. Still, even for high values

of this parameter (P = 0.5, Fig 2F), the estimated popula-

tion growth rate was almost three times higher than the

true one, and five years were necessary before the moni-

toring system started producing estimates of k with an

acceptable degree of bias.

When applying the count-based index to a population

with a stochastic growth rate, the general patterns of the

system were similar: the estimator still showed an initial

learning phase in all simulated scenarios (Fig. S1 in Sup-

porting Information), and the introduction of an envi-

ronmental stochasticity factor did not affect the length of

such learning phase, which was not different from the

one observed under a deterministic model for the same

set of input parameters. Still, increasing levels of stochas-

ticity in the demographic model increased the unpredict-

ability of the system on a year-to-year basis, as shown by

the larger uncertainty buffers around the average popula-

tion size estimates (Fig. S1).

In a second set of simulated scenarios, we compared

three monitoring systems with the same detection proba-

bility (P = 0.4), population size and trend (k = 0.95), but

with a different ability to improve monitoring perfor-

mance, based on the information acquired during previ-

ous years. When the parameters p and h were set to zero,

corresponding to no temporal autocorrelation in the spa-

tial distribution of reproduction site and to a monitoring

system with no learning ability, population growth rate

estimates were unbiased for the whole duration of the

monitoring period, so that the length of the learning

phase was zero (Fig. S2a in Supporting Information).

When introducing an increasing potential for the moni-

toring system to learn from its past experiences, by

manipulating the parameters p and h (Figs S2b,c) and

increasing the probability of reuse of reproduction sites,

the behavior of the system suddenly changed, leading to a

high overestimation of population growth rate. During

the first years of monitoring, when the simulated popula-

tion was decreasing by 5% each year, the monitoring sys-

tem produced an impression of a population increasing

by up to 30% each year, confounding the trend in the

biological process with the trend in the detection process.

Only after a number of years, ranging from 6 to 8 in our

simulated scenarios, did the system start producing esti-

mates of k with an acceptable degree of overestimation.

(A) (B) (C)

(D) (E) (F)

Figure 2. Relationship between real and estimated population trend, when using a count-based index, under different scenarios of population

growth rate and detection probability. The relationship is shown for a population with k = 0.95 (A–C) and k = 1.05 (D–F). The dashed vertical

line represents the length of the learning phase, that is the number of years necessary to obtain yearly estimates of population growth rate with

bias <0.05, whereas the numbers in parentheses are 95% CIs of the estimated population growth rate. All scenarios were run for an initial

population size of 500 individual, a site persistence p = 5 years, a probability to inherit a reproduction site h = 0.2, and a survival rate / = 0.8.
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The comparison of the three scenarios (Fig. S2) showed

that the higher the persistence of reproduction sites and

the higher the probability for an individual to inherit a

previously occupied site, the greater the resulting bias in

the estimation of population growth rate.

When allowing all simulation parameters to vary ran-

domly and simultaneously, the sensitivity analysis showed

that the length of the learning phase was primarily

affected by detection probability, by survival probability,

and by the persistence of reproduction sites (Table 2),

with a minor support provided to the effect of reproduc-

tion and inheritance probabilities, whereas the influence

of population growth rate on the length of the learning

phase was negligible. Individual survival was positively

correlated with the time necessary for the monitoring sys-

tem to start producing unbiased estimates of population

growth rate (b = 0.240, SE = 0.038, P < 0.001). The same

monitoring design, with the same detection probability,

was associated on average with a 10-year longer learning

phase when applied to a long-lived species (/ = 0.9) than

when applied to a short-lived species (/ = 0.5, see

Fig. 3), as the slower turnover of individuals in a species

with high survival allowed the monitoring system to accu-

mulate and take advantage of a greater amount of infor-

mation about the spatial distribution of reproduction

sites. Similarly, reproduction sites with a longer persis-

tence lead to an increase in the number of initial years

during which the monitoring system systematically over-

estimated population growth rate (b = 0.111, SE = 0.038,

P < 0.001). Also, the duration of the learning phase was

strongly mediated by detection probability (b = �0.450,

SE = 0.039, P < 0.001). When simulating a monitoring

system with a low associated detection probability

(P < 0.2), up to 20 years were necessary before starting to

produce estimates of population trend with an acceptable

level of bias (Fig. 4), whereas the time interval was

reduced to <10 years when detection increased to 0.7–0.8.
It should be noted, though, that all simulated monitoring

systems with some degree of temporal autocorrelation in

the spatial distribution of reproduction sites (p and

h > 0) produced a predicted initial phase of poor moni-

toring performance, regardless of the associated detection

probability. The complete results of the sensitivity analy-

sis, with the regression coefficients and all input parame-

ters, are shown in Table 2.

The wolverine study case

When parameterizing the model with data derived from

the wolverine monitoring in southern Scandinavia, popu-

lation growth rate estimates were always positively biased

during the first years of monitoring (Fig. 5). Within the

range of parameters used for this set of simulations, the

inheritance probability h had no substantial effect on

model results. As expected, the extent of bias was depen-

dent on the level of detection probability, and the highest

fit between simulated and real population growth rate

estimates was obtained for P = 0.56 (Fig. 6). Model

results corresponding to this scenario showed that the

estimates of up to a 40% increase in population size in a

single year, provided by the monitoring system during the

first years, were far from reality and due to the confound-

ing effect of the increasing trend in detection probability.

The Scandinavian monitoring system has been producing

biased estimates of population growth rate at least until

2005.

Table 2. Results of the perturbation analysis, showing the relative

importance of each of the input parameters in affecting the length of

the learning phase (time necessary to achieve a bias <0.05) when

using a count-based index to monitor population growth rate.

Parameter

Standardized

b-coefficient SE P

Site persistence (p) 0.111 0.0387 <0.001

Survival rate (/) 0.240 0.0385 <0.001

Inheritance probability (h) 0.027 0.0382 0.479

Detection probability (P) �0.450 0.0396 <0.001

Fecundity (f) �0.009 0.0380 0.809

Population growth rate (k) �0.010 0.0376 0.792

Figure 3. Relationship between site persistence, survival probability,

and the length of the learning phase, based on the b coefficients

shown in Table 2, and using a detection probability P = 0.3. Lighter

to darker shades of gray indicate the predicted length of the learning

phase for species with progressively higher survival rates, for a given

value of the site persistence parameter p.
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Discussion

Although monitoring the fluctuations in the size of wild

populations is crucial in conservation and management, it

is also a challenging task (Yoccoz et al. 2001), whose per-

formance can be affected by population characteristics,

sampling effort and design, environmental and demo-

graphic stochasticity, etc. (Lande et al. 2003; Nuno et al.

2013). While the implementation of systematic sampling

and a formal treatment of detection probability are the

best available options for this purpose from a theoretical

perspective, it is still likely that for the foreseeable future,

a large number of these populations will be monitored

using cheaper, but less robust, indices of population

trend. This becomes especially true in a period in which

citizen science, that is the involvement of citizens from

the nonscientific community in academic research, has

become increasingly important in population monitoring

and in conservation science (Dickinson et al. 2010). Citi-

zen science does and will continue to provide demogra-

phers with a large amount of opportunistic,

unstandardized monitoring data, which needs to be

properly treated to avoid producing flawed conclusions

about population processes (Bird et al. 2013; Tulloch

et al. 2013).

The results of our individual-based simulation models

show that under certain conditions, that is, when a popu-

lation process retains a certain degree of temporal

autocorrelation, a monitoring system is intrinsically prone

to increase its knowledge about such a process with time,

even if no intensification of effort and no change in the

monitoring conditions occur. We show that such an

increase in the accumulated knowledge about the popula-

tion process can produce severe bias in the estimation of

the direction and strength of the process itself, with a

potentially negative impact on the ability of managers to

effectively manage and preserve natural populations.

The main outcome of comparing true and estimated

population trends under a wide range of demographic

and monitoring parameters was a systematic tendency for

the monitoring system to overestimate population growth

rate. Such overestimation was stronger in the initial phase

of the monitoring, when the real population process was

confounded with the intrinsic accumulation of knowledge

about the spatial distribution of sampling sites. As the

bias in estimating k was positive under all simulated con-

ditions, the potential risk associated with the use of

count-based indices seems to be especially serious for

small and endangered populations, as a long time lag can

occur between the start of a population decline and the

detection of such a decline by the monitoring system. If

we imagine that the population trend in Fig. 2B might

refer to the monitoring of a small population threatened

with extinction risk, such a population would have

already declined by 30%, and 7 years would have passed

with the illusion of an ongoing recovery, before the first

negative estimate of population growth rate was provided

by the monitoring system. Still after 20 years, one would

have the illusion that the abundance did not decline as

the monitoring programme was established, while the

true abundance had declined by 63%.

Even though less pronounced, a positive bias in the

estimation of population growth rate also emerged when

simulating an increasing population size with time. Under

this scenario, the count-based index of population growth

rate always showed poor performance during the initial

phase of the monitoring period, producing up to 500%

positively biased estimates of k. It became progressively

more reliable with time, depending on the level of detec-

tion probability and the degree of persistence in the spa-

tial distribution of sampling sites. Such a scenario of

positive population trend directly applies to the actual

case of several rare and elusive species in Europe and

North America, such as wolves (Musiani et al. 2009),

brown bears (Swenson et al. 2011), lynx (Linnell et al.

2009), and cougars (LaRue et al. 2012), which are recov-

ering their numbers and historic distributions after being

almost eradicated from their historical ranges. Also, inva-

sive species, such as the American mink Mustela vison

(Bonesi and Palazon 2007) and the gray squirrel Sciurus

carolinensis (Bertolino and Genovesi 2003) in Europe,

Figure 4. Relationship between detection probability and the length

of the learning phase (the number of years necessary to obtain k

estimates with bias <0.05), when using a count-based index to

monitor population growth rate. Predictions are based on the b-

coefficients shown in Table 2, based on a yearly survival / = 0.6 and

a site persistence p = 10 years.
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often exhibit a rapid increase in both their distribution

and numerical consistency after their first settlement.

Considering that both these ecological processes are often

associated with high social and/or economic conflicts

(Treves and Karanth 2003; Pejchar and Mooney 2009),

the risk of overestimating the numerical increase of an

expanding population can be serious, as it can reduce the

acceptance of the species in areas where it was previously

absent, and can ultimately result in higher social and eco-

nomic costs for its management and conservation.

Despite our effort to allow a high degree of dynamism

in the individual-based model through the inclusion of

several parameters which increased the temporal turn-

over of reproduction sites, our model is bound to be

less complex and dynamic than reality. Immigration,

emigration, the geographic expansion or contraction of a

species range, and changes in the patterns of habitat use

are all factors contributing to modify the spatial distri-

bution of the study species and the degree of autocorre-

lation in such a distribution. Therefore, even though

predictions from our model showed a substantial fit

between the population process and the estimated popu-

lation trend after the end of an initial learning phase,

reality might be more complex and less reassuring. In

the model, a good performance of the monitoring sys-

tem was reached when most of the used reproduction

sites were sampled at least once, thus allowing the moni-

toring system to track future changes in population size

with a good accuracy. In reality, the complex dynamics

involved in a species’ demography, habitat use, selection

of reproductive sites, etc., might prolong the learning

phase to a much longer time than that predicted by the

(A) (B) (C)

(D) (E) (F)

Figure 5. Relationship between real and estimated population trend, when parameterizing the simulation model with data from the wolverine

demographic monitoring in southern Scandinavia. The relationship is shown for detection probability ranging from 0.2 to 0.7. All scenarios were

run for an initial population size of 170 individual, a site persistence p = 5 years, survival rate / = 0.89, and reproduction probability f = 0.63.

Squares are population growth rate estimates provided by the monitoring system, and black dots are the estimates provided by the simulation

model. The horizontal continuous line is the real growth rate (k = 1.01).
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model, and theoretically force the monitoring system to

continuously acquire new knowledge about the spatial

distribution of a population process that constantly

changes with time. Different types of trend curves (lin-

ear, exponential, quadratic), often resulting from differ-

ent levels of human pressure and management strategies

(Di Fonzo et al. 2013), can also potentially change the

speed of the learning process by the monitoring system

and thus the accuracy of population growth rates over

time. In addition, both environmental and demographic

stochasticity can increase the degree of year-to-year fluc-

tuations in the main demographic parameters, such as

survival or fertility, thus affecting the level of temporal

correlation in population counts. The emergence of den-

sity dependence in vital rates could also further weaken

the link between the observed counts and the underlying

population process. While a more complex, spatially

explicit model might provide insights to this issue, cau-

tion should always be used when interpreting the results

of a count-based index of population growth rate,

regardless of the number of years as the monitoring has

started.

Therefore, as suggested by general theory and sup-

ported by the specific results of our work, we recommend

that a systematic sampling of the population process

under study and an explicit treatment of the underlying

detection process should be implemented whenever eco-

nomic and logistical constraints permit, as failure to

include detection probability in the estimation of popula-

tion growth rate can lead to serious bias and severe con-

sequences for management and conservation. A series of

analytical tools are available to produce unbiased esti-

mates of population size and trend from simple count

data, accounting for imperfect detection and a temporal

trend in detectability. These methods (Dodd and Dorazio

2004; Royle 2004) require spatial and temporal replicates

within the same sampling season, but with no need for

individual identification, and they should be preferred

over simple indices of population trend, whenever a

design suitable for their application can be adopted.

The demography, spatial behavior, and expected perfor-

mance of the sampling protocol in terms of detection

probability should be carefully evaluated before starting a

monitoring project that uses a count-based index of pop-

ulation trend, because the performance of the index in

tracking the real population trend can be highly influ-

enced by these factors, especially during the initial years.

Finally, we recommend that managers be made aware of

the fact that all simple count-based indices of population

growth rate are at risk of overestimating growth, and of

doing it to a higher extent during the initial implementa-

tion of a monitoring protocol. This underlines the impor-

tance of long-term monitoring projects, which allow a

progressive reduction in the risk of flawed conclusions

about the status and trend of a population, and also sug-

gests that caution should be used about any conclusion

drawn on the demographic trend of a population, when-

ever a simple index of population size has been used and

only a few years of monitoring data are available.
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